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Abstract: As an important economic resource, rubber has rapidly grown in Xishuangbanna of Yunnan
Province, China, since the 1990s. Tropical rainforests have been replaced by extensive rubber plantations,
which has resulted in ecological problems such as the loss of biodiversity and local water shortages.
It is vitally important to accurately map the rubber plantations in this region. Although several rubber
mapping methods have been proposed, few studies have investigated methods based on optical remote
sensing time series data with high spatio-temporal resolution due to the cloudy and foggy weather
conditions in this area. This study presented a rubber plantation identification method that used
spatio-temporal optical remote sensing data fusion technology to obtain vegetation index data at high
spatio-temporal resolution within the optical remote sensing window in Xishuangbanna. The analysis
of the proposed method shows that (1) fused optical remote sensing data with high spatio-temporal
resolution could map the rubber distribution with high accuracy (overall accuracy of up to 89.51% and
kappa of 0.86). (2) Fused indices have high R2 (R2 greater than 0.8, where R is the correlation coefficient)
with the indices that were derived from the Landsat observed data, which indicates that fusion results are
dependable. However, the fusion accuracy is affected by terrain factors including elevation, slope, and
slope aspects. These factors have obvious negative effects on the fusion accuracy of high spatio-temporal
resolution optical remote sensing data: the highest fusion accuracy occurred in areas with elevations
between 1201 and 1400 m.a.s.l., and the lowest accuracy occurred in areas with elevations less than
600 m.a.s.l. For the 5 fused time series indices (normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), normalized difference moisture index (NDMI), normalized burn ratio (NBR), and
tasseled cap angle (TCA)), the fusion accuracy decreased with increasing slope, and increasing slope had
the least impact on the EVI, but the greatest negative impact on the NDVI; the slope aspect had a limited
influence on the fusion accuracies of the 5 time series indices, but fusion accuracy was lowest on the
northwest slope. (3) EVI had the highest accuracy of rubber plantation classification among the 5 time
series indices, and the overall classification accuracies of the time series EVI for the four different years
(2000, 2005, 2010, and 2015) reached 87.20% (kappa 0.82), 86.91% (kappa 0.81), 88.85% (kappa 0.84), and
89.51% (kappa 0.86), respectively. The results indicate that the method is a promising approach for rubber
plantation mapping and the detection of changes in rubber plantations in this tropical area.
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1. Introduction

Due to an increase in the concern regarding natural forest management and conservation, the
rubber plantations in Xishuangbanna have gained worldwide attention [1,2]. Since the 1990s, rubber
trees planted in this area have expanded rapidly due to the increasing price of rubber. As reported by a
recent study, rubber plantations are being pushed to higher elevations (approximately 1400 m.a.s.l. in
2010) in Xishuangbanna, China [3]. The rubber planting area in Yunnan Province (approximately 0.571
million ha.) exceeded that in Hainan (approximately 0.542 million ha.) and became the largest rubber
plating area in China in 2015 [4]. Xishuangbanna contains 75% of the rubber plantations in Yunnan [5],
and so therefore detailed, accurate, and timely mapping of the rubber plantations in Xishuangbanna is
vitally important to satisfy the demands of rubber growers, marketers, and policymakers.

There are several methods to map rubber plantations. However, the defoliation of rubber trees
during winter is a unique phenomenon for the vegetation in subtropical areas, and this phenomenon
can be remotely sensed by using both optical and SAR (synthetic aperture radar) data. Consequently,
phenological feature-based methods are the most commonly used methods [6,7]. According to the
remote sensing data used, phenological feature-based rubber classification methods can be classified
into two categories: methods that utilize SAR data and those that utilize optical remote sensing images.
For the methods that utilize optical remote sensing images, the specific reflectance of monoculture
rubber plantations and their changes could be captured by high revisit frequency remote sensors, such
as MODIS (MODerate-resolution Imaging Spectroradiometer) and AVHRR (Advanced Very High
Resolution Radiometer) [8,9]. However, the relatively coarse spatial resolutions of these time series
data make it difficult to delineate and map rubber plantations in fragmented landscapes in tropical
regions with high accuracy [7]. Studies have demonstrated the promising utility of optical remote
sensing data with high temporal resolution for differentiating rubber trees from other vegetation [10].
It is even possible to map the age of a rubber plantation in Xishuangbanna using aggregated Landsat
TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) images [11–13]. The object-level
phenological features of a rubber plantation captured by Landsat NDVI data with 30 m spatial
resolution were proven to be better than pixel-based rubber classifications [14]. However, rubber
trees in Xishuangbanna are planted on slopes with complex vegetation species. Considering the
fragmented landscape and complex vegetation planting structure that may give rise to mixed pixels,
it is challenging to use phenological features derived from time series optical satellite images with
coarse spatial resolution to delineate and map the rubber plantations in this subtropical region [6,15].
Aerial photography and low-altitude sensing platforms (such as unmanned aerial vehicles, and
maned airplane, balloon) can provide high-resolution data [16,17], but their endurance limits their
applications in the identification of rubber plantations for larger areas. Another constraint for land
cover classification in tropical areas is the frequent presence of clouds and fog cover, which makes
it difficult to construct continuous mid- or high-resolution time series data with reliable quality [18].
Although the approach presented by [19] can monitor the expansion of rubber plantations by detecting
and analyzing the shapelet structure in a Landsat-NDVI time series, and this method was proven to
work well for the non-defoliation rubber identification, the 16-day revisit cycle and heavy cloud (and
fog) contamination to optical remote sensing images remains a challenge for Landsat data to capture
the accurate phenological change to identify defoliate rubber. Thus, a further study on using dense
Landsat-like data to identify defoliation rubber is still missing.

In comparison to optical sensors, SAR can penetrate clouds and fog, and thus has advantages
when mapping tropical forests. B. Chen integrated SAR and multitemporal Landsat imagery to extract
the rubber plantations on Hainan Island of China, and the results demonstrated a great potential of
using SAR data to map rubber plantations with high accuracy [18]. Another strategy used SAR data to
identify forests according to the different HH (Horizontal transmitting and Horizontal receiving) and
HV (Horizontal transmitting and Vertical receiving) polarizations between forest and other vegetation
types. The forest areas were then classified into rubber trees and other tree types following the
phenological features derived from time series vegetation indices (such as NDVI, EVI, LSWI (land
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surface water index), and LAI (leaf area index)). These indices are commonly calculated using optical
images such as MODIS, Landsat, or HJ-1A/B [9,20,21]. Although SAR data are promising for the
continuous acquisition of data in this frequently fog or cloud covered area, the fusion of optical data
and SAR data, as well as the rugged terrain, remain obstacles to the rubber classification methods that
utilize SAR data.

As the methods that utilized SAR and optical data presented promising results in terms of
rubber classification, methods that integrate data from multiple sensors could be used to derive
phenological and spectral reflectance features from vegetation, which would improve the accuracy
of rubber identification [22]. Other constraints to rubber classification in Xishuangbanna are terrain
characteristics such as slope, aspect, and elevation [14]. With the development of high spatio-temporal
resolution optical data fusion algorithms, it is feasible to construct high spatio-temporal resolution
optical data to identify rubbers [23,24]. Thus, this paper aims to blend high spatio-temporal resolution
optical data using Landsat and MODIS data, and 5 indices (NDVI, EVI, NDMI, NBR, and TCA) will
be derived based on this blended data set. Each of these indices will be used to classify rubbers to
analyze how the terrain factors (TFs) affect the accuracy of rubber identification in Xishuangbanna
and determine which of the blended high spatio-temporal indices would be the optimum choice for
rubber classification.

2. Study Area and Data

2.1. Study Area

The study area was located in Xishuangbanna at the southern tip of Yunnan Province, China
(21◦08′N~22◦36′N, 99◦56′E~101◦51′E), and the Landsat footprint WRS-2 path 130, row 45 covers
approximately 90% of this area. Xishuangbanna is in a tropical monsoon climate region where there
are only two seasons: the wet season and the dry season. The wet season lasts from May to October,
and the dry season lasts from November to April of the following year. Cloudy and foggy weather
frequently occur in Xishuangbanna throughout the year. Xishuangbanna is a mountainous area with
the lowest elevation at 470 m.a.s.l. and the highest elevation at 2429 m.a.s.l. Segmented by rugged
terrain, heterogeneous land surfaces are the common feature of this area.

Driven by the increasing demand and price of rubber, the rubber plantations in China have
rapidly expanded in recent decades. China began to plant rubber over large areas in Xishuangbanna in
1952, and Xishuangbanna currently contains the largest rubber planting area in Yunnan, accounting for
approximately 75% of the rubber plantation area in the province. The most recent intensively rubber
planting occurred in 2000 (during the China and Association of South East Asian Nations established
cooperation) and 2010 (when the China-ASEAN Free Trade Zone was officially launched) [15].

2.2. Data

2.2.1. Remote Sensing Data

MODIS products with high revisit frequencies such as MOD03 (daily latitude and longitude
coordinate product), MOD035 level 2 data (daily 1 km spatial resolution MODIS cloud mask and
spectral test results product), and MOD09GA (daily 500 m resolution MODIS surface reflectance
product) were used in this study. These data were downloaded from the NASA data sharing platform
(http://reverb.echo.nasa.gov/). The combination of MOD03 and MOD035 data was used to extract
cloud cover during the periods of 2000, 2005, 2010, and 2015. The data were chosen from DOY 152
(DOY, day of year) to DOY 152 of the following year because this period covers the entire dry season
in Xishuangbanna. The MOD09GA data were chosen according to available Landsat data; for example,
MOD09GA daily data were chosen from DOY 306 of 2000 to DOY 052 of 2001, as there were three
Landsat images available from DOY 306 of 2000 to DOY 052 of 2001 during the dry season of 2000.
Each MODIS product was reprojected from its original coordinate system to Universal Transverse

http://reverb.echo.nasa.gov/
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Mercator (UTM) coordinates with the WGS84 datum by applying the MODIS Reprojection Tools (MRT,
available from https://lpdaac.usgs.gov/tools/modis_reprojection_tool).

The 30 m spatial resolution cloud-free Landsat TM/ETM+/OLI (Operational Land Imager) data
were downloaded from the USGS Land Processes Distributed Active Archive Center (http://glovis.
usgs.gov/). The spectral response characteristics of the Landsat series data are consistent, and thus,
the vegetation index calculated from different Landsat sensors have no significant deviations, which
means the uncertainty caused by combined usage of different Landsat sensors to derive vegetation
indices will have negligible effects on the fusion results. The Landsat image with a scene path of
130, row 45 was chosen for each of the four periods (the years of 2000, 2005, 2010, and 2015). There
were at least three clear Landsat images for each period. Due to the failure of the scan-line corrector
(SLC), approximately 22% of the pixels are unscanned in each ETM+ image, so this study utilized
the GNSPI (geostatistical neighborhood similar pixel interpolator) algorithm to fill the gaps of the
ETM+ SLC-off images, an algorithm based on the geostatistical theory; compared with previous
methods, the image filled by GNSPI has fewer striping effects [25]. For the atmosphere correction
of Landsat data, the Landsat ecosystem disturbance adaptive processing system (LEDAPS), which
is based on a large number of observed aerosol data and following the 6S model, which processes
Landsat imagery to surface reflectance based on the Second Simulation of a Satellite Signal in the Solar
Spectrum radiative-transfer model (6S model) used by MODIS land science team [26], was used to
create the Landsat-based surface reflectance data. Considering the small portion of cloud coverage
in the selected data, the Fmask algorithm provided by Zhu was used to remove the clouded and
shadowed pixels, and the removed pixels were filled with the nearest available data [27]. In addition,
a digital elevation model (DEM) was also used. The data were downloaded from the GDEM (global
digital elevation model, http://gdem.ersdac.jspacesystems.or.jp/) in the WGS-84 coordinate system
at 30 m spatial resolution. The GDEM data were used to extract the slope, aspect, and elevation to
analyze their impacts on the rubber identification results. See Table 1:

Table 1. The Landsat TM/ETM+/OLI and MODIS data used in this study.

Data MOD03 MOD035 MOD09GA TM/ETM+/OLI

Spatial Resolution 1000m 1000m 500m 30m

DOY

152(2000)–152(2001) 152(2000)–152(2001) 306(2000)–052(2001)
306(2000)/TM

012(2001)/ETM+
052(2001)/TM

152(2004)–152(2005) 152(2004)–152(2005) 031(2005)–087(2005)
031(2005)/TM

039(2005)/ETM+
087(2005)/ETM+

152(2009)–152(2010) 152(2009)–152(2010) 021(2010)–053(2010)

021(2010)/ETM+
037(2010)/ETM+

045(2010)/TM
053(2010)/ETM+

152(2014)–152(2015) 152(2014)–152(2015) 003–075(2015)

003(2015)/ETM+
059(2015)/OLI

067(2015)/ETM+
075(2015)/OLI

2.2.2. Field Data

Intensive field surveys were launched from 2015 to 2018 in Xishuangbanna, and each field survey
was during (or near) the dry season to ensure that limited land cover change occurred between the
survey and the nearest available satellite image. The distribution of the survey points and the field
survey routes are shown in Figure 1. The field investigation was intensified in areas where the land
cover distribution was fragmented, and 7 main land cover types (namely, road, buildings, water
body, grass land, crops, forest and others) were covered in the field survey. Detailed investigations

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
http://glovis.usgs.gov/
http://glovis.usgs.gov/
http://gdem.ersdac.jspacesystems.or.jp/
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of crops and forest were conducted because these two cover types in Xishuangbanna have changed
dramatically in recent decades. We first divided the land cover into vegetation and non-vegetation.
Then, crops such as paddy field and dry land were investigated, and vegetation areas were divided
into natural forest, rubber, and other planted vegetation (such as farmland, eucalyptus, and tea plants).
To meet the demands for rubber classification in this study, we reclassified the field survey points into
4 classes: natural forest, rubber plantations, other vegetation, and non-vegetation cover, as described
in detail in Table 2. For the years of 2005, 2010, and 2015, Google Earth images with high spatial
resolution were used to establish remote sensing samples for each of the 4 types of land cover. For the
year of 2000, because of the lack of Google Earth images with high spatial resolution in our study area,
a SPOT-2 image (acquired on DOY 053 of 2001) at 10 m spatial resolution was used to assist with the
selection of samples. In our study area, a total of 600 sample points of different land cover types were
selected for the 4 chosen periods (250 natural forest, 170 rubber plantations, 100 other vegetation, and
80 non-vegetation). Samples were selected based on a stratified random sampling method [28,29]; 1/3
of the samples were selected as training samples, and the remaining 2/3 of the samples were used as
validation samples to assess the classification results.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 24 

 

 

Figure 1. Location of the study area and field survey samples and routes. 

2.2. Data 

2.2.1. Remote Sensing Data 

MODIS products with high revisit frequencies such as MOD03 (daily latitude and longitude 
coordinate product), MOD035 level 2 data (daily 1 km spatial resolution MODIS cloud mask and 
spectral test results product), and MOD09GA (daily 500 m resolution MODIS surface reflectance 
product) were used in this study. These data were downloaded from the NASA data sharing platform 
(http://reverb.echo.nasa.gov/). The combination of MOD03 and MOD035 data was used to extract 
cloud cover during the periods of 2000, 2005, 2010, and 2015. The data were chosen from DOY 152 
(DOY, day of year) to DOY 152 of the following year because this period covers the entire dry season 
in Xishuangbanna. The MOD09GA data were chosen according to available Landsat data; for 
example, MOD09GA daily data were chosen from DOY 306 of 2000 to DOY 052 of 2001, as there were 
three Landsat images available from DOY 306 of 2000 to DOY 052 of 2001 during the dry season of 
2000. Each MODIS product was reprojected from its original coordinate system to Universal 
Transverse Mercator (UTM) coordinates with the WGS84 datum by applying the MODIS 
Reprojection Tools (MRT, available from https://lpdaac.usgs.gov/tools/modis_reprojection_tool). 

The 30 m spatial resolution cloud-free Landsat TM/ETM+/OLI (Operational Land Imager) data 
were downloaded from the USGS Land Processes Distributed Active Archive Center 
(http://glovis.usgs.gov/). The spectral response characteristics of the Landsat series data are 
consistent, and thus, the vegetation index calculated from different Landsat sensors have no 
significant deviations, which means the uncertainty caused by combined usage of different Landsat 
sensors to derive vegetation indices will have negligible effects on the fusion results. The Landsat 
image with a scene path of 130, row 45 was chosen for each of the four periods (the years of 2000, 
2005, 2010, and 2015). There were at least three clear Landsat images for each period. Due to the 
failure of the scan-line corrector (SLC), approximately 22% of the pixels are unscanned in each ETM+ 
image, so this study utilized the GNSPI (geostatistical neighborhood similar pixel interpolator) 
algorithm to fill the gaps of the ETM+ SLC-off images, an algorithm based on the geostatistical theory; 
compared with previous methods, the image filled by GNSPI has fewer striping effects [25]. For the 
atmosphere correction of Landsat data, the Landsat ecosystem disturbance adaptive processing 

Figure 1. Location of the study area and field survey samples and routes.

Table 2. Classification system and description.

Category Description

Natural forest Natural forest land and secondary natural forest that are mainly
evergreen broad-leaved forests.

Rubber plantations Artificially planted rubber woodland.

Other vegetation Include vegetation other than natural forest and rubber (such as
farmland, eucalyptus, tea plant, shrubs, etc).

Non-vegetation Land covers such as built-up area and water.

2.2.3. Construction of Time Series Indices

Considering the complex landscape characteristics of Xishuangbanna, the ESTARFM (enhanced
spatial and temporal adaptive reflectance fusion model), which was proven to be able to accurately
predict the surface reflectance and preserve the details in remote sensing images with high resolution
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especially for heterogeneous landscapes [30], was chosen in this study. The ESTARFM is an improved
adaptive spatio-temporal fusion method for remote sensing images based on the basic STARFM (spatial
and temporal adaptive reflectance fusion model) theory, which not only considers the spatial and spectral
similarity between pixels, but also incorporates the temporal variation in pixel reflectance [30,31]. Directly
fused time series indices also indicate promising accuracies [32,33], so this study fused the time series
indices by employing the ESTARFM algorithm.

This study selected the five commonly used indices (NDVI, EVI, NDMI, NBR, and TCA, as shown
in Table 3 in detail) to construct a time series data set to comparatively analyze their performances in
rubber plantation classification.

Table 3. Selected Vegetation Indices.

Index Expression Author Remarks

NDVI NDVI = ρNIR−ρred
ρNIR+ρred

Rouse
(1973) [34]

ρred, ρNIR represent the reflectance
at the red and near infrared bands

of Landsat images.

EVI
EVI =

G(ρNIR−ρred)
(ρNIR+C1ρred−C2ρblue+L)

Liu, Huete
(1995) [35]

ρblue, ρred, ρNIR are the
reflectance at the blue, red and
near-infrared bands of Landsat

images; G is the gain factor, which
was set to 2.5; C1 and C2 are the
aerosol impedance coefficients

and were set to 6 and 7.5, and L is
a background adjustment factor of
the canopy, which was 1.0 in this
study. In this study, these factors
were all set to the most widely

used values.

NDMI NDMI = ρNIR−ρSWIR1
ρNIR+ρSWIR1

Wilson, Sader
(2002) [36]

ρNIR, ρSWIR1 are the reflectance of
the near-infrared and shortwave

infrared bands.

NBR NBR =
ρNIR−ρSWIR2
ρNIR+ρSWIR2

Lopez
(1991) [37]

ρNIR, ρSWIR2 represent the
ground reflectance values of the

near-infrared and shortwave
infrared bands, which were
originally used to assess the

severity of forest fires and later
used by scholars to monitor forest

changes.

TCA TCA = arctan
(

Gr
Br

)
Gómez (2011) [38]

Br, Gr are the brightness and
greenness of the Tasseled Cap
transformed results, which are

sensitive to the vegetation and soil
reflectance.

3. Methods

There are mainly three parts in our proposed method: (1) the selection of optimum optical remote
sensing window, (2) feature extraction based on the fused time series indices, and (3) classification of
rubber trees and its accuracy assessment.

Rubbers are planted in tropical areas where the optical remote sensing images are frequently
contaminated by clouds and fog. Xishuangbanna is a tropical monsoon forest climate region where
rubber trees shed their leaves in February, and new leaves begin to turn green in late March. To
specify the remote sensing window for the extraction of phenological features of rubber trees in this
area, the analysis of the cloud coverage frequency is vitally important to the applicability of our
method for rubber plantation identification. Therefore, we first used MOD035 data to analyze the
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average cloud coverage of the study area during four different years: 2000, 2005, 2010, and 2015, which
range from June to June of the following year. This period completely covers the entire dry season of
Xishuangbanna. There are many more clear days during the dry season than during the wet season. In
addition, rubber trees shed their leaves during only this period when many cloud-free optical remote
sensing images can be obtained. To improve the representativeness of the daily MOD035 data, we
transformed the cloud coverage data to an average of every 7 days. The transformed cloud coverage
data were then used to analyze the coverage frequency in Xishuangbanna to specify the proper remote
sensing window.

Optical remote sensing images within the chosen remote sensing window were used to derive the
changes in phenological features of rubber trees. The phenological features were derived based on
the indices calculated from the fused data, including NDVI, EVI, NDMI, NBR, and TCA. Numerous
vegetation indices can accurately reflect vegetation growth conditions and capture the trends in
vegetation changes. Among these indices, the NDVI is a widely used vegetation index; however,
there are some defects, such as its saturation to high vegetation coverage and disturbances caused by
atmospheric noise and the soil background [39]. In addition to NDVI, indices such as the EVI, NDMI,
NBR, and TCA are commonly used to construct time series data for forest monitoring, and some of
these indices have been proven to exhibit better performance over NDVI [40]. This study used these 5
indices to construct the time series data, and the separability of these time series indices was compared
and analyzed in rubber plantation classification, and through the fusion of time series data sets, we
could obtain accurate annual phenological changes of rubber plantations and the minimum annual
vegetation cover of rubber plantation could be obtained, that may be difficult to obtain from a single
data (such as, Landsat data) derived phenology, the difference between our method and other methods
are summarized in Table 4.

Table 4. Summary of main rubber plantation extraction methods.

Methods by Remote
Sensing Data

High Spatial/and
Temporal

Resolution

Parametric/
Nonparametric
Classification

Study
Areas/and Size

Obtain Key
Phenology

Features

Dong et al. [9] MODIS & SAR No/Yes Parametric Hainan,
China/Large Yes

Beckschäfer et al. [12] Landsat Yes/No Nonparametric Xishuangbanna,
China/Large No

Ye et al. [20] Landsat Yes/No Nonparametric Seima/Small No

Xiao et al. [13] Landsat Yes/No Nonparametric Xishuangbanna,
China/Large No

This study Landsat &
MODIS Yes/Yes Parametric Xishuangbanna,

China/Large Yes

This study finally classified the rubber plantations by applying two machine learning classifiers,
the support vector machine (SVM) and random forest (RF), which were trained using the training
samples. The SVM classifier is based on statistical machine learning theory to determine the location
of decision boundaries that produce an optimal separation of classes. Thus, this nonparametric and
sample distribution-free classifier was applied in this study. To estimate the performance of different
time series indices, the RF classifier, which is another nonparametric statistical machine learning
classifier, was also used. An RF is built based on the predictions from multiple decision trees, where
each decision tree is constructed from a different bootstrap sample of the original data set [41]. The
features derived from the time series are high-dimensional data sets, and both SVM and RF classifiers
are suitable for high-dimensional data classification. Therefore, the RF classifier was selected to be
compared with the SVM classifier in this study. In the final step, the accuracies of different classification
schemes were assessed based on the validation samples to determine the most suitable approach. The
specific process is shown in Figure 2, and the main parts are as follows.
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3.1. Analysis of the Optical Remote Sensing Window for Xishuangbanna

This study analyzed the average cloud coverage of the study area from June to June of the
following year in four different years: 2000, 2005, 2010, and 2015. Because there are as many as 365
images for each year, remarkable redundancy exists when analyzing the cloud coverage trends during
different seasons, so the average cloud coverage was calculated over each 7 day period. The cloud
coverage trends for each period are shown in Figure 3. Results indicate that the lowest cloud coverage
in the study area (as shown between the two red dotted lines in Figure 3) commonly occurs from
December (approximately DOY 327) to early March of the following year (approximately DOY 067).
Thus, cloud-free optical remote sensing data are abundant during this period; in contrast, the highest
cloud coverage in the study area appears from June to September, and more than 70% of the images
are clouded (or fogged). Cloud-free MODIS images mostly occur during the dry season, and there
are almost no completely clear images from June to September. Therefore, data between June and
September are not suitable for classification of vegetation in Xishuangbanna using optical remote
sensing time series data.

According to the field survey, the period from December to March of the following year belongs
to the dry season in Xishuangbanna. With the decreases in temperature and precipitation, rubber
plantations gradually enter the defoliation period; thus, vegetation indices such as EVI would reach
the lowest value in February of the following year. Then, rubber plantations gradually turn green and
new leaves began to grow, and the EVI value gradually increases. Therefore, from every November to
March of the following year, the vegetation indices of rubber plantations are significantly different
from those of other local vegetation. This period is also within the optical remote sensing window
of Xishuangbanna, which indicates that the optimum time period for identifying rubber plantations
using time series optical remote sensing data is from December to March of the following year.
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3.2. Generation of Time Series Indices with High Spatial and Temporal Resolution

According to the optimum optical remote sensing window in Xishuangbanna, Landsat
TM/ETM+/OLI, and MOD09GA data from December to March of the following year were used
to fuse and extract the phenological characteristics of rubber plantations and their changes. The
ESTARFM requires cloud-free and high-quality remote sensing data as inputs, so cloudless MOD09GA
and TM/ETM+/OLI surface reflectance data during the remote sensing window were selected (using
the MODIS QC data for MODIS, Fmask for Landsat images) as input data. Five indices were calculated
based on the selected cloud-free surface reflectance data for MODIS and Landsat. Then, time series
vegetation indices with high spatial and temporal resolution were generated by employing the
ESTARFM algorithm. For each of the constructed time series indices, noise inevitably existed because
of the directional reflectance of land cover, shadows caused by rugged terrain or atmospheric pollution.
These noises are obstacles to time series feature extraction, so we employed a new noise-reduction
algorithm based on Savitzky-Golay (S-G) called the Spatial-Temporal Savitzky-Golay (STSG) method
to remove the noise, the new method assumes discontinuous clouds in space and employs neighboring
pixels to assist in the noise reduction of the target pixel in a particular year [42,43]. This method is a
convolution algorithm based on least squares. The main formula is as follows:

Y∗j = ∑i=m
i=−m

(
Ci×Yj

)
/N (1)

In Equation (1), Y and Y∗ are vegetation indices before and after filtering; Ci is the least squares
fitting coefficient of the high-order polynomial, which is the weight of the i-th EVI value from the
filter head; N is the length of the filter, its size is equal to 2m+1, and m is the window radius. The S-G
filter can remove most of the noise and smooth the original time series data with good fidelity [44].
Although a single S-G filtering fits well with the basic trend of the original data, noise still exists. Thus,
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a double S-G filtering (S-G filtering again based on the first S-G filtered results) was performed to
remove additional noise, which can also fit the basic trend of the original data well [45].

3.3. Analysis of Data Fusion Accuracy

3.3.1. Accuracy Analysis of the 5 Fused Time Series Indices

To assess the data fusion accuracy, it is needed to analyze the correlation between the five indices
fused by ESTARFM and the corresponding indices calculated from the observed Landsat data of the
same day. For example, to assess the accuracy of the ESTARFM fused indices on DOY 059 of 2015, the
input MODIS and Landsat indices were DOY 003 and DOY 067 (time interval of 64 days), respectively.
During the accuracy evaluation process, the correlation coefficient (R) between the fused index on
DOY 059 and the index derived from the Landsat observation data was calculated. The evaluation
index adopts the determination coefficient R2 and root mean square error (RMSE). The closer the
determination coefficient R2 is to 1.0, the higher the accuracy of the fusion data is, and the closer it is to
0.0, the lower the accuracy of fused data is. Meanwhile, the closer the RMSE is to 0.0, the higher the
accuracy of the fusion data is, and vice versa.

3.3.2. Analysis of Factors Affecting the ESTARFM Fusion Accuracy

In this study, we analyzed the following factors that may affect the ESTARFM fusion accuracy:

(1) The interval of days between input images. Time intervals of 32 days, 56 days, 64 days, and
112 days, this interval was depended on the available observed Landsat data.

(2) Terrain factors, including elevation, slope, and aspect as following:

(i) Based on DEM data analysis and field investigation, the data fusion accuracy was analyzed
by dividing the elevation into seven ranges: less than 600 m.a.s.l., 601–800 m.a.s.l., 801–1000 m.a.s.l.,
1001–1200 m.a.s.l., 1201–1400 m.a.s.l., 1401–1800 m.a.s.l., and greater than 1801 m.a.s.l.

(ii) The slopes were divided into 5 grades: 0–10◦, 10–20◦, 20–30◦, 30–40◦, and greater than 40◦.
(iii) The slope aspect was divided into eight directions; namely, east (67.5–112.5◦, semi-shady

slope), southeast (112.5–157.5◦, semi-sunny slope), south (157.5–202.5◦, sunny slope), southwest
(202.5–247.5◦, sunny slope), west (247.5–292.5◦, semi-sunny slope), northwest (292.5–337.5◦,
semi-shady slope), north (0–22.5◦, 337.5–360◦, shady slope) and northeast (0–22.5◦, 22.5–67.5◦,
shady slope).

(3) Spatial heterogeneity index. Spatial heterogeneity is one of the main causes of spatial
scale effects [46] and may affect the fusion accuracy. To analyze the relationship between spatial
heterogeneity and fusion accuracy, we used the spatial heterogeneity index (SHI) proposed by Zhang
to quantitatively analyze the relationships between spatial heterogeneity and the three TFs. A SHI of
a pixel f (i, j) is defined as the sum of the absolute brightness difference between f (i, j) and its eight
neighboring pixels [47]:

SHIij =
1

∑
a=−1

1

∑
b=−1
| f (i, j)− f (i + a, j + b)| (2)

In Equation (2), SHIij is the SHI of a pixel f (i, j). The SHI for a region (assuming the image size is
m multiplied by n) is defined as:

SHI =
1

m·n
m

∑
i=1

n

∑
j=1

SHIij (3)

3.4. Comparative Analysis of Different Time Series Indices

Vegetation coverage is high in tropical areas, and the response of vegetation change in spectral
space is limited and complicated. Therefore, it is necessary to compare and analyze the performance
of different time series indices for rubber plantation changes in Xishuangbanna. In this study, 5 time
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series data sets (such as NDVI, EVI, NDMI, NBR and TCA) were selected for comparative analysis of
their separability in rubber plantation classification.

3.4.1. Time Series Index-based Feature Extraction

Time series indices fused by the ESTARFM during the key phenophase of rubber plantations
contain a large amount of information on the rubber growth state and changes, which are
high-dimensional data. Excessive data dimensions may cause data redundancy and reduced
classification accuracy. To better extract the time series features based on the fused data sets and
remove redundant data, this study extracted six features based on the time series vegetation index
curves using IDL (Interactive Data Language). Taking the EVI time series features as an example, as
shown in Figure 4, six classification features were extracted in this study, which were the maximum
and minimum values of the time series index from December to March of the following year, the
integral between the 1st day and the 45th day of the year, the integral of the overall time series index
curve, the ratio of the maximum value of the time series index to the integral of the time series index
curve, and the date when the minimum derivative of the time series curve could be obtained (detailed
in Table 5).
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Figure 4. Time series EVI curve of rubber plantations and curve features.

Table 5. Classification features of rubber plantations based on EVI time series.

Number Extracted Features Range Description

I Time series index maximum −1, 1
Different types of vegetation time series

indices have different maximum values and
high discrimination

II Time series index minimum −1, 1
Different types of vegetation time series

indices have different minimum values and
high discrimination

III
Time series exponential curve

integration between DOY 001 and
DOY 045

0, 10

In this period, the curve integral expresses
the cumulative amount of rubber

plantation growth and improves the rubber
classification accuracy

IV Time series exponential curve
integral 0, 39 Curve integrals express different growth

conditions of different types of vegetation

V
The ratio of time series index

maximum to time series
exponential curve integral

−∞, +∞ Using the ratio of different features to
improve the distinction of features

VI
Time series index value

corresponding to the time
derivative of the time series curve

−1, 1

The time series index of rubber plantations
is different from the maximum and

minimum values, which is better
distinguished from other vegetation types
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Figure 4 is a schematic diagram showing the time series EVI curve of the rubber plantations
within the optical remote sensing window of Xishuangbanna. In this diagram, point a is the maximum
EVI value within this remote sensing window, point c is the minimum EVI value, point b is where
the minimum EVI derivative value is obtained, indicating the rate of change in deciduous rubber
plantations; the time interval from a to c is the deciduous period of rubber plantations, and rubber
plantations enter the regreening up period at point c. The integral of EVI corresponds to the biomass
within this remote sensing window of Xishuangbanna (selected here from DOY 001 to DOY 045), which
are apparently different between different vegetation types. The results of the six features extracted
from the study area are shown in Figure 5.
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(e) the ratio of max EVI to the integral of EVI, and (f) the EVI corresponding to the min derivative.

3.4.2. Separability Evaluation of Classification Features

To evaluate the separability of the 6 selected classification features, we need a monotonic criterion
that exhibits a monotonic relationship with the classification error rate that can be measured [48]. The
most commonly used J-M (Jeffreys-Matusita) distance based on the conditional probability method
was used in this study [49]. When a feature follows the normal distribution, the J-M distance can be
calculated as [50]:

JMιj = 2
(

1− e−Bιj
)

(4)

The Bιj in formula (4) is Bhattacharyya distance [51]:

Bij =
1
8
(
µι − µj

)T
( ci + cj

2

)−1(
µι − µj

)
+

1
2

ln

1
2

∣∣ci + cj
∣∣√

|ci|
∣∣cj
∣∣
 (5)

In Equation (5), µι is the mean of the i-th category and ci is the covariance matrix of the i-th
category. The range of J-M distance is [0,2]. J-M distances were calculated according to the selected
sample points; a value of greater than 1.38 indicates good separability, values between 1.0 and 1.38
indicate moderately separable, and values less than 1.0 indicate poor separability [52,53]. Taking the
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EVI time series features of rubber plantations and natural forest as an example, the J-M distances are
as follows:

(i) when 2 features were combined, the maximum J-M distance was 1.57, and the corresponding
combination was IV and V;

(ii) when 3 features were combined, the maximum J-M distance was 1.80, and the corresponding
combination was I, II and V;

(iii) when 4 features were combined, the maximum J-M distance was 1.87 and the corresponding
combination was I, II, V and VI;

(iv) when 5 features were combined, the maximum J-M distance was 1.93, and the corresponding
combination was I, II, III, V and VII;

(v) when 6 features were combined, the maximum J-M distance was 1.98.

Then, we analyzed the J-M distances of these six features for NDVI, EVI, NDMI, NBR, and TCA
time series indices, as shown in Table 6. The results showed that when the features derived from the
EVI time series index were the six features listed in Table 5, the J-M distances of all types (natural
forest, rubber plantations, other vegetation, and non-vegetation) were greater than 1.9, which indicates
good separability between each of the classes, as shown in Table 6. Therefore, these six features of the
EVI time series index can not only remove data redundancy from the original time series curves but
also ensure the classification accuracy.

Table 6. The maximum J-M distance between classes when 6 features are selected.

Classes
J-M

NDVI EVI NDMI NBR TCA
Rubber plantations v.s. Natural forest 1.96 1.98 1.98 1.98 1.97

Rubber plantations v.s. Other vegetation 1.92 1.93 1.85 1.91 1.93
Rubber plantations v.s. Non-vegetation 1.99 1.99 1.93 1.93 1.99

Natural forest v.s. Other vegetation 1.94 1.99 1.98 1.99 1.99
Natural forest v.s. Non-vegetation 1.98 1.99 1.92 1.97 1.99

Other vegetation v.s. Non-vegetation 1.89 1.96 1.90 1.88 1.94
Note: The gray background indicates the maximum value of the corresponding classification feature.

3.5. Classification Schemes

This study analyzed which of the three data sets (monotemporal image, time series data set and
selected feature data set) was the best classification data set. The classification schemes we designed
are as shown in Table 7. Each of the 3 data sets was classified by employing the SVM and RF classifiers.

Table 7. Summary of classification schemes.

Scheme Description

Monotemporal image Using a single index within evergreen broad-leaved natural forests in February
Time series data set The fused time series data set without feature selection or dimension reduction

Selected feature data set The 6 selected classification features from the fused time series data set

4. Results and Discussion

4.1. Data Fusion Accuracy

4.1.1. Accuracy of the 5 Fused Time Series Indices

According to the determination coefficient results of the fused 5 indices in Figure 6, each of the
results has an R2 greater than 0.8, which indicates that the fused indices exhibit high correlation with
the indices derived from the observed results. The results for 2000, 2005, and 2010 are shown in Table 8.
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A minimum R2 of 0.66 means R is greater than 0.8 for each of the results, which indicates that the
blending method used was feasible to construct time series indices. For all of the fused results, the
determination coefficient R2 of NDVI is closer to 1, and its RMSE is closer to 0, so the fused NDVI
has the highest correlation with the NDVI calculated from the observed data and the lowest with the
NDMI, as shown in Table 8.
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Figure 6. Scatterplots of the predicted data and the observed ETM+ data in 2015: (a) NDVI; (b) EVI; (c)
NDMI; (d) NBR; (e) TCA.

Table 8. Correlation between fused indices and those derived from observed data for different years.

2000 2005 2010 2015

Index R2 RMSE R2 RMSE R2 RMSE R2 RMSE

NDVI 0.76 0.07 0.91 0.05 0.89 0.06 0.82 0.06
EVI 0.70 0.08 0.91 0.03 0.84 0.05 0.81 0.05

NDMI 0.66 0.09 0.85 0.05 0.81 0.07 0.80 0.07
NBR 0.69 0.09 0.89 0.07 0.82 0.07 0.82 0.08
TCA 0.67 0.09 0.87 0.06 0.82 0.07 0.81 0.07

Interval of 112 days Interval of 32 days Interval of 56 days Interval of 64 days

4.1.2. Factors Affecting the ESTARFM Fusion Accuracy

The previous analysis showed that there are high correlations between the fused time series
indices and the time series indices calculated from the observed data; however, the accuracy of the
fused result is affected by other factors: (1) the interval of days between input images. As shown in
Table 8, the fusion accuracy decreases when the interval increases from 32 to 112 days. For example,
the R2 of the TCA fusion accuracies decrease from 0.81 to 0.67 when the data acquisition interval
between input data increases from 32 days to 112 days. (2) Terrain factors. The influences of elevation,
slope, and slope aspect on the fusion accuracy were analyzed, and we take the results of DOY 059 in
2015 as an example, as the trend remains the same for the other fusion results.
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(i) The fusion accuracy increases with increasing elevation. The results showed that the fusion
accuracies were significantly different at different elevations: the fusion accuracy fluctuated greatly
between different indices as the elevations changed; the highest fusion accuracy was observed at
elevations between 1201 and 1400 m.a.s.l., and the lowest accuracy was observed in areas where the
elevation was less than 600 m.a.s.l.

(ii) The fusion accuracy tends to be higher in areas with gentle slopes, but low in areas with steep
slopes. The results in Figure 7b show that the fusion accuracy decreases with the increase in slope,
and there tends to be a greater negative impact on NDVI in areas with steep slopes. As the slope
increases to steeper than 40◦, the correlation between the fused NDVI and observed NDVI decreases
from 0.82 to 0.52, while the decrease was smaller for EVI, with R2 decreasing from 0.85 to 0.77.
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(iii) Slope aspect have less of an influence on the fusion accuracies, but the fusion accuracies were
lowest in the northwest. The change in accuracy at the different slope aspects is shown in the wind
rose chart in Figure 7c; the circumference represents the slope aspect, and the radius represents the
fusion accuracy R2 on each aspect. The R2 from the center of the circle to the top of the radius is from
0.5 to 0.9. The results show that the slope had little influence on the fusion accuracy of the five time
series indices, but the fusion accuracy was lowest on the northwest slope (the R2 of the northwest
slope was 0.72, approximately 0.08 less than the maximum).

We take the near-infrared (NIR) band of DOY 059 in 2015 to calculate the SHI as an example. The
SHIs of different TFs are shown in Figure 7. The results show that the fusion accuracy of the time
series index is negatively correlated with spatial heterogeneity: (i) the lowest SHI value occurs at
elevations between 1201 and 1400 m.a.s.l., and the highest SHI occurs in areas with elevations less than
600 m.a.s.l.; (ii) the SHI increases with increasing slope, which indicates that rugged terrain tends to
have heterogeneous land surfaces; (iii) the SHI is highest on the northwest slope, which means that
the coverage on shady slopes tends to be heterogeneous. The results in Table 9 show a considerable
negative correlation between the fusion accuracy of the 5 indices and the SHI. The fusion accuracy
decreases with the increase in SHI according to Figure 7.
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Table 9. Correlation between fusion accuracy and SHI.

R
Index

NDVI EVI NDMI NBR TCA
TF

Elevation −0.68 −0.78 −0.75 −0.73 −0.67
Slope −0.99 −0.95 −0.95 −0.97 −0.99

Slope aspect −0.63 −0.62 −0.63 −0.73 −0.68

4.2. Choosing Best of the 5 Fused Time Series Indices

Based on the field samples and the time series indices, time series curves are plotted to analyze the
separability of natural forests, rubber plantations, and other vegetation cover types; they represent the
range of deviations of different indices at the same sample point by calculating the standard deviations,
as shown in Figure 8. The time series curves of EVI and TCA for rubber plantations drop obviously
around DOY 056 for each of the 5 indices, which indicates that rubber plantations are obviously
different from natural forest and other vegetation cover types. The vegetation indices for natural
forests are relatively stable because most of the vegetation in Xishuangbanna is evergreen. The curves
for the other vegetation cover types exhibit in the lowest values. These results indicate that time series
vegetation indices are promising for capturing the different phenological characteristics to identify
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According to the analysis results in the previous section, we used the EVI to analyze the growth
characteristics of different vegetation types. Limited by the Landsat acquisition time, the beginning
and ending times were different for each of the 4 years. However, the time series vegetation index
curves for each of the four years had the same distinguishable features and trends after filtering, as
shown by the EVI curves in Figure 9. The features could be summarized as follows. (i) The EVI values
from high to low are natural forest, rubber plantations, and other vegetation. (ii) The EVI change
trends for rubber plantations are different from those for natural forest and other vegetation types:
the EVI values of rubber plantations presented a decreasing trend in January in each year, the lowest
value appearing in February of the following year, and the value then began to rise gradually. (iii)
There were no strong fluctuations between natural forest and other vegetation types, and the difference
between them was remarkable. As Xishuangbanna enters the dry season starting in December when
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temperature drops and precipitation gradually decreases, rubber plantations enter the defoliation
phase, so the EVI value of the rubber plantations shows a decreasing trend in January. Natural forests
are dominated by evergreen broad-leaved vegetation, so there was no significant EVI fluctuation
during any of the 4 years. The other vegetation types in the study area are dominated by farmland,
which is transformed into fallow land from November to April of the following year. During this
period, no crops are planted, and the EVI value remained low. Based on the above analysis, the time
series indices can capture the difference between rubber plantations and other land cover types as long
as key points within the curves can be obtained.
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4.3. Accuracy Validation of the Classification Results

4.3.1. Classification Results of Different Classification Schemes Using EVI Time Series Data

This study analyzed three classification schemes in this study. The results are shown in Table 10.
(i) The classification accuracy was lowest when a monotemporal image was used, and the overall
classification accuracy was 68.49% with a kappa value of 0.54. (ii) The classification accuracy was
highest when a selected feature data set was used, which was 3% higher than the accuracy when
the EVI time series data set was directly applied. (iii) The classification results of the RF classifier
on processed time series and feature data sets are better than those of SVM classifiers (increase of
approximately 2%) in this study. These results indicate that selecting features from time series data
sets using the RF classifier would be a better choice for classification of time series data.

Figure 10 shows the classification results when using the EVI time series features using the
RF classifier with the highest classification accuracy for each of the classification schemes. Table 11
presents the classification accuracy results for 2000, 2005, 2010, and 2015.



Remote Sens. 2019, 11, 496 18 of 24

Table 10. Classification accuracies comparison of different classification schemes.

Scheme
Overall Accuracy/%

Classifier
2000 2005 2010 2015

Monotemporal image 72.48 72.48 70.68 72.59 SVM
69.75 74.79 68.49 70.39 RF

Time series data set
80.43 81.42 80.25 82.75 SVM
84.80 82.55 83.19 84.26 RF

Selected feature data set
85.65 86.59 87.72 87.41 SVM
87.20 86.91 88.85 89.51 RF

Note: The gray background indicates the highest classification accuracy of the corresponding year.
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Table 11. Classification accuracies in 2000, 2005, 2010, and 2015.

Year
Rubber

Plantations Natural Forest Other
Vegetation Non-Vegetation Total

PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% OA/% Kappa

2000 78.06 89.13 94.51 91.68 80.83 83.62 88.00 97.50 87.20 0.82
2005 84.65 93.96 97.32 97.32 79.14 70.75 70.53 70.81 86.91 0.81
2010 93.07 95.43 97.77 90.50 73.38 82.93 75.93 71.93 88.85 0.84
2015 84.68 96.91 92.54 91.85 89.33 71.28 90.83 96.12 89.51 0.86

The results show that: (i) the planting area of rubber in Xishuangbanna increased rapidly from
221,789 hectares in the year 2000 to 437,686 hectares in 2015. (ii) The rubber planting expansion was
mainly between 700 m.a.s.l. and 900 m.a.s.l. from the year 2000 to 2010, and an area of greater than 900
m.a.s.l. between the year 2010 and 2015. (iii) The rubber planting expansion was mainly on slopes that



Remote Sens. 2019, 11, 496 19 of 24

between 15◦ and 25◦ from the year 2000 to 2010, and slopes that greater than 25◦ between the year
2010 and 2015. Rubbers on slops that less than 8◦ had comparatively less expansion.

The rubber planting area is expanding to high latitude north, and the planting area is expanding
from low-altitude valleys to high-altitude mountains. With limited suitable rubber fields in
Xishuangbanna, rubber planting is expanding to unsuitable rubber planting areas. The trend of
this result is similar to that of study [3].

4.3.2. Classification Accuracies of Different Time Series Indices

The classification results shown in Table 10 indicate that the vegetation index with high
spatio-temporal resolution obtained from the fused data can remarkably improve the accuracy of
rubber plantation identification, and the classification accuracy of vegetation change features extracted
during the key phenological period is higher than that when time series data sets are directly used. To
test the performances of different indices, we selected time series features derived from NDVI, EVI,
NDMI, NBR, and TCA to conduct the classification using the RF classifier. As shown in Table 12, the
classification accuracies of the EVI and TCA time series were higher than those of the NDVI, NDMI
and NBR time series, while the classification accuracy of the NDMI time series was the lowest, but the
fusion accuracy of EVI obtained by fusion under the same conditions was higher than that of TCA.
Therefore, the EVI index should be preferred in future studies.

Table 12. Classification accuracies of different time series index classification methods.

Year

Index Overall Accuracy/%

EVI TCA NDVI NBR NDMI

2000 87.20 86.39 84.80 80.86 75.53
2005 86.91 87.42 82.50 81.42 74.79
2010 88.85 87.72 84.16 83.19 78.67
2015 89.51 88.57 85.78 81.95 77.15

Note: The gray background indicates the maximum value of the corresponding year.

5. Conclusions

This study presented a rubber plantation identification method based on vegetation phenology
in cloudy and foggy tropical areas in this study. The method first analyzed the optical remote
sensing window within the study area and then used spatio-temporal data fusion technology to
construct a vegetation index data set with high temporal resolution within the remote sensing
window. The phenological features of vegetation were captured to map rubber plantations using
fused time series indices. The analysis of the presented method and several factors that may affect
the high spatio-temporal resolution data fusion accuracy and rubber plantation classification show
the following.

(1) Within the optimum optical remote sensing window in Xishuangbanna, fused optical remote
sensing data with high spatio-temporal resolution could map the rubber distribution with high
accuracy (overall accuracy of 89.51%, kappa of 0.86).

(2) Terrain factors, including the elevation, slope, and aspect, will have obvious negative effects
on the accuracy of the fusion of optical data high spatio-temporal resolution: the fusion accuracy of
each time series index fluctuated greatly at different elevations; the highest fusion accuracy occurred in
areas with elevations from 1201–1400 m.a.s.l., and the lowest accuracy occurred in areas with elevations
less than 600 m.a.s.l. The fusion accuracy decreased with the increase in slope, with the least impact on
EVI and the greatest impact on NDVI; the slope aspect had less of an influence on the fusion accuracies
of the five time series indices, but the fusion accuracy was lowest on the northwest slope. The SHI
analysis indicated that land cover heterogeneity increased with decreasing elevation and increasing
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slope. The land cover types on the northwest slope tend to be heterogeneous compared to those on
other slope aspects.

(3) Among the five commonly used time series indices (NDVI, EVI, NDMI, NBR and TCA), the
EVI time series had a better ability to capture the different growing features of vegetation in this study.
The highest classification accuracies were achieved for the best fusion results of EVI, which indicated
that the EVI was the best choice among the five time series indices for time series features-used
rubber classification.

The classification method presented in this study was mainly based on the phenological
differences between different ground cover types; however, rubber plantations in Xishuangbanna
are artificially planted vegetation, which would be affected by human activities to some extent. For
example, some rubber trees may still have green leaves during the defoliation phase because of
sufficient water and fertilizer conditions. These rubber plantations are more difficult to distinguish
using the classification method based on phenological characteristics. The Unmanned Aerial Vehicles’
(UAV) remote sensing is a low-altitude remote sensing platform, which is not disturbed by atmospheric
factors in the acquisition of images. It has the advantages that are inaccessible by traditional
remote sensing technologies, such as low cost, simple operation, fast acquisition of images and high
ground resolution. Therefore, the UAV-based method will become the hot spot of rubber plantations
identification and change study in small area in the future. Furthermore, the method proposed by this
study is a training samples-based supervised classification method in which the results and accuracies
may largely depend on the training sample, which indicates the nonparametric method should be
considered in further research. Another deficiency of our method would be the computation complexity,
because it needs to fuse images, which is time and computing devices consuming. However, with the
development of cloud computing services/devices, this may not be a barrier soon.

Through the fusion of time series data sets, the method can obtain accurate annual phenological
changes of vegetation and minimum annual vegetation cover, which is difficult to obtain from a
single data source (such as Landsat). This means the method is adaptable and can identify vegetation
steadily in different areas. Therefore, this method can be used to identify other vegetation that have
distinguishable phenological features in tropical areas. However, the extraction of non-defoliation
rubber may perform better if we combine our method with the method proposed by Ye’s study [19],
because our method can obtain the rapid and unique growth process of rubber at higher temporal
resolution. With the development of remote sensing satellites, higher spatial resolution data with
a shorter revisiting period such as Sentinel-2 can be used to study the possible uncertainty in high
spatio-temporal resolution data-based classification in future research. For the topographical factors
of mountainous tropical areas, directional reflectance and the growth stage of vegetation are strong
obstacles to rubber identification accuracy. Thus, it is also necessary to consider the correction of
bidirectional reflectance caused by TFs. In addition, the solar zenith angle changes caused by shadows
in mountainous areas are also significant influences that should be considered in future research.
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Abbreviations

6S Second Simulation of a Satellite Signal in the Solar Spectrum
ASEAN Association of South East Asian Nations
AVHRR Advanced Very High Resolution Radiometer
DEM Digital Elevation Model
DOY Day Of Year
ESTARFM Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model
ETM+ Enhanced Thematic Mapper Plus
EVI Enhanced Vegetation Index
GDEM Global Digital Elevation Model
GNSPI Geostatistical Neighborhood Similar Pixel Interpolator
HH Horizontal transmitting and Horizontal receiving
HV Horizontal transmitting and Vertical receiving
J-M Jeffreys-Matusita
LAI Leaf Area Index
LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System
LSWI Land Surface Water Index
m.a.s.l. meters above the sea level
MODIS MODerate-resolution Imaging Spectroradiometer
MRT MODIS Reprojection Tools
NBR Normalized Burn Ratio
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
OA Overall Accuracy
OLI Operational Land Imager
PA Producer’s Accuracy
UA User’s Accuracy
R correlation coefficient
RF Random Forest
SLC Scan-Line Corrector
RMSE Root Mean Square Error
SAR Synthetic Aperture Radar
S-G Savitzky and Golay
SHI Spatial Heterogeneity Index
STARFM Spatial and Temporal Adaptive Reflectance Fusion Model
STSG Spatial-Temporal Savitzky-Golay
SVM Support Vector Machine
TCA Tasseled Cap Angle
TFs Terrain Factors
TM Thematic Mapper
USGS United States Geological Survey
UTM Universal Transverse Mercator
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