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Abstract: In this paper, a novel online learning-based tracker is presented for the unmanned
aerial vehicle (UAV) in different types of tracking applications, such as pedestrian following,
automotive chasing, and building inspection. The presented tracker uses novel features, i.e., intensity,
color names, and saliency, to respectively represent both the tracking object and its background
information in a background-aware correlation filter (BACF) framework instead of only using
the histogram of oriented gradient (HOG) feature. In other words, four different voters, which
combine the aforementioned four features with the BACF framework, are used to locate the object
independently. After obtaining the response maps generated by aforementioned voters, a new
strategy is proposed to fuse these response maps effectively. In the proposed response map fusion
strategy, the peak-to-sidelobe ratio, which measures the peak strength of the response, is utilized
to weight each response, thereby filtering the noise for each response and improving final fusion
map. Eventually, the fused response map is used to accurately locate the object. Qualitative and
quantitative experiments on 123 challenging UAV image sequences, i.e., UAV123, show that the
novel tracking approach, i.e., OMFL tracker, performs favorably against 13 state-of-the-art trackers in
terms of accuracy, robustness, and efficiency. In addition, the multi-feature learning approach is able
to improve the object tracking performance compared to the tracking method with single-feature
learning applied in literature.

Keywords: visual tracking; unmanned aerial vehicle (UAV); background-aware correlation filter;
online multi-feature learning; peak-to-sidelobe ratio (PSR); response map fusion

1. Introduction

Visual object tracking plays an important role for the unmanned aerial vehicle (UAV). In literature, it
has been widely used in different types of UAV applications, such as person following [1], automobile
chasing [2], see-and-avoid [3], infrastructure inspection [4], wildlife monitoring [5], autonomous
landing [6], aerial manipulation [7], and air-to-air refuel [8]. Although a growing number of visual
tracking approaches have been designed for the UAV recently [9-17], visual tracking is still a challenging
issue because of object appearance changes, which are generated by object deformation, illumination
variation, scale changes, partial or full occlusion, blur motion, fast motion, in-plane or out-of-plane
rotation, low image resolution, and cluttered background. In addition, the mechanical vibration and
limited computing capacity onboard the UAV also influence the tracking performances directly.

The discriminative tracking approach, which also refers to the tracking-by-detection method,
has been extensively applied for the visual tracking applications [18-21]. It employs both the tracking
object and background information to conduct object appearance learning. In other words, it treats
the tracking problem as a classification task to differentiate the object from the background around
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the object. Specifically, the correlation filter (CF)-based discriminative trackers have made significant
progress in recent years [22-27]. They are able to obtain more promising tracking performances
compared to other types of trackers, especially in terms of their efficiencies. According to the
convolution theorem, the correlation in the time domain equals point-wise multiplication in the
Fourier domain. Therefore, the correlation can be calculated in the Fourier domain to avoid the
time-consuming convolution operation. However, the aforementioned CF-based trackers significantly
suffer from boundary effect, which leads to inaccurate negative training samples and highly-restricted
object search area, thereby generating inferior tracking performances.

In literature, several CF-based trackers have been developed to decrease the boundary
effect [27-29]. Among these trackers, a background-aware correlation filter with histogram of oriented
gradient (HOG) feature [30], i.e., background-aware correlation filter (BACF) tracker [29], has obtained
superior tracking performance. It is capable of learning and updating the correlation filter from real
negative samples densely extracted from the background instead of the circularly shifted image patches,
i.e., synthetic image patches. Although the BACEF tracker achieves the superior tracking performance
by effectively solving the boundary effect, it is still difficult to deal with various challenging situations
using a single feature to represent the tracking object. To preferably handle with the aforementioned
challenges, this work presents a novel online learning-based tracker, which uses multi-feature learning
approach with background-aware correlation filter framework to achieve a more robust object tracking,
especially for the UAV tracking applications. The main contributions of this work are listed as follows:

e  Novel visual features, i.e., intensity, color names (CN) [31] and saliency [32], for background-aware
correlation filter framework to achieve tracking: In original background-aware correlation
filter framework, HOG is used as the feature to conduct object tracking. It is difficult to
obtain comprehensive information of objects or background using a single feature, especially

in aerial tracking.
e A new strategy for fusing response maps which learned from related multiple features: A simple

yet effective fusion strategy that effectively combines different response maps is designed. In the
challenging tracking sequences with various changes, the response from a single feature may
contain interference information, which should be filtered before the fusion. To make the
interference information filtering more accurate and adaptive, the peak to sidelobe ratio (PSR) is
used to measure the peak strength of the response and weight the response map. In addition,

the weighting approach is able to gradually enhance the response level for the final fusion map.
¢  Qualitative and quantitative experiments on 123 challenging UAV image sequences, i.e., UAV123 [17],

show that the presented tracking approach, i.e., OMFL tracker, achieves real-time performance on an
i7 processor (3.07 GHz) with 32 GB RAM and performs favorably against 13 state-of-the-art trackers
in terms of robustness, accuracy, and efficiency.

To the best of our knowledge, the OMFL tracker has not been designed for the object tracking and
employed in the UAV tracking applications in literature.

The remainder of this paper is organized below: Section 2 introduces the related works. Section 3
presents the general framework of the presented tracking approach, i.e., OMFL tracker, and its main
modules. Section 4 shows qualitative and quantitative experimental results with different voters,
OMFL tracker and the state-of-the-art tracking approaches. Section 5 concludes on the presented
visual tracker.

2. Related Works

This section introduces the state-of-the-art tracking approaches, which are closely related to
this work.

2.1. Tracking with Discriminative Method

The discriminative method is to use a discriminative appearance model for handling object
appearance changes during tracking. This method consists of training and updating a classifier online
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to distinguish the object (i.e., foreground) from object background. In this method, a classifier is tested
on a number of candidate samples to find the most likely location, and updated according to the new
input samples which contain positive and negative samples. Hare et al. [? ] proposed a tracking
algorithm based on a structured learning approach, i.e.,, STRUCK tracker. It directly predicts the
object location change between frames and avoids the label prediction problem in common online
classifiers. To utilize the underlying structure of positive and negative samples, Kalal et al. [19]
proposed a tracking-learning-detection (TLD) method, i.e., TLD tracker, to guide the sampling process
by selecting relevant samples from each new image, and update classifier for object tracking. Inspired
by compressive sensing technique, Zhang et al. [21] proposed an approach, i.e., CT tracker, for
projecting positive and negative samples to a fixed random basis, and then a naive Bayes classifier is
trained for tracking. Moreover, Babenko et al. [20] introduced multiple-instance learning (MIL) into
online tracking, i.e., MIL tracker. The samples in the MIL tracker are presented in bags, and labels
are provided for the bags instead of individual instances. Although these discriminative trackers
have made great progress for visual tracking, the CF-based trackers have shown better performance
in fast object tracking and are more robust to the challenging situations such as motion blur and
illumination changes.

2.2. Tracking with Correlation Filter

Tracking approach with the CF has attracted a great number of attention because of its high
computational efficiency, accuracy, and robustness. Bolme et al. [22] derived a fast correlation filter,
i.e., MOSSE tracker, which utilizes classical signal processing analysis and contains a minimum
output sum of squared errors filter. Henriques et al. [23] designed kernel classifiers with the same
characteristics as correlation filters, i.e., CSK tracker. The kernelized least-squares classifier in the
CSK tracker can be trained and evaluated by fast Fourier transform. Based on the framework of
CSK tracker, Danelljan et al. [24] introduced color attributes and proposed an adaptive dimension
reduction technique, which can preserve useful information while greatly reducing the number of
color dimensions. In [25], Henriques et al. combined techniques of kernel trick and circulant matrix to
train kernelized correlation filter (KCF), i.e., KCF tracker, with HOG feature. The KCF tracker has more
adaptive performance for different scenarios by using multi-channel HOG feature. Moreover, Li et al.
proposed a scale adaptive kernel correlation filter, i.e., SAMF tracker [26], which integrates the HOG
and CN [31] features, thereby learning a model that is inherently robust to both deformations and
illumination changes. However, the synthetic negative samples, which are generated by the circular
shift over the object, are used in the filter training stage. In addition, the aforementioned trackers have
the boundary effect problem in the training and detection stages, which significantly influences the
tracking performance.

2.3. Tracking for Reducing Boundary Effect

In literature, the CFs with limited boundaries (CFLB), i.e., CFLB tracker [28], has learned the CFs
for the object tracking with less boundary effect. It has achieved promising tracking results, but the pixel
intensities are used as the only feature for learning CFs in the CFLB. In other words, the pixel intensities
are not enough to represent the object appearance under the challenging situations for obtaining a more
robust tracking performance. The CFs with spatial regularization, i.e., SRDCF tracker [27], has learned
the CFs with spatial constraints for the object tracking. Its main drawback is that it cannot be used
for the real-time tracking applications due to the highly-cost regularization operation, especially in
the UAV tracking tasks. In addition, Galoogahi et al. [29] proposed a background-aware correlation
filter with HOG feature, i.e., BACF tracker, which is able to learn and train filters from real negative
examples sampled from the object background. It addresses the lack of real negative training samples
and is unlike the aforementioned CF-based trackers, which are using the circular shifted patches
as the negative samples. It achieves better tracking performances in terms of accuracy, efficiency,
and robustness in comparison with above CF-based trackers. Therefore, the background-aware
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correlation filter framework is adopted to conduct the object tracking applications for the UAV in
this work. However, it is still difficult to obtain comprehensive information of object or background
using a single feature type, especially for aerial tracking in complex environments with challenging
factors as discussed in Section 1. Thus, online multi-feature learning approach is designed to enhance
the robustness for various object appearance changes, and ensure the tracking accuracy in real-time
aerial tracking.

3. Proposed Tracking Approach

3.1. Overview

In this section, the main structure of the presented online multi-feature learning approach based
on background-aware correlation filter framework is introduced. The main steps of the proposed
tracking method are illustrated in Figure 1. Given an image, different features from the search window
patch centered at the estimated object position in the previous image frame are extracted. In the
proposed method, different features, including fHOG [33], CN, intensity, and saliency, are incorporated
into the background-aware correlation filter framework to establish four different voters, i.e., Voterl,
Voter2, Voter3, and Voter4. With these four voters, the response maps corresponding to each feature
can be obtained. After obtained individual response maps, these different response maps are fused
with the proposed fusion strategy to get a more accurate and more salient response map with less
noise. The fusion strategy includes noise removal and fusion operations. In the fusion process, the PSR
is applied to measure the peak sharpness of each response map and weight the response values.
By forming a weighted operation of different response maps, the final fused response map can be
achieved. Therefore, the tracking result of the current frame can be inferred by searching the highest
response value in the final fusion map.

Remark 1. It is noted that different voters are trained and updated with the samples extracted from the previous
image frame. In addition, response maps generated from different voters provide different values, i.e., confidences,
to locate the object.

3.2. Tracking with Background-Aware Correlation Filter

The classical correlation filter tracker trains a classifier by minimizing the objective function £(w)
to obtain the optimal parameters of filter w :

1 D , AL )
£(W>:§Hy_de*xd||2+52||wd”2/ 1)
d=1 d=1

where £(w) is a square error sum between the correlation response of samples x; and their M x 1
desired correlation response y. x; € RM and w; € RM are the vectorized image features and filter,
respectively. The subscript d denotes the d-th one of D feature channels. A is a regularization parameter,
and * denotes the spatial correlation operator.

Remark 2. The trackers with classical CFs are greatly affected by boundary effect, which leads to suboptimal
tracking performance. Specifically, the input samples are weighted by a cosine window to alleviate the edge
discontinuity of images caused by the boundary effect, thereby reducing the appearance of the input samples
and resulting in the limitation of the object search region in the detection stage of classical CFs. In addition,
the classical CF-based trackers use the inaccurate negative training samples, i.e., synthetic samples, as shown in
Figure 2. Moreover, they discard the visual information of real background in the training stage. Consequently,
the capability to distinguish cluttered background is decreased, which increases the risk of detection failure when
objects are sharing similar visual cues to the surrounding background.
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Figure 2. Tracker with classical correlation filter (CF) is trained with synthetic negative samples.

Different from the classical CF, the background-aware correlation filter [29] applies a circular
shift operator and a cropping operator on the image, as the illustration shown in Figure 3.
This approach trains a filter that can better distinguish foreground object from its shifted samples.
The background-aware correlation filter w is trained by minimizing the following objective:

D
E(w) =

N =

(o T 2 A 2
Y (v() - L wiBxilag]) + 5 Y Iwall3, 6
j=1 d=1 d=1

where £(w) is a squared error sum over response of sample Bx;[A7;] and its regression target y(j).
B € RM*N js a binary matrix that can crop the middle M elements of signal x; with size N, i.e., x; €
RN*1 where N > M. [AT;] is the circular shift operator, and x;[Atj] means circularly shifting the
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elements in the signal x; by j positions. Therefore, Bx;[At;] returns all shifted signals with the size of
M from signal x;. The superscript T denotes the conjugate transpose of a complex vector or matrix.

Remark 3. It is noted that the background-aware correlation filter uses the real negative samples for the training
instead of using the synthetic negative samples, as the illustration in Figure 3.

Figure 3. Tracker with background-aware correlation filter is trained with real negative samples.

In order to improve the computational efficiency, correlation filters are typically learned in the
frequency domain. Equation (2) can be converted to an expression in the frequency domain:
. 1, <4 A
E(w,8) = 319 — g3 + S lIwlB
st. §=VN(Ip @FB )w,

®)

where X € CN*PN & ¢ CPNX1 and w € RPMX1 are defined as X = [diag(x()", - ,diag(xp) '],
g=1[8,,8) andw = [w],---,w]]T, respectively. Ip € RP*D is a identify matrix and ®
denotes the Kronecker product. The superscript " indicates the discrete Fourier transform of a signal,
ie., & = /NFa. F € CN*N is the orthonormal matrix for mapping any N dimensional vectorized
signal to the Fourier domain.

To solve Equation (3), an augmented lagrangian method [34] is employed:

a1 oo A

£lw g 8) = 25~ Kgl3+ 2wl
+{" (8- VN(Ip @ FB")w) )
+g||g—\/KI(ID®FBT)w||§,

where i is a penalty factor and { € CPN*1

{=1¢,--.¢p)"

is the lagrangian vector in the Fourier domain defined as
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To handle with Equation (4), the alternating direction method of multipliers, i.e., ADMM [34],
technique is used. Each of the subproblems, i.e., w* and §*, has an analytic solution.
For subproblem w*:

W' (et 2) g+ D), ©

where g = ﬁ(lp ®BF')gand { = ﬁ(lp ®BE"){.
For subproblem g*, it can be solved by solving N independent objectives, ie., §(j),
wherej=11,---,N]:

(6)

where %(j) = [%1(j), -+, %p(j)] " and W(j) = [W1(j),- -~ ,Wp(j)] " Note that §(j), 4(j) and W,(j) are
elements of §, X; and W, respectively. w; = /NFB'w, and b = X(j) 'X(j) + Nu is a scalar quantity.
The lagrangian vector is updated by the function:

Z(iJrl) — é(l) + V(g(i+l) _ w(i+1)) , (7)

where wi*1) = (Ip @ FBT)w(*1) and the superscript (i + 1) represents the (i 4+ 1)-th iteration
of the iterative ADMM algorithm. A common scheme for choosing the penalty factor y is
) = min(pmax, pu?)) [34].

Similar to other CF-based trackers, an online adaptation strategy is used to improve the robustness
to various appearance changes. The online adaptation at frame k is formulated as:

J(k—1)

)
Xiodel — (1 - ﬂ)xmodel

+ 17)2(") , (8)
where 7 is the online adaptation rate.

Remark 4. It is noted that the background-aware correlation filter uses the HOG feature to represent the
object. However, it is easy to cause the tracking failure when the texture information of the object becomes
blurred. For a tracking problem, features should have the capability to deal with changes of tracking object and
background, such as deformation, motion blur, illumination and rotation variations. Therefore, different features
are selected instead of using only one and propose an effective response map fusion strategy to improve the
tracking performance in different scenarios.

3.3. Object Representation with Multiple Features

In the presented approach, the features from different clues, i.e., texture, color, gray value,
and saliency, which respectively correspond to features of fHOG [33], CN [31], intensity and
saliency [32], are selected.

3.3.1. Object Representation with fHOG

For the HOG [30], it captures edge or gradient structure, which is highly characteristic of local
shape. It is expressed by local representations, which has the advantage of invariance to local geometric
and photometric transformations. If the translations or rotations are much smaller than the size of
orientation bin, there is no much difference on the object representation. Moreover, even without
precise knowledge of the corresponding gradient or edge positions, local object appearance and shape
can be well characterized by the distribution of local intensity gradients or edge directions.
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Remark 5. Considering that the dimensionality of HOG feature [30] can be significantly reduced with no
noticeable loss of information, a lower dimensional HOG feature, i.e., fHOG [33] has been used in this work.
In addition, the integration of the fHOG feature and background-aware correlation filter framework denotes as
the Voterl in this work.

Given an image frame I(¥), the steps to extract the fHOG feature are summarized in Algorithm 1.
Algorithm 1: fHOG feature extraction

Input: I (k)
1 Convert I(¥) to the grayscale intensity image

2 Calculate the gradient of each pixel to get a pixel-level feature map P*)

3 Aggregate P(Y) into a dense grid of rectangular cells to obtain a cell-based feature map C(¥),
where the cell size is settoc X ¢

4 Truncate and normalize CY) by using four different normalization factors of a 27-dimensional
histogram over nine insensitive orientations and 18 sensitive orientations

5 Sum on each orientation channel with different normalization factors

6 Sum on the values of nine contrast insensitive orientations based on each normalization factor

Output: fHOG feature H ¥

3.3.2. Object Representation with Color Names

In addition to the texture information, color attributes, which perform well in image retrieval [31],
can also be used to describe the characteristics of the object. Color attributes are also referred to as color
names, i.e., CN, which can cope well with object deformation and variation in shape. The operation
of building color names of the object is to associate RGB observations with the preselected set of
11 basic color terms, i.e., 11 linguistic color labels. To achieve the CN feature, the image %) is firstly
resized to Ir(f ) k). Then, the mapping method provided by [31], which maps

the RGB values to an 11-dimensional color representation C%), is used to achieve the feature extracted

with the same size of C!

from Ir(f ). c® is represented by a histogram that indicates how many pixels are allocated to each bin,
i.e., color name. Figure 4 shows the pixel-wise color name annotation map, where the color names are
represented by their corresponding color.

Color name
annotation map
R BT R -‘].i ". ’ﬁ

Q)

Figure 4. Pixel-wise color name annotation.

Remark 6. In this work, the set of eleven basic color English terms [35] are used as color names, including
black, blue, brown, gray, green, orange, pink, purple, red, white and yellow. Additionally, the combination of the
CN feature and background-aware correlation filter framework denotes as the Voter2 in this work.

3.3.3. Object Representation with Pixel Intensity

In real UAV tracking applications, when the colors of the pixels representing the object and its
background are similar, the mapping during the extraction of the CN feature may cause them to have
the same color name. Therefore, the intensity feature, which retains the nuance between the object and
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background, is taken into account to improve UAV tracking performance. In this work, gray value,
which is robust to motion blur, is utilized to make up the intensity feature. Similarly, the image 1% is

resized to Ir(f ) with the same size of C(¥) firstly. The intensity feature G(*) can be obtained by converting

RGB values of Ir(f ) to gray values. By forming a weighted sum of the three channels values of I,(f ),
i.e., red, green and blue components, Equation (9) is employed to calculate the gray value of the (i,j)’s
element in G():

G (i) = axljor (i) + ac g i) + anlin(i) ©)
where Ir(gz/ Ir(f)c and Ir(gg denote the red, green and blue components of Ir(f ), respectively. The process
of the conversion is shown in Figure 5.

Figure 5. Conversion from I (®) to the intensity map.

Remark 7. It is noted that ag, ag and ap are set to 0.2989, 0.5870 and 0.1140 in this work, respectively.
In addition, the intensity feature is incorporated into the background-aware correlation filter framework to
achieve the Voter3.

3.3.4. Object Representation with Saliency

Saliency is usually used in object detection, which takes advantage of the fact that an object is
more noticeable than its background. Therefore, the object with saliency information is used to enhance
object tracking in this work. Inspired by [32], the spectra residual approach to extract saliency feature

(k)

of the resized image I’ is utilized, as an example shown in Figure 6.

Before extracting the saliency feature, the image I,(f ) is preprocessed. As shown in Equations (10)
and (11), the Fourier transform F is used to obtain the amplitude feature A®) and phase feature P()
of Ir(f ) in the frequency domain:

A® = A(F(IP)), (10)
Ph = p(F(I)) . (11)
)

Instead of using the log-log representation, the log spectrum representation L) of the image Ir(f
is adopted, it can be obtained by:
L® =log (AW) . (12)

The amplitude feature A® can be approximated by the convolution between H,, and L.
Therefore, the spectral residual r®) can be achieved by Equation (13):

0 =10 —H, xL® (13)

where *x denotes convolution operator, and H;, is an n X n matrix defined by:
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11 1
1111 1
11 1

The noticeable information contained in an image can be captured by a spectral residual r(*).
In other words, r¥) can be understood as a compressed representation of an underlying scene that the
image reflects. The saliency map in the spatial domain by employing inverse Fourier transform F !

can be obtained. Given the image Ir(f ) , the saliency map can be achieved by:

Sk = gk 1 [exp (o + P(k))]2 , (14)
where G is a Gaussian filter smoothing the saliency map for better visual effects.
Remark 8. It is noted that changing the size of Hy has only a slight effect on the result, thus n is empirically
set to 3 in this work. The size and variance of the Gaussian filter G is set t0 10 x 10 and 2.5, respectively.

In addition, Voter4 is implemented by integrating the saliency feature and the background-aware correlation
filter framework.

Ir(’e‘) Saliency map

Figure 6. An example of achieving saliency map.

3.4. Fusion of Multi-Feature Learning

In the challenging tracking sequences with various object appearance changes, it is not enough
to use one feature to express object information. To enhance the tracking performance, a simple yet
effective strategy to combine different features is designed in this work. Given an image frame 1(¥)
and the voter V, the response maps on each feature can be obtained as:

R — v(I®y, (15)

where f k) e {H(k),C ® gk s (k)}. H, C, G and S denote the fHOG, CN, intensity and saliency
features, respectively.

Remark 9. If the different response maps are fused without any preprocessing, the variant interference
information will make the fused response maps inevitably contain the noise. Therefore, the PSR is used to

measure the peak strength of the response Rf “ and weight R " in this work, as one example show in Figure 7.
The processed response map Rf " can be obtained by Equation (16):
(k)
RIY =RV, (16)

(k) , .
where w{ is defined as:
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w; = , (17)

£® (k)

where y; and o;  are mean and standard deviation of R, respectively.
To make the noise filtering more accurate and adaptive, the proposed fusion strategy is used to
integrate the information contained in different R/ “,

rAA =AY oA (18)

where fl(k) # fz(k) and ® denotes the element-wise product. Therefore, Equation (18) means the
®) . . (k) . . S

processed response map R/l is weighted by R/2 . After the fusion between all the pair combinations

of the response maps, six fused response maps, i.e., RH<k)C(k>, RH(k>g(k), RH(k)S (k), RC<k>g(k), RC<k>5 ©

G . . . . .
and R9“SY  which have more salient confidences in response maps, can be achieved, as shown
in Figure 8.

<> N g

Figure 7. Fused response map differences with and without PSR-based weight.

RIHOE® T

In order to make better use of each fused response map and highlight the information in each
response map, the following formula is used for the final fusion Q:

1 k) o (k k) o (k K ok Kok ) ok k) ok
o) — (w;{( e A KCH eaw;*( G0 R MG @w%g EOPSYERT

6 (19)
(k) g (k) (k) g (k) (k) g (k) (k) (k) (k) g (k) (k) (k)
el MV RGN ¢ CBSHRERSH o) ghSHRghist)

7

(k) f(k)

where @ stands for element-wise addition and wzl is defined as:
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(k) £ (k) fh
00 max(RA L) — !
wy = 2 (20)
2 B (k) (k) !
s
72

s P - #0400 ,
where p;, and o, are mean and standard deviation of R/1 /2, respectively. Therefore, the
final fused response map can be implemented, as shown in Figure 8, where the highest value is the

result of the detection.

Remark 10. It is noted that the strategy to achieve the final fused response map Q) mainly utilizes two
operations, i.e., noise removal and fusion. Weighted fusion using PSR is more preferable than direct fusion
without pre-treatment. With the PSR-based weighting operation, most of the interference information can be
effectively filtered in the fusion process. Therefore, the final fused response map can be obtained with more salient
confidences but less noise, as shown in Figure 8.

(9] (9]

ch

R}[

R}[(k)c(k) RH OGO RO Rc(k) Gl Rc(k)g(k) RGO

““‘0

}[(k)c(k) ]-[(") G c(") g® C(k) st g(k)g(k)

Fllterlng 1 Fusion

9 x)
Fused l
response
map

Figure 8. Fusion process of different response maps.

The pseudocode of the OMFL tracker is summarized in Algorithm 2.
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Algorithm 2: OMFL tracker

Input:  Object location on frame k — 1,

voters {Voteri|i = 1,2,3,4}

Output: Estimated location on frame k
1 fork =2toend do
2 Extract the search window in frame k centered at object location on frame k — 1
Represent the extracted patch using different features, i.e., fHOG, CN, intensity and

saliency

foreach Voteri do computing the response map using Equation (15)
Process reponse maps with PSR method using Equation (16)
Fuse all pair combinations of processed response maps using Equation (18)

(%)

Weight fused response maps and fuse all to achive the final fused map using Equation (19)
Estimate object location on frame k by searching the highest value in the final fused map
Update each Voteri using Equation (8)

© 0 N S U e

10 end

4. Evaluation of Tracking Performance

4.1. Evaluation Criteria

To analyze and evaluate the performance of the proposed tracking approach, i.e., OMFL tracker,
center location error (CLE) and success rate (SR) [36] based on one-pass evaluation are employed as
the main evaluation criteria in this work.

For the CLE, it is measured as the Euclidean distance in pixels between the center of the estimated
object bounding box and the corresponding ground truth center, which is defined as:

CLE = [0{ —0l |, (21)

where Og() and Oék% are the center of the estimated object bounding box and the corresponding ground
truth center, respectively. To preferably show the tracking performance with CLE, precision plot (PP)
is used. For each value ¢ on the PP, it is defined as the ratio between the number of frames whose CLE
is smaller than ¢, i.e., Ncp g<¢, and the total number of image frames Nrq1-

N
PP(¢) = ——E<t 22)
NTotal

For the SR, it represents the percentage between the successful tracking frames with the total
number of image frames. If an image frame is a success, its overlap score (OS) is larger than a given
threshold. For the OS, it is defined as below:

k k
sl

- k k)’
e ursy

0S (23)

where rg() and rg(% stand for the regions of the estimated and ground-truth object bounding boxes,

respectively. N and U denote the intersection and union operators. | * | is the number of pixels in
the intersection or union region. In this work, success plot (SP) is employed to show the tracking
performance. For each value 7 on the SP, it is defined as the ratio between the number of frames whose
OS is larger than 77, i.e., Nos~y, and the total number of image frames N1

_ Nos>y

SP(U) B NTotal .

(24)
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Remark 11. In the evaluation of all visual trackers, ¢ = 20 on each PP and area under curve (AUC) of each SP
are used for ranking of tracking performance.

4.2. Overall Performance

In this section, 123 challenging aerial image sequences (including 37,885 image frames),
i.e., UAV123 [17], are used to evaluate the overall performance of the proposed online learning
tracking approach, i.e., OMFL tracker, and other state-of-the-art trackers. Especially, two different
types of evaluations have been setup.

4.2.1. Evaluation with Different Voters

As shown in Figure 1, different Voters, which have respectively integrated fHOG, CN, intensity
and saliency with the background-aware correlation filter framework, have been presented, i.e., Voterl,
Voter2, Voter3, and Voter4. To evaluate the OMFL tracker, these four Voters have been used to conduct
the comparisons with the OMFL tracker in terms of precision and success rate, as shown in Figure 9.

Precision plots Success plots

0.8 T 0.8 T
=—OMFL [0.655] | == OMFL [0.459]
0.7 Voterl [0.587]| § 0.7 Voterl [0.423]|
= \/0ter2 [0.548] = \/oter2 [0.401]
0.6 =— \oter3 [0.481] 0.6 m—\/0ter3 [0.351]| |
= \/oter4 [0.420]F == \/oter4 [0.296]
[}
=051 =05
° p
204 204
g 8
o >
0.3 A 0.3
0.2 0.2
0.1 0.1

o
o

10 20 30 40 50 0.2 0.4 0.6 0.8 1
Location error threshold Overlap threshold

o
o

Figure 9. Comparisons between the presented OMFL tracker with different Voters.

As can be seen from the PPs in Figure 9, the scores of PPs (i.e., { = 20) are 0.655, 0.587, 0.548,
0.481 and 0.420 for the OMFL tracker, Voterl, Voter2, Voter3 and Voter4, respectively. Therefore,
the OMFL tracker has achieved the best tracking performance in terms of precision. Similarly,
the scores of SPs (i.e., AUCs of SPs) are 0.459, 0.423, 0.401, 0.351 and 0.296 for the OMFL tracker,
Voterl, Voter2, Voter3, and Voter4, respectively. Thus, the OMFL tracker has also obtained the best
tracking performance in terms of success rate. In summary, it can be concluded that the OMFL tracker
favorably outperforms Voterl, Voter2, Voter3 and Voter4. Additionally, the multi-feature learning
approach is superior to the single-feature learning method.

Remark 12. It is noted that all parameters used in Voterl, Voter2, Voter3, and Voter4 are the same as the
parameters in the OMFL tracker to achieve the fair comparison.

4.2.2. Evaluation with Other State-Of-The-Art Trackers

To achieve a comprehensive evaluation, the OMFL tracker is compared with other 13
state-of-the-art trackers, i.e., MCCT [37], MEEM [38], SRDCF [27], BACF [29], MUSTER [39],
STRUCK [18], SAMEF [26], DSST [40], TLD [19], KCF [25], CSK [23], ASLA [41], and IVT [42].

Remark 13. For these state-of-the-art tracking algorithms, the source codes or binary programs provided by
the authors or UAV123 with default parameters have been utilized in this work. Although some trackers,
e.g., MCCT, have also been implemented with convolution features, convolution features often require a very
high computing capability for the onboard computer, they are not suitable for the UAV tracking applications.
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Therefore, this work emphasizes the evaluation and analysis of all trackers with hand-crafted features. For the
proposed OMFL tracker, it is implemented in Matlab without any optimizations, its main parameters are listed
in Table 1. All aforementioned trackers are evaluated on the same computer. In addition, this work strictly
complies with the tracker evaluation protocol from the UAV123 and calculates the average performances as the
final results in order to conduct a fair comparison.

Table 1. Main parameters in the OMFL tracker.

Paramter Value Parameter Value
Cell sizec X ¢ 4 x4 Regularization parameter A 0.01
Number of scales 5 Penalty factor u 1
Scale step 1.01 Wmax 10,000
Number of iterations of ADMM 2 B 10
Vwh

Bandwidth of a 2D gaussian function (object size [h, w]) Online adaptation rate # 0.013

16

Figure 10 shows the PPs and SPs of all tracking algorithms on 123 challenging UAV image
sequences. In the PPs, the scores of all trackers on 20 pixels are 0.655 (OMFL), 0.596 (MCCT),
0.584 (MEEM), 0.575 (SRDCEF), 0.572 (BACF), 0.526 (MUSTER), 0.509 (Struck), 0.465 (SAMF),
0.448 (DSST), 0.415 (TLD), 0.405 (KCF), 0.401 (CSK), 0.363 (ASLA) and 0.304 (IVT), respectively.
Therefore, the OMFL tracker has achieved the best precision among all trackers. In the SPs,
the AUC-based scores of all trackers are 0.459 (OMFL), 0.433 (MCCT), 0.423 (SRDCF), 0.413 (BACEF),
0.380 (MEEM), 0.371 (MUSTER), 0.347 (Struck), 0.326 (SAMF), 0.286 (TLD), 0.286 (DSST), 0.270 (CSK),
0.265 (KCF), 0.250 (ASLA), 0.224 (IVT), respectively. Similarly, the OMFL tracker still ranks No. 1
among all tracking aglorithms. Thus, it can be summarized that the OMFL tracker is better than other
13 state-of-the-art trackers in terms of precison and success ratio.

Precision plots Success plots

0.8 . 0.8 !
== OMFL [0.655] = OMFL [0.459]
0.7 MCCT [0.596] 0.7 MCCT [0.433]
= \EEM [0.584] == SRDCF [0.423]
0.6 == SRDCF [0.575] 0.6 m— BACF [0.413]
=== BACF [0.572] { = MEEM [0.380]
05k MUSTER [0.526] L o5 MUSTER [0.371]] |
s == Struck [0.509] © > = Struck [0.347]
B m— SAMF [0.465] 0 m— SAMF [0.326]
5 0.4 DSST [0.448] $04r TLD [0.286]
&’ o==TLD [0.415] S N = o - === DSST [0.286]
0.3 === KCF [0.405] (,3) 0.3 - === CSK [0.270]
== CSK [0.401] == KCF [0.265]
0.2 ASLA [0.363] 02t ASLA [0.250]
= VT [0.304] = VT [0.224]
0.1 0.1
0 - - : : 0 - - - -
0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1
Location error threshold Overlap threshold

Figure 10. PPs and SPs of all trackers on 123 challenging UAV image sequences.

Besides the aforementioned comparisons, the UAV image sequences are categorized as 12 different
types, i.e., aspect ratio change (ARC), background clutter (BC), camera motion (CM), fast motion
(FM), full occlusion (FOC), illumination variation (IV), low resolution (LR), out-of-view (OV),
partial occlusion (POC), scale variation (SV), similar object (SOB) and viewpoint change (VC), to achieve
a thorough tracking performance evaluation.

Tables 2 and 3 provide the scores of PPs and SPs on above 12 attributes. In the Table 2, the
OMEFL tracker has better precision scores than other trackers in terms of the ARC, CM, FM, 1V, LR, OV,
POC, SV, SOB, and VC attributes. For the Table 3, it shows that the OMFL tracker has obtained the
best AUC-based scores in terms of the ARC, CM, FM, IV, LR, OV, POC, SV, SOB, and VC attributes.
Figure 11 is the analysis of precision scores for all trackers with different attributes. It shows that the
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OMFL tracker is ranking the No. 1 in general among all trackers. Additionally, Figure 12 is the analysis
of AUC-based scores for all trackers with different attributes. It indicates that the OMFL tracker is also
ranking No. 1 for all trackers as a whole. Therefore, it can be concluded that the OMFL tracker has
achieved better tracking performances compared to other state-of-the-art trackers. Figure 13 shows
some examples of UAV tracking results

Table 2. Scores of precision plots (¢ = 20 pixels). Red, blue and
and third best performances among all trackers.

fonts indicate the best, second best

ARC BC CM FM FOC 1V LR OV POC SV SOB VC
MCCT 493 469 36.1 477 455 48.4
MEEM 533 340 410 469 516 532 624
SRDCF 472 389 527 418 436 431 492 504 531 585 474
BACF 478 425 532 407 336 430 431 421 467 525 605 49.1
MUSTER 435 375 471 302 439 384 452 407 449 491 560 43.6
Struck 399 522 439 222 383 415 478 382 446 460 527 428
SAMF 390 274 378 332 379 339 322 409 419 441 503 358
DSST 36.1 222 340 277 313 333 345 356 384 424 509 358
TLD 349 285 354 226 283 233 444 281 345 391 480 351
KCF 303 223 305 217 281 269 305 309 344 373 453 316
CSK 293 227 306 248 292 272 309 306 328 375 432 294
ASLA 293 238 232 171 293 231 338 263 318 353 444 273
IVT 232 181 186 150 240 196 255 23.6 263 293 356 240
OMFL 579 484 624 542 397 541 508 552 570 61.1 664 599

Table 3. Scores of success plots (AUC). Red, blue and

third best performances among all trackers.

fonts indicate the best, second best and

25

ARC BC CM FM FOC 1V LR OV POC SV SOB VC
MCCT 30.5 26.0 23.6 36.5
MEEM 327 311 361 231 211 322 241 325 337 340 403 348
SRDCF 346 263 399 229 333 237 355 39.0 421 356
BACF 334 275 397 275 173 31.0 248 321 327 374 424 353
MUSTER 299 225 333 203 229 281 235 295 302 343 385 316
Struck 274 331 304 155 198 29.0 246 280 30.0 30.7 340 29.1
SAMF 274 160 271 220 19.7 238 166 289 282 306 348 264
DSST 235 137 225 157 156 21.0 171 245 246 262 315 231
TLD 239 163 252 148 135 160 242 202 219 268 301 251
KCF 202 125 209 145 135 183 147 222 223 238 279 210
CSK 205 134 214 151 150 189 149 227 220 247 285 203
ASLA 194 148 159 99 134 180 186 162 202 238 30.6 199
IVT 16,5 103 133 9.1 115 162 137 152 170 214 256 184
OMFL 38.9 449 339 208 356 278 395 383 422 466 41.0
T
65~ |
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Figure 11. Analysis of precision socres for all trackers with different attributes.
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Figure 12. Analysis of area under curve (AUC)-based socres for all trackers with different attributes.
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Figure 13. Examples of unmanned aerial vehicle (UAV) tracking results. The first, second, third

columns show the groupl_1, car10, building5 image sequences. Code and UAV tracking video are:
https:/ /github.com/vision4robotics/OMFL-Tracker and https:/ /youtu.be/9XWjrD2i0Y0.

Figures 14 and 15 provide the precision and success plots on different attributes.


https://github.com/vision4robotics/OMFL-Tracker
https://youtu.be/9XWjrD2i0Y0
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Figure 14. Precision plots on different attributes.

Location error threshold

From Figure 14, the OMFL tracker has obtained the best precision performance in terms of the
ARC, CM, FM, 1V, LR, OV, POC, SV, SOB, and VC attributes.
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Figure 15. Success plots on different attributes.

Similarly, Figure 14 shows the OMFL tracker has achieved the best success ratio performance in
terms of the ARC, CM, FM, 1V, LR, OV, POC, SV, SOB, and VC attributes.

4.3. Limitations of Presented Tracking Approach

Although the OMFL tracker has favorably outperformed other state-of-the-art trackers in general,
it still has certain limitations during the UAV tracking applications described in the following.

4.3.1. Limitations in Attributes

As shown in Table 2, it shows that the OMFL tracker has obtained inferior precision performance
in terms of the BC and FOC attributes. Similarly, Table 3 shows that the OMFL tracker has also gained
lower success ratio performance compared to other trackers in terms of the BC and FOC attributes.
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4.3.2. Limitations in Speed

Figure 16 shows the tracking speed, i.e., frames per second (FPS), for each tracker on
123 challenging UAV image sequences.

450 — 435.81 n

400 —

51.75
50
17.04
o T il 537 007 . 551
OMFL MCCT MEEM SRDCF BACF MUSTER Struck SAMF DSST TLD KCF CSK ASLA VT

Trakers
Figure 16. FPSs of all trackers on 123 challenging UAV image sequences.

From Figure 16, the speed of the OMFL tracker is ranked No. 7 among all trackers. Its speed is
similar to the speed of the TLD tracker. However, the capturing speed of the original UAV images is
10 FPS, shown as the red dash line, which is used as the baseline, in Figure 16. If the FPS of a tracker is
larger than 10 FPS, this track is running at real-time speed. Therefore, the OMFL tracker can reach the
real-time tracking performance in the UAV tracking tasks.

5. Conclusions

In this work, a novel online learning-based tracking approach, i.e., OMFL tracker, is presented for
the UAV to achieve different types of object tracking tasks. Qualitative and quantitative experiments
on 123 challenging UAV image sequences show that the novel tracker with online multi-feature
learning favorably outperforms different Voters, which are the combinations of fHOG, CN, intensity,
and saliency, with background-aware correlation filter framework. In addition, the PSR approach
is capable of measuring the peak strength of the response effectively. It can be also used to weight
each response to filter the interference information as well as improve the final fusion response map.
Moreover, the presented OMFL tracker has performed favorably against 13 trackers, which are the
state-of-the-art tracking methods in the literature, in terms of accuracy, robustness, and efficiency.
The results of this work will further extend the proposed online multi-feature learning approach for
UAV tracking applications.
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