Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Imagery and Additional Datasets
3.2. Methods
3.2.1. Image Preprocessing and Extraction of Reservoir Water Extent
3.2.2. Trend and Change-point Analyses of Reservoir Water Extents
3.2.3. Quantifying Relative Contributions of Climate Variability and Human Activities on Reservoir Water Extents
3.2.4. Correlation Analysis of Driving Factors and Reservoir Water Extents
4. Results
4.1. Spatiotemporal Dynamics of Surface Water Extents in Reservoirs
4.2. Trend and Change-points of Dynamic Water Extents
4.3. Relative Contributions of Climate Variability and Human Activity to Reservoir Water Extents
4.4. Correlations between Driving Factors and Reservoir Water Extents
5. Discussions
5.1. Characteristics of Reservoir Water Extents Dynamics
5.1.1. Trend of Reservoir Water Extents and Their Representativeness of Water Resources in YDRB
5.1.2. Hydrological Connectivity Discovered from Reservoir Water Extents Dynamics
5.2. Relative Contributions of Climate Variability and Human Activities to Reservoir Water Extents
5.3. Drivers for Reservoir Water Extent Dynamics
5.4. Effects of Policies on Reservoir Water Extents
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Doll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 15697. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.J.; Koike, T.; Yin, H.; Yang, D.W.; He, S. The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrol. Process. 2010, 24, 1123–1132. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Lu, F.; Ouyang, Z.Y.; Wang, Y.J. Drivers of drying on the Yongding River in Beijing. J. Hydrol. 2014, 519, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Zhang, Q.; Singh, V.P.; Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 2017, 545, 145–162. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global similar to 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Aires, F.; Papa, F.; Prigent, C.; Crétaux, J.-F.; Berge-Nguyen, M. Characterization and Space–Time Downscaling of the Inundation Extent over the Inner Niger Delta Using GIEMS and MODIS Data. J. Hydrometeorol. 2014, 15, 171–192. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Papa, F.; Aires, F.; Rossow, W.B.; Matthews, E. Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Danaher, T.; Collett, L. Development, optimisation and multi-temporal application of a simple Landsat based water index. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, Australia, 29 September–3 October 2006. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Li, H.Y. Impact analysis of historical forest change on Yongding River. China Water Resour. 2005, 18, 23. (In Chinese) [Google Scholar]
- Haihe River Water Conservancy Commission, Ministry of Water Resources of the People′s Republic of China. Maps of Locations of Hydraulic Structures in Haihe River Basin. 2011. (In Chinese) [Google Scholar]
- Wang, D.Y. Retrospect and Prospect of Hebei Iron and Steel Industry Development During the 40 Years of Reform and Opening up. Econ. Manag. 2018, 32, 1–7. (In Chinese) [Google Scholar]
- Fan, S. The Position and Function of Cetian Reservoir in Comprehensive Utilization of Water Resources in Datong City. Shanxi Water Resour. 2009, 25, 11–12. (In Chinese) [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.J.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H.; Sensing, R. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K.; Letters, R.S. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Ke, Y.H.; Im, J.; Lee, J.; Gong, H.L.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.Q.; Wu, J.P. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.Y.; Tong, X.H. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. Int. J. Remote Sens. 2016, 37, 1826–1844. [Google Scholar] [CrossRef]
- Otsu, N.; Cybernetics, A. Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Guo, Q.D.; Pu, R.L.; Li, J.L.; Cheng, J. A weighted normalized difference water index for water extraction using Landsat imagery. Int. J. Remote Sens. 2017, 38, 5430–5445. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.Y.; Tong, X.H. Automated Subpixel Surface Water Mapping from Heterogeneous Urban Environments Using Landsat 8 OLI Imagery. Remote Sens. 2016, 8, 584. [Google Scholar] [CrossRef]
- Choi, W.; Nauth, K.; Choi, J.; Becker, S.J. Urbanization and rainfall–runoff relationships in the Milwaukee River basin. Prof. Geogr. 2016, 68, 14–25. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability; Springer: New York, NY, USA, 1995; pp. 11–26. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves, Manual of Hydrology: Part 1. General Surface-Water Techniques. 1960. Available online: https://pubs.usgs.gov/wsp/1541b/report.pdf (accessed on 31 January 2019).
- Costigan, K.H.; Daniels, M.D.; Dodds, W.K. Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network. J. Hydrol. 2015, 522, 305–316. [Google Scholar] [CrossRef]
- Wang, X.; Hao, G.; Yang, Z.; Liang, P.; Cai, Y.; Li, C.; Sun, L.; Zhu, J. Variation analysis of streamflow and ecological flow for the twin rivers of the Miyun Reservoir Basin in northern China from 1963 to 2011. Sci. Total Environ. 2015, 536, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Gong, Z.N.; Chen, Y.Z.; Zhao, W.H. Analysis of fluctuation characteristics and subzone in hydro-fluctuation belt in the Guanting Reservoir during 1979–2013. Acta Ecol. Sin. 2017, 37, 5294–5304. [Google Scholar]
- Revilla-Romero, B.; Wanders, N.; Burek, P.; Salamon, P.; de Roo, A. Integrating remotely sensed surface water extent into continental scale hydrology. J Hydrol. 2016, 543, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revilla-Romero, B.; Beck, H.E.; Burek, P.; Salamon, P.; de Roo, A.; Thielen, J. Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent. Remote Sens. Environ. 2015, 171, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.; McCarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Chen, X.; Xu, C.Y.; Yuan, L.F.; Yong, B.; Yan, S.F. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. J. Hydrol. 2011, 409, 81–93. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yang, D.W.; Yang, H.B.; Lei, H.M. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Wang, W.G.; Shao, Q.X.; Yang, T.; Peng, S.Z.; Xing, W.Q.; Sun, F.C.; Luo, Y.F. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Xia, J.; Zeng, S.D.; Du, H.; Zhan, C.S. Quantifying the effects of climate change and human activities on runoff in the water source area of Beijing, China. Hydrol. Sci. J. 2014, 59, 1794–1807. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.F.; Zhang, W.G. Upstream-downstream cooperation approach in Guanting Reservoir watershed. J. Environ. Sci. China 2005, 17, 676–680. (In Chinese) [Google Scholar] [PubMed]
- Cheng, D.Z.; Chen, M.; Shi, S.P.; Ma, Z.Z. Impact of upstream human activities on the rainfall–runoff relationship in Yongding River. Des. Water Resour. Hydroelectr. Eng. 2001, 2, 19–21. (In Chinese) [Google Scholar]
- Yu, M.; Wang, C.R.; Liu, Y.; Olsson, G.; Wang, C.Y. Sustainability of mega water diversion projects: Experience and lessons from China. Sci. Total Environ. 2018, 619, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, X.S.; Meng, X.Z. Sustainable urban sewerage system and its application in China. Resour. Conserv. Recycl. 2007, 51, 284–293. [Google Scholar] [CrossRef]
Anthropogenic Variables | Unit | Year | Source |
---|---|---|---|
GDP | Chinse Yuan (CNY) | 1985, 1990–2016 | Regional statistical yearbooks |
Population | Person | 1985, 1990–2016 | |
Electricity energy production | Kilowatt hour | 1985, 1990, 1995–2016 | |
Raw coal production | Ton | 1985, 1990, 1995–2016 | |
Steel production | Ton | 1985, 1990, 1995–2016 | |
Crude iron production | Ton | 1985, 1990, 1995–2016 | |
Value of agriculture output | CNY | 1985–2016 | |
Urban | km2 | 1992–2015 | CCI-LC data |
Reservoir | Year | Reference Image | PA (%) | UA (%) | OA (%) | Kappa Coefficient |
---|---|---|---|---|---|---|
Guanting | 2005 | QuickBird (2 m) | 93.4 | 97.2 | 98.8 | 0.95 |
2016 | Sentinel-2 (10 m) | 94.6 | 96.8 | 98.9 | 0.95 | |
Yiliuhe | 2015 | QuickBird (2 m) | 98.0 | 97.3 | 99.7 | 0.97 |
Cetian | 2016 | Sentinel-2 (10 m) | 98.1 | 98.7 | 99.8 | 0.98 |
Reservoir | TFPW-MK Trend Test | Pettit Change-Point Test | |||
---|---|---|---|---|---|
Slope (km2/year) | Z | Year | P | ||
Guangting | Water extent (km2) | −1.56 | −4.86 ** | 2001 | 0.00 ** |
Streamflow (m3/s) | −0.28 | −4.21 ** | 1999 | 0.00 ** | |
Cetian | Water extent (km2) | −0.116 | −2.24 * | 2005 | 0.03 * |
Streamflow (m3/s) | −0.067 | −2.45 * | 2005 | 0.01 ** |
Reservoir | Periods | ΔA (km2) | ΔAc (km2) | ΔAh (km2) | ΔA/A (%) | Rc (%) | Rh (%) |
---|---|---|---|---|---|---|---|
Guanting | 2002–2016 | −42.4 | 5.8 ± 16.4 | −48.1 ± 20.0 | −47.8 | 25.9 ± 22.4 | 74.1 ± 22.4 |
2002–2012 | −48.5 | 0.9 ± 15.3 | −49.3 ± 20.5 | −54.8 | 25.3 ± 25.3 | 74.7 ± 25.3 | |
2013–2016 | −25.6 | 19.3 ± 12.0 | −44.9 ± 21.0 | −28.9 | 27.6 ± 13.6 | 72.4 ± 13.6 | |
Cetian | 2006–2016 | −5.9 | 0.8 ± 3.1 | −6.7 ± 3.0 | −31.6 | 24.9 ± 17.3 | 75.1 ± 17.3 |
2006–2012 | −6.8 | −0.6 ± 2.3 | −6.2 ± 2.9 | −30.0 | 25.5 ± 20.0 | 74.5 ± 20.0 | |
2013–2016 | −4.3 | 3.2 ± 3.0 | −7.5 ± 3.4 | −22.6 | 23.8 ± 14.3 | 76.2 ± 14.3 |
Guanting Reservoir | Cetian Reservoir | |||||
---|---|---|---|---|---|---|
1985–2001 (Pre-Change) | 2002–2016 (Post-Change) | 2002–2012 | 1985–2005 (Pre-Change) | 2006–2016 (Post-Change) | 2006–2012 | |
Precipitation | 0.680 ** | 0.413 | 0.229 | 0.610 ** | 0.308 | −0.194 |
GDP | 0.246 | 0.336 | −0.564 | 0.264 | 0.162 | −0.884 ** |
Population | 0.201 | 0.300 | −0.519 | 0.202 | 0.136 | −0.755 * |
Electricity energy production | 0.373 | 0.246 | −0.516 | 0.373 | 0.004 | −0.786 * |
Raw coal production | −0.492 | 0.258 | −0.304 | 0.492 * | 0.126 | −0.771 * |
Steel production | 0.020 | −0.005 | −0.833 ** | -- | -- | -- |
Crude iron production | 0.334 | 0.082 | −0.722 ** | -- | -- | -- |
Value of agriculture output | 0.538 * | 0.43 | −0.502 | 0.536 | 0.269 | −0.740 |
Urban area | 0.217 | 0.350 | −0.651 * | 0.217 | 0.211 | −0.851 * |
Year | Cetian Outflow (×104 m3) | Date | Year | Cetian Outflow (×104 m3) | Date |
---|---|---|---|---|---|
2003 | 5010 | 09/26–10/07 | 2010 | 1500 | 10/15–11/16 |
2004 | 7140 | 10/12–11/15 | 2011 | -- | -- |
2005 | 6703 | 10/17–11/06 | 2012 | -- | -- |
2006 | 1579 | 10/13–11/22 | 2013 | 3000 | 10/08–11/11 |
2007 | 2601 | 10/10–10/22 | 2014 | 3000 | 11/07–11/22 |
2008 | 1800 | 10/10–10/20 | 2015 | 2018 | 09/29–11/23 |
2009 | -- | -- | 2016 | 2200 | 10/17–10/30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Du, L.; Ke, Y.; Huang, M.; Zhang, J.; Zhao, Y.; Li, X.; Gong, H. Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sens. 2019, 11, 560. https://doi.org/10.3390/rs11050560
Wang M, Du L, Ke Y, Huang M, Zhang J, Zhao Y, Li X, Gong H. Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sensing. 2019; 11(5):560. https://doi.org/10.3390/rs11050560
Chicago/Turabian StyleWang, Mingli, Longjiang Du, Yinghai Ke, Maoyi Huang, Jing Zhang, Yong Zhao, Xiaojuan Li, and Huili Gong. 2019. "Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis" Remote Sensing 11, no. 5: 560. https://doi.org/10.3390/rs11050560
APA StyleWang, M., Du, L., Ke, Y., Huang, M., Zhang, J., Zhao, Y., Li, X., & Gong, H. (2019). Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sensing, 11(5), 560. https://doi.org/10.3390/rs11050560