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Abstract: Many geoacoustic models are used to establish the relationship between the physical and
acoustic properties of sediments. In this work, Bayesian inversion and model selection techniques
are applied to compare combinations of three geoacoustic models and corresponding scattering
models—the fluid model with the effective density fluid model (EDFM), the grain-shearing elastic
model with the viscosity grain-shearing (VGS(λ)) model, and the poroelastic model with the corrected
and reparametrized extended Biot–Stoll (CREB) model. First, the resolution and correlation of
parameters for the three models are compared based on estimates of the posterior probability
distributions (PPDs), which are obtained by Bayesian inversion using the backscattering strength
data. Then, model comparison and selection techniques are utilized to assess the matching degree
of model predictions and measurements qualitatively and to ascertain the Bayes factors in favor
of each quantitatively. These studies indicate that the fluid and poroelastic models outperform the
grain-shearing elastic model, in terms of both parameter resolution and the ability to produce
predictions in agreement with measurements for sandy sediments. The poroelastic model is
considered to be the best, as the inversion based on it can provide more highly resolved information
of sandy sediments. Finally, the attempt to implement geoacoustic inversion with different models
provides a relatively feasible remote sensing scheme for various types of sediments under unknown
conditions, which needs further validation.

Keywords: geoacoustic models; Bayesian inversion; backscattering strength; sandy sediments;
Bayes factor

1. Introduction

As the main means of underwater investigation, acoustic remote sensing techniques have been
a research hotspot over the last decades. Underwater topographic acoustic telemetry has been a
great success, leading to the emergence of many highly efficient commercial products, ranging from
high-frequency single- and multibeam echosounders and sidescan sonars to low-frequency sub-bottom
profiling tools and seismic systems. In the course of investigation using such equipment, sediment
sampling has often been done to form a dataset corresponding to the acoustic data, and the sediment
samples are used for the verification of seabed classification [1]. Restricted by the time and cost
required for collection and analysis of samples, the verification behavior cannot be expanded on a large
scale. Indeed, seabed classification just tells us that the sediments are different at different locations.
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In order to obtain geoacoustic properties of sediments, model-based inversion of acoustic data is a
more effective and feasible means compared with grab samples [2].

According to the sediment geoacoustic model categories proposed by Jackson and Richardson [3],
there are three categories, which are fluid, elastic, and poroelastic, based on the number and types of
acoustic waves that can travel in sediments. We can see from the literature [4–9] that these geoacoustic
models are mainly used to establish the relationship between physical and acoustic properties of
sediments, such as sound speed and attenuation, and are regarded as “wave theory” or “propagation
theory” to distinguish them from subsequent scattering models by Jackson and Richardson. In acoustic
remote sensing, scattering models of water–seabed interface are necessary to calculate observations
such as scattering strength in model-based inversion, since the speed and attenuation of sound in
sediments cannot be directly measured from a distance. Similarly, scattering models are also classified
into three categories.

Due to the prevalence of sandy sediment in coastal environments, there have been a relatively
large number of experimental data/model comparisons corresponding to sandy sediment [10–13].
The development of models is driven by the mismatch of model prediction and acoustic observation,
including sound speed and attenuation, within sediments measured in situ and scattering strength
measured remotely. The poroelastic model may be a reasonable choice for a porous medium such as
sandy sediment. Biot first proposed a theory of sound propagation in a poroelastic medium, taking into
account the interactions between the pore fluid and consolidated elastic frame [14,15]. The theory was
first used to model sandy sediments by Stoll [16]. The Biot–Stoll model is a fundamental improvement
over the fluid and viscoelastic models and provides a satisfactory fitting performance of model
prediction with the measured data [10,13]. Based on the mismatch between model prediction and
measured data, Chotiros further extended the Biot–Stoll model to include the physics of grain–grain
contact, multiple scattering losses, a more efficient set of input parameters, and a heuristic correction
that allows the model to span a wide range of sediment types [17], which was redefined as the corrected
and reparametrized extended Biot–Stoll (CREB) model by Bonomo and Isakson [18].

In addition to direct modification of the Biot–Stoll model, Williams presented an acoustic
propagation model that approximates a porous medium as a fluid with a bulk modulus and effective
density derived from Biot–Stoll theory [19]. It was shown that the dispersion, transmission, reflection,
and scattering predicted with this approximate model, which is named the effective density fluid model
(EDFM), are very close to the predictions of the full Biot–Stoll theory for sandy sediment [10,12,20].
The approximate effectiveness and limits of EDFM were analyzed by Bonomo and co-workers using
the finite element method (FEM) [21]. In order to further improve the matching degree between the
measurements and the model predictions [20], two additional physical mechanisms, transfer of heat
between the liquid and solid and the effect of granularity, were added to the EDFM [7].

Although the poroelastic model and its approximation are successful to some extent, another
kind of geoacoustic model has received considerable attention. Based on the assumption that the
shear rigidity modulus of the medium is zero and implying the absence of a skeletal elastic frame,
Buckingham proposed the grain-shearing (GS) elastic model [22]. The model was extended to include
the effects of viscosity of the molecularly thin layer of pore fluid separating contiguous grains [6].
The extended version is named VGS, with the first initial serving as a reminder that the model includes
viscosity of the pore fluid. The latest version of Buckingham’s model is designated the VGS(λ), with a
modification to ensure that the viscosity of the pore fluid has no effect on the shear wave. The shear
dispersion relations in the VGS and GS theories are identical. At the same time, Buckingham showed
the adequate matching performance of the model prediction with the measured data [8,23].

The main content of the current paper is to compare the performance of inversions based on
the three models, EDFM, VGS(λ), and CREB, and their corresponding acoustic scattering models.
Bayesian model selection techniques are used to evaluate the degree of matching between model
predictions and measurements, which are backscattering strengths in this paper. In fact, this is not the
first time that Bayesian techniques have been applied to underwater acoustics. Dosso and co-workers
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successfully applied Bayesian techniques to estimate the number of seabed layers and the uncertainty
of seabed parameters [24–26]. There have also been attempts to use Bayesian techniques to solve
the problem of seabed sediment classification [27,28]. Bayesian inversion and model selection based
on the geoacoustic models using sound speed and attenuation measurements were carried out by
Bonomo and Isakson to compare the competing geoacoustic models [18]. In this work, we introduce
a similar comparison for underwater remote sensing by combining the geoacoustic models with
corresponding scattering models, using scattering strength measurements to carry out inversion and
model selection. The authors believe this is the first time that model selection techniques have been
applied to underwater remote sensing using scattering strength to compare different types of models.
Before parameter inversion, a parameter sensitivity analysis is carried out to forecast the relative
resolution of parameters of each model and provide an interpretation of the subsequent inversion
results. Then, the resolution of parameters that are mostly difficult to measure in situ can be obtained
from inversion results and compared with the results of the sensitivity analysis. The model selection
techniques can provide a quantitative measure of the most suitable model. When faced with a complex
and unknown sediment environment, the comparison can also provide a relatively feasible scheme for
assessing different kinds of models for underwater acoustic inversion and remote sensing, and the
best model and inversion results for specific sediment can be obtained.

The observation used in the inversion is backscattering strength varying with angle and frequency.
Since this paper is mainly concerned with the uppermost layer of sediment and the scattering model
used here is only suitable for high frequency, the backscattering strength measurements are carried
out at high frequencies (≥100 kHz). The remainder of this paper has the following organization.
The calculation processes of scattering strength for the three models and corresponding model
parameter sensitivity analysis are given in Section 2. Section 3 briefly reviews the Bayesian inference
method used in this work. Section 4 presents the experimental measurements, parameter inversion,
and model selection results. Finally, this work is concluded in Section 5.

2. Geoacoustic Models and Acoustic Scattering Models

Geoacoustic models are usually established to describe the relationship between physical
parameters and the attenuation and speed of sound waves that propagate within sediment, as
mentioned above. The main content of this section is a combination of the latest geoacoustic and
scattering models used to calculate scattering strength. According to the model categories proposed
by Jackson and Richardson [3], a fluid medium only supports the propagation of compressional
waves, an elastic medium supports the propagation of compressional waves and shear waves, and a
poroelastic medium supports additional slow compressional waves compared to the elastic medium.
It is important to note that slow compressional waves are given theoretically and have never been
observed in natural marine sediment. The combination means that the attenuation and speed of
sound waves supported by the corresponding geoacoustic model categories are needed as input for
different kinds of scattering models. Indeed, different kinds of geoacoustic and scattering models can
be applied in cross-combinations to calculate scattering strength. The EFDM is an example in which
effective density derived from the Biot–Stoll theory is used to calculate scattering strength based on
fluid scattering models. Then the fluid scattering model is extended to the poroelastic case by the
simple replacement of density by effective density.

Although the separation of scattering into separate, independent roughness and volume
components is somewhat artificial, it is helpful to understand the scattering mechanisms by discussing
them separately. The total scattering strength can be expressed as

Sb = 10 log10(σbI + σbV) (1)

where σbI and σbV denote scattering cross-sections of rough water–seabed interface and volume
heterogeneities, respectively. As mentioned above, due to the prevalence of sandy sediment, the study
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in this paper is also based on sandy sediment. At high frequencies, the scattering of sandy sediment is
mainly due to interface roughness scattering [10], which is modeled by three types of models, and the
contribution from a fluid volume scattering model is included for completeness in this paper. Through
the cross-combination mentioned above, the fluid volume scattering model can also be extended to
the elastic and poroelastic case. The following are the calculation processes of scattering strength of
the fluid model, grain-shearing elastic model, and poroelastic model, and the corresponding model
parameter sensitivity analysis.

2.1. Fluid Model

Although seabed sediments are composed of discrete particles, it is a reasonable approximation
that they are regarded as a continuous medium [29] and this assumption applies to all models used in
this paper. As a relatively simple approach, fluid theories are commonly used to describe sediment
acoustic properties and have been combined with scattering models. The EFDM, which is proposed
as a fluid approximation of the Biot–Stoll theory, extends the fluid model input parameters to the
poroelastic case. The calculation process of this approximation only considers the propagation of
compressional waves in sediments, leading to its category as a fluid type. The fluid model used here
to calculate the scattering strength requires 15 input parameters—roughness spectral exponent γ2,
roughness spectral strength ω2, density fluctuation spectral exponent γ3, density fluctuation spectral
strength ω3, ratio of compressibility to density fluctuation in sediment µ, mean grain diameter d,
tortuosity α, porosity β, dynamic viscosity of water η, permeability κ, mass density of water ρw, mass
density of grains ρg, bulk modulus of water Kw, bulk modulus of grains Kg, and compressional wave
speed in water cw.

2.1.1. EDFM

The fluid model used in this paper has been extended to the poroelastic case by using the effective
density. Therefore, the calculation of scattering strength needs to begin from the relevant parameters
of the poroelastic theory. Based on the Biot constitutive relations, four moduli are given successively
by Stoll, and the relationships between the moduli and the parameters of constituent media are as
follows [30]:

H =
(

Kg − K f

)2
/
(

D− K f

)
+ K f + 4U/3 (2)

C = Kg

(
Kg − K f

)
/
(

D− K f

)
(3)

M = Kg
2/
(

D− K f

)
(4)

D = Kg/
[
1 + β

(
Kg/Kw − 1

)]
(5)

where K f is the complex frame bulk modulus and U is the complex frame shear moduli. The starting
point of the EDFM regarded as an approximation for full Biot–Stoll is the frame modulus set to zero.
The reason for this is that the frame moduli are small and can be negligible compared with the grain
and water moduli. Then an effective fluid modulus can be obtained:

Ke f f =
[
(1− β)/Kg + β/Kw

]−1 (6)

The effective fluid modulus is substituted into the wave equation of the Biot theory, and the
detailed derivation process can be found in [19]. The effective density, complex acoustic compressional
speed, and corresponding phase speed in sediment can be obtained by:

ρe f f =
(

ρρ̃− ρ2
w

)
/(ρ̃ + ρ− 2ρw) (7)

c1 =
√

Ke f f /ρe f f (8)
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c1phase = 1/Re(1/c1) (9)

where ρ̃ = αρw/β + iFη/(2π f κ), ρ = βρw + (1− β)ρg, f is the acoustic frequency, and F is the
complex correction factor for dynamic viscosity:

F = −
√

iεJ1

(√
iε
)

/
[
4J0

(√
iε
)
+ 8i
√

iJ1

(√
iε
)

/ε
]

(10)

ε = a
√

2π f ρw/η (11)

where J0 and J1 are Bessel functions of the first kind, and a =
√

8ακ/β is called the pore size. In order
to further improve the matching degree between model predictions and measurements of sound
speed and attenuation, Williams added two additional nongrain contact mechanisms to the EDFM:
heat transfer between the liquid and solid at low frequencies and granularity of the medium at high
frequencies [7]. Since the application of the EDFM in this paper is at high frequencies, only the model
modification using doublet mechanics (DM) to model the granularity for high frequency is given here.
This is done by adding a correction factor ξDM to Ke f f as follows:

c1 =
√

ξDM(λ, d; θ = 30◦)Ke f f /ρe f f (12)

where λ = cw/ f is the wavelength of sound wave in water and ξDM can be obtained by:

ξDM(λ, d, θ) =
1

4 ∑3
i=1 T4

i1
∑3

j=0

[
(−1)j(d/λ)2j 2(2j+3)π2j

(2j + 2)! ∑3
i=1 T(2j+4)

i1

]
(13)

where Ti1 are direction cosines and functions of θ, and the expressions are: T11 = cos θ, T21 =

cos(60◦ − θ), T31 = − cos(60◦ + θ). The additional multiple scattering loss αms = 24(2π f d/cw)
4 is

added into the attenuation (dB/m) by [31]:

α1 = 40π f Im(1/c1)/ ln(10) + αms (14)

The final modified complex compressional wave speed can be expressed as:

c1 =
[
1/c1phase + iα1 ln(10)/(40π f )

]−1
(15)

The complex speed ratio a1 and density ratio aρ needed to calculate the scattering strength in the
scattering model are:

a1 = c1/cw (16)

aρ = ρe f f /ρw (17)

2.1.2. Fluid Interface Roughness Scattering Model

For roughness scattering at the sea bottom interface, two widely used approximations are used
to calculate the scattering strength: the small-roughness perturbation method and the Kirchhoff
approximation. The perturbation theory tends to be most accurate for scattering at wide angles
relative to the specular (flat-interface reflection) direction [32], and the Kirchhoff approximation is
better for scattering near the specular direction [33]. The approximation method used in this paper is
called small-slope approximation; it was first proposed by Voronovich to study scattering by the sea
surface [34] and was subsequently used to study seabed scattering. In the interest of simplicity, the
lowest-order small-slope approximation is used, which can provide a single expression that covers all
angles and is likely to be at least as accurate as either the Kirchhoff or perturbation approximation.
According to the summary by Jackson, the uniform expression of roughness scattering cross-section
for different models using lowest-order small-slope approximation is [3]:
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σbI = (k4
w|Aww|2 Ik)/

(
2π∆K2∆k2

z

)
(18)

where kw = 2π f /cw is the acoustic wavenumber in water and ∆K, ∆kz denote the magnitude of
the horizontal and vertical vector difference between the scattered wave and the incident wave,
respectively, and are given in Appendix A.

Assuming that the roughness is isotropic and follows pure power law, Ik can be obtained by:

Ik =

∞∫
0

J0(u)e
−ψudu (19)

ψ =
1
2

C2
h∆k2

z∆K−2(γ2
2 −1)u2(γ2

2 −1) (20)

where C2
h is the square of the “structure constant,” which is related to the parameters of the power-law

spectrum through:
C2

h = 2πw2Γ(3− γ2
2
)2−2(γ2

2 −1)/
[
α(2− γ2

2
)Γ(

γ2
2
)
]

(21)

where Γ is the gamma function. The above calculation process of roughness scattering cross-section is
also applicable to the grain-shearing elastic and poroelastic models. The difference is the calculation of
Aww. The expression of factor Aww for the fluid model is:

Aww =
1
2
[1 + Vww(θi)][1 + Vww(θs)]G (22)

G =

(
1− 1

aρ

)cos θi cos θs cos∅s −

√
1− a2

1 cos2 θi

√
1− a2

1 cos2 θs

a2
1aρ

− 1 +
1

a2
1aρ

(23)

where θi, θs, and ∅s are defined in Figure A1. Vww is the flat-interface reflection coefficient and can be
obtained by:

Vww(θ) = (Z(θ)− 1)/(Z(θ) + 1) (24)

Z(θ) = aρa1 sin θ/
√

1− a2
1 cos2 θ (25)

2.1.3. Fluid Volume Scattering Model

Although the acoustic scattering caused by the inhomogeneity of sediments is more significant
only in soft seabeds, such as muddy seabed, where sound waves can easily travel in and out, the
volume scattering is taken as a supplement and modification for total scattering strength to further
enhance the matching performance of the models. The small-perturbation fluid approximation for
volume scattering is used. Assuming that the volume scattering strength is independent of depth, the
expression for σbV is [35,36]:

σbV =
|1 + Vww(θi)|2|1 + Vww(θs)|2σv

2kw
∣∣aρ

∣∣2Im
(√

1/a2
1 − cos2 θi +

√
1/a2

1 − cos2 θs

) (26)

σv =
π

2
k4

w

∣∣∣∣µ/a2
1 + cos θi cos θs cos∅s −

√
1/a2

1 − cos2 θi

√
1/a2

1 − cos2 θs

∣∣∣∣2 w3(
∆kp

)
γ3

(27)

where ∆kp is the real part of the vector difference of the scattered and incident waves that propagate
in sediment, given in Appendix A. So far, the scattering strength for the fluid model can be obtained
through Equations (1), (18), and (26).
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2.2. Grain-Shearing Elastic Model

The categories of models discussed by Jackson and Richardson are meant to be broad and can
apply to consolidated sediments such as rock where model proposed by Buckingham is designed for
unconsolidated sediments such as sand. In order to distinguish the elastic model used in this paper
from the empirical visco-elastic model developed by Hamilton [37], the term ‘grain-shearing elastic
model’ is used to specify the combination of VGS(λ) and elastic scattering model. Compared with the
fluid model, the grain-shearing elastic model incorporates shear forces. The sediment supports the
propagation of shear waves, which is modeled to provide additional corrections. The grain-shearing
elastic model used here to calculate the scattering strength requires 16 input parameters: roughness
spectral exponent γ2, roughness spectral strength ω2, density fluctuation spectral exponent γ3, density
fluctuation spectral strength ω3, ratio of compressibility to density fluctuation in sediment µ, porosity
β, mass density of water ρw, mass density of grains ρg, bulk modulus of water Kw, bulk modulus
of grains Kg, material exponent n, compressional rigidity coefficient γ1, shear rigidity coefficient γt,
compressional viscoelastic relaxation time τ1, shear viscoelastic relaxation time τt, and compressional
wave speed in water cw.

2.2.1. VGS(λ)

As the latest version of the model proposed by Buckingham, VGS(λ) is an extension of GS that
includes the effects of viscosity of the molecularly thin layer of pore fluid separating contiguous grains
and a slight modification of the shear viscoelastic relaxation time. The VGS(λ) dispersion curves have
also been verified by the measurements in SAX99 [8].

First, Wood’s equation, which usually gives a rather poor prediction of sediment sound speed [38],
is given, as it ignores much of the dynamics of the grain-pore water system:

c0 = 1/
√[

β/Kw + (1− β)/Kg
]
ρ (28)

From the view of expression, the VGS(λ) expressions can be considered as modifications of c0 and
the compressional wave speed c1phase, attenuation α1, shear wave speed ctphase, and attenuation αt,
respectively, are expressed as [6]:

c1phase =
c0

Re
[

1 + 3γ1+4γt
3ρc2

0
(i2π f T)n

(
1 + 1

i2π f τ1

)n−1
]−1/2 (29)

α1 = − 40π f
ln(10)c0

Im

[
1 +

3γ1 + 4γt

3ρc2
0

(i2π f T)n
(

1 +
1

i2π f τ1

)n−1
]−1/2

(30)

ctphase =

√
τt/ρ

Re
[
(i2π f T)n

(
1 + 1

i2π f τt

)n−1
]−1/2 (31)

αt = −
40π f
ln(10)

√
ρ

τt
Im

[
(i2π f T)n

(
1 +

1
i2π f τt

)n−1
]−1/2

(32)

where τt is the shear viscoelastic relaxation time and τt → ∞ is taken because of the experimental
evidence [8] that τt � τ1. Then the complex compressional wave speed c1 and shear wave speed ct

can be similarly obtained by Equation (15). The complex speed ratio a1 and at can be obtained by
Equation (16). The density ratio aρ for the grain-shearing elastic model is as follows:

aρ = ρ/ρw (33)
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2.2.2. Elastic Scattering Model

The expression of scattering cross-section for the elastic interface roughness scattering model is
similar to the one used with the fluid model. The difference is the factor Aww used in Equation (18),
which can be obtained by [3]:

Aww =
1
2 ∑4

i=1 Di

[
1 + (−1)i−1Vww(θs)

][
1 + (−1)(i−2)(i−1)/2Vww(θi)

]
(34)

where Di, i = 1, 2, 3, 4, given in Appendix B; Vww(θ) is the flat-interface reflection coefficient, which
can be obtained by Equation (24); and the corresponding Z(θ) for the elastic scattering model is:

Z(θ) =
aρa1 sin θ√
1− a2

1 cos2 θ

(
2a2

t cos2 θ − 1
)2

+
aρat sin θ√
1− a2

t cos2 θ

[
1−

(
2a2

t cos2 θ − 1
)2
]

(35)

As mentioned above, the fluid volume model can be extended for use in an elastic medium by
substituting the appropriate parameters into Equations (26) and (27). Then the total scattering strength
for the grain-shearing elastic model can be obtained by Equation (1).

2.3. Poroelastic Model

Both elasticity and porosity of sediments are considered in the poroelastic model, where the
sediment grains constitute an elastic “frame” coupled to the pore fluid. This is the reason that the
poroelastic model supports additional “slow” compressional waves compared with the elastic model.
This model is essentially the most appropriate for sandy sediment, which is composed of grains
and water as a two-phase system [16]. The total poroelastic model requires 19 input parameters:
roughness spectral exponent γ2, roughness spectral strength ω2, density fluctuation spectral exponent
γ3, density fluctuation spectral strength ω3, ratio of compressibility to density fluctuation in sediment
µ, mean grain diameter d, porosity β, dynamic viscosity of water η, mass density of water ρw, mass
density of grains ρg, bulk modulus of water Kw, bulk modulus of grains Kg, cementation exponent m,
pore shape factor aB, Poisson’s ratio of grains ν, low-frequency asymptotic frame bulk modulus Kbo,
high-frequency asymptotic increase Ky, bulk relaxation frequency fk, and compressional wave speed
in water cw.

2.3.1. CREB

In order to reproduce the frequency dependence of the measured sound speed and attenuation
and achieve a better matching degree between model predictions and measurements, grain contact
physics models have been developed and tested for the poroelastic model. Chotiros and Isakson used
grain contact squirt flow and viscous drag mechanisms to better model the observed behavior of
attenuation [4]. Then a missing relaxation mechanism was added at higher frequencies related to the
grain contact physics, and the extended Biot model was proposed to achieve further improvement [9].
The model used here is the latest version in which the extended Biot model is reparametrized and
corrected to be able to model sediments of multiple types [17].

Permeability κ and tortuosity α can be related to the CREB parameters through:

κ =
β3md2

4aBm2 (36)

α = β1−m (37)

Based on the extended Biot model, the complex effective frame bulk modulus K f and frame shear
modulus U are replaced by frequency-dependent expressions:
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K f = Kbo + Ky

(
1−

2J1
(√
−i2π f / fk

)(√
−i2π f / fk

)
J0
(√
−i2π f / fk

)) (38)

U = Kbo
9(1− ν)

5(2− ν)
+

3
5

FgK f (39)

where Fg can be set equal to 1 for sandy sediment or to other values to model different types of
sediments. The moduli H, C, M, complex correction factor F can be obtained by Equations (2)–(4)
and (10) and the “fast” and “slow” compressional wavenumbers can be expressed as the roots of the
following expression:(

Hk2
q − 4ρπ2 f 2

)(
4

αρw

β
π2 f 2 −Mk2

q +
i2π f Fη

κ

)
+
(

4ρwπ2 f 2 − Ck2
q

)2
= 0 (40)

where root k1 with a negative imaginary component and a smaller real component is the “fast”
compressional wavenumber, and root k2 is the “slow” compressional wavenumber. The shear
wavenumber kt is the root with a negative imaginary component of the following expression:(

Uk2
q − 4ρπ2 f 2

)(
4

αρw

β
π2 f 2 +

i2π f Fη

κ

)
+ 16ρ2

wπ4 f 4 = 0 (41)

The density ratio aρ for the poroelastic model is the same as that of the grain-shearing elastic
model, and the speed ratio can be obtained by:

aq = kw/kq, q = w, 1, 2, t (42)

2.3.2. Poroelastic Scattering Model

Similar to the elastic scattering model, the scattering cross-section for the poroelastic interface
roughness scattering model can be obtained by Equation (18), and the corresponding factor Aww is the
first element of the following column matrix [39]:

Aall(Ks, Ki) =


Aww(Ks, Ki)

Aw1(Ks, Ki)

Aw2(Ks, Ki)

Awv(Ks, Ki)

Awh(Ks, Ki)

 (43)

which can be computed by:

Aall(Ks, Ki) = Y1(Ks)
[

P(3)(Ks)
]−1

B(Ks, Ki)V0(Ki) (44)

B(Ks, Ki) = k−1
w

[
(Ks1 − Ki1)E(1)(Ki) + (Ks2 − Ki2)E(2)(Ki)

]
− E(3)(Ki)Y2(Ki) (45)

V0(Ki) =

 −
[

P(3)(Ki)
]−1

Q(3)(Ki)

. . . . . . . . . . . . . . . . . . . . . . . .
1

 (46)

where the subscripts of Y are used to distinguish the two matrices without specific meaning and the
superscripts of matrices E, P, and Q correspond to the three spatial components. The matrices Y, E,
P, and Q are given in Appendix B. V0(Ki) is a six-row column vector comprising five reflection and
transmission coefficients and supplemented with unity in the last row. The flat-interface reflection
coefficient Vww(θ) for the poroelastic model is the first element of the column vector V0(Ki). Then the
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volume scattering can also be computed by Equations (26) and (27) and the total scattering strength for
the poroelastic model can be obtained by Equation (1).

2.4. Sensitivity Analysis

Parameter sensitivity analysis is from the view of mathematics and is a global analysis method.
The potential correlation between some parameters is not specified in advance and is not considered in
the analysis process. Since model predictions of some parameter combinations may not be consistent
with local measurements, the parameter resolution given by the results of the sensitivity analysis
may not be exactly consistent with that given by inversion results. However, we can still obtain a
preliminary understanding of the resolutions of the model parameters through sensitivity analysis.
The sensitivity analysis can forecast the relative resolution of parameters for each model and provides
an interpretation of the subsequent inversion results. Similar to many global sensitivity analysis
methods, the uncertainty importance measure proposed by Borgonovo is used here [40]. Borgonovo
verified that the parameter that influences variance the most is not necessarily the parameter that
influences the output distribution the most, and proved the effectiveness of his method over other
variance-based methods [41–44]. The definition of the first-order Borgonovo index is:

δi =
1
2

EXi

[∫ ∣∣∣ fY − fY|Xi

∣∣∣dy
]

(47)

where fY is the probability distribution of the model prediction and fY|Xi
is the conditional distribution

on Xi. δi indeed is a measure of the expected shift in the probability distribution of the model prediction
when Xi is set to a fixed value.

The parameter space is determined for sandy sediments based on the results from previous
research in the literature. Bounded, uniform distributions are taken as the parameter priors, and the
distribution parameters are given in Table 1, where they are divided into the common parameters of
the three models and the unique parameters of each model. The priors are chosen to be minimally
informative and represent attempts at capturing the full range of possible values the model input
parameters can take for sandy sediments. As shown in Table 2, the parameters that describe the
characteristics of water and the sound speed in water are supposed to be known parameters, which
refer to water parameters listed in [45]. The reason is that the subsequent experiments are carried
out in a rectangular tank filled with fresh water. It should be noted that the mass density and bulk
modulus of grains are replaced by ratios to water for convenience, as shown in Table 1. The sensitivity
analysis here and the subsequent parameter inversions are both based on these priors. Using Latin
hypercube sampling [46], 60,000 samples are generated to calculate the Borgonovo index for each
model. The grazing angle range and frequency, respectively, are 20◦–70◦ and 100 kHz.

Figure 1a displays the Borgonovo indices for the fluid model. Inspection of the figure reveals
that the roughness spectral exponent γ2, density fluctuation spectral exponent γ3, and porosity β

have a great influence on model prediction. The effect on the model prediction of roughness spectral
strength ω2 and ratio of compressibility to density fluctuations µ is smaller than that of the first three
parameters but larger than that of all the remaining parameters. This means that there could be five
parameters that yield better resolution in the fluid model-based inversion. Figure 1b shows that the
roughness spectral exponent γ2 and density fluctuation spectral exponent γ3 still have a significant
impact on model prediction for the grain-shearing elastic model, while roughness spectral strength
ω2, ratio of compressibility to density fluctuation µ, porosity β, and material exponent n only have a
moderate effect on model prediction. For the poroelastic model in Figure 1c, the sensitive parameters
are roughly the same as the fluid model, and the others remain insensitive to model prediction. From
Figure 1, we can also see that the indices of some parameters fluctuate under different grazing angles.
Indeed, sensitivity analysis was also performed at different frequencies, and the results show that
the frequency change had only a slight effect on the indices. Thus, we only give results of sensitivity
analysis at 100 kHz here.
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Table 1. Parameter bounds used to construct uniform priors for models’ input parameters.

Parameter Symbol Lower Bound Upper Bound Unit

Common
parameters

Roughness spectral exponent γ2 2 4 dimensionless
Roughness spectral strength ω2 0.00001 0.0005 m4

Density fluctuation spectral exponent γ3 1 8 dimensionless
Density fluctuation spectral strength ω3 0.001 0.01 m3

Ratio of compressibility to density fluctuation µ −3 2 dimensionless
Porosity β 0.2 0.8 dimensionless

Ratio of mass density of grains to water ρr 2 3 dimensionless
Ratio of bulk modulus of grains to water Kr 5 30 dimensionless

Fluid model
parameters

Mean grain diameter d 62.5× 10−6 1× 10−3 m
Tortuosity α 1 3 dimensionless

Permeability κ 6.5 100 µm2

Grain-shearing
elastic model
parameters

Material exponent n 0.02 0.2 dimensionless
Compressional rigidity coefficient γ1 107 109 Pa

Shear rigidity coefficient γt 106 108 Pa
Compressional viscoelastic relaxation time τ1 10−5 10−3 s

Poroelastic
model

parameters

Mean grain diameter d 62.5× 10−6 1× 10−3 m
Cementation exponent m 1 4 dimensionless

Pore shape factor aB 2 12 dimensionless
Poisson’s ratio of grains ν 0.2 0.4 dimensionless

Low-frequency asymptotic frame bulk modulus Kbo 0 0.25× 109 Pa
High-frequency asymptotic increase Ky 0 0.25× 109 Pa

Bulk relaxation frequency fk 103 2× 104 Hz

Table 2. Known parameters for water.

Parameter Symbol Value Unit

Mass density ρw 1000 kg/m3

Bulk modulus Kw 2.23× 109 Pa
Dynamic viscosity η 0.001 kg/m s

Compressional wave speed cw 1493 m/s
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3. Bayesian Inference

Bayesian inference is by far the most suitable solution to the inversion problem, as it treats
all the parameters as random variables. The inversion results are given in the form of posterior
probability distribution (PPD) with quantized uncertainty instead of point estimation based on the
global optimization algorithm. This section only makes a brief review; more complete treatments of
Bayesian inference applied to geoacoustic inversion can be found elsewhere [24,25,47–49]. When a set
of observations (scattering strength) d and the adopted model Mod for inversion are determined, the
PPD of parameter vector m can be expressed as

P(m|d, Mod ) = P(d|m, Mod )P(m)/P(d) (48)
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where P(m) is the prior probability distribution of m. P(d|m, Mod ) is the conditional probability
distribution of observations d given model parameters m and model Mod. P(d) is independent of m
and is usually considered as a constant factor. Then the PPD can be written as

P(m|d, Mod ) ∝ P(d|m, Mod )P(m) = L(m|Mod )P(m) (49)

where P(d|m, Mod ) is also known as the likelihood function L(m|Mod ). In order to define the
likelihood function, the error of observations, which consists of measurement error and model error,
needs to be specified. An effective approach is used here in which the errors of observations are
taken as unknown random parameters, like input parameters for model prediction, and estimated
simultaneously within the inversion process. Assuming common independent Gaussian-distributed
errors, the likelihood function can be expressed as

L(m|Mod ) =
1

(2π)Nd/2 ∏Nd
i=1 σi

exp

{
−1

2

Nd

∑
i=1

[di − di(m|Mod )]
σ2

i

}
(50)

where Nd is the dimension of d; σi is the standard deviation for di, which is the ith element of d; and
di(m|Mod ) is the ith element of d(m|Mod ), which denotes the observations predicted by the parameter
vector m and corresponding model Mod. The solution of the inversion problem is given in the form of
a marginal PPD, defined as:

P(mi|d, Mod) =
∫

δ
(
m′i −mi

)
P
(
m′
∣∣d, Mod

)
dm′ (51)

P
(
mi, mj

∣∣d, Mod
)
=
∫

δ
(
m′i −mi

)
δ
(

m′j −mj

)
P
(
m′
∣∣d, Mod

)
dm′ (52)

where mi and mj represent the elements of parameter vector m and P(mi|d, Mod) and P
(
mi, mj

∣∣d, Mod
)

denote the one- and two-dimensional marginal PPD, respectively. The integral that needs to be solved
can be rewritten as:

I =
∫

f (m)P(m|d, Mod )dm (53)

For nonlinear problems, such as geoacoustic inversion, the integral does not have an analytic
solution. Based on Monte Carlo theory, we can rewrite the integral as:

I =
∫
[ f (m)P(m|d, Mod )/Q(m)]Q(m)dm = EQ(m)[ f (m)P(m|d, Mod )/Q(m)] = EQ(m)[ f ′(m)]. (54)

If a large number of samples m1, m2 . . . mNs is obtained from Q(m), the integral can be
approximately equal to:

I ≈ 1
Ns

Ns

∑
i=1

f ′(mi) (55)

Let Q(m) = P(m|d, Mod ), then the integral can be further simplified to:

I ≈ 1
Ns

Ns

∑
i=1

f (mi) (56)

which means that the main objective of inversion is to obtain a set of samples from the PPD to
approximate the target integral. It is not difficult to figure out that a larger number of samples
that follow the target probability distribution can better approximate the true value of the integral.
The rigorous sampling methods will be given in the next section.
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3.1. Parameter Inversion

Monte Carlo theory provides the idea that samples can be used to approximate an integral without
an analytic expression. Then the key task of parameter inversion is to generate a set of samples that can
fully represent the target probability distribution. Compared with the static simulation of traditional
Monte Carlo integral, the Markov chain Monte Carlo (MCMC) method is a dynamic simulation as the
process goes on. MCMC exploits a Markov chain that generates a random walk through the parameter
search space to obtain solutions with stable frequencies stemming from a stationary distribution.
Different MCMC methods have different constructions of transfer probability, which has a crucial
influence on the convergence efficiency of the Markov chain. The earliest MCMC approach is the
random walk Metropolis. Considering nonsymmetrical jumping distributions, Hastings extended the
random walk Metropolis algorithm to more general cases, which is known as the Metropolis–Hastings
(M–H) algorithm [50]. In order to increase the sampling efficiency of complex posterior distributions
involving long tails, correlated parameters, multimodality, and numerous local optima, more improved
algorithms have been proposed, such as adaptive proposal (AP) [51], adaptive Metropolis (AM) [52],
delayed rejection adaptive Metropolis (DRAM) [53], differential evolution Markov chain (DE-MC) [54],
fast Gibbs sampling (FGS) [47], and so on. The sampling method used in this paper is a relatively
efficient multichain method called differential evolution adaptive Metropolis (DREAM), which can
maintain detailed balance and ergodicity with excellent performance on a wide range of problems
involving nonlinearity, high dimensionality, and multimodality [55]. In general, the probability of
accepting candidate state mc as the next state of mt−1 within the Markov chain is:

Pr(mt−1 → mc) = min
[

1,
P(mc)q(mc → mt−1)

P(mt−1)q(mt−1 → mc)

]
(57)

where P(mc) and P(mt−1) are the posterior probability densities of parameter vectors at different
times, and q(mc → mt−1) and q(mt−1 → mc) are the conditional probabilities of chain moves from
mc to mt−1 and mt−1 to mc , respectively. For DREAM, the conditional probability distribution is
symmetric and the probability of accepting the candidate state can be written as:

Pr(mt−1 → mc) = min
[

1,
P(mc)

P(mt−1)

]
. (58)

Then, a random sample Sr taken from a uniform distribution U(0, 1) will be compared with
Pr(mt−1 → mc). The candidate state mc will be accepted as the next state of mt−1 if Sr ≤ Pr. Otherwise,
the next state mt will remain the same as mt−1. The efficiency of this seemingly simple process will be
significantly affected by parameter perturbation until the chain finally explores the entire parameter
space. DREAM uses N Markov chains and differential evolution to expedite the exploration process.
The candidate state of the ith (i = 1, 2 . . . , N) chain is updated by:

dmi
P = εNp +

(
1Np + λNp

)
γ(δ,Np)

δ

∑
j=1

(
m

aj
P −m

bj
P

)
(59)

dmi
6=P = 0 (60)

where P is a subset (Np dimensional) of parameter space (Nm dimensional). Equations (59) and
(60) mean there are only Np parameters changed by dmi

P and the other Nm − Np parameters remain
unchanged within the ith chain. The values of vectors εNp and λNp are sampled independently from
a multivariate normal distribution NNp(0, c) and a multivariate uniform distribution UNp(−c′, c′),
respectively, with default values c′ = 0.1 and c = 10−12. δ denotes the number of chains used to
generate the perturbation. aj and bj denote the jth element of vector a and b consisting of δ integers
drawn without replacement from {1, 2, . . . , N}. γ(δ,Np) = 2.38/

√
2 δNp is the jump rate, which is
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periodical with a 20% chance to enhance the probability of jumps between disconnected modes of the
target distribution.

3.2. Convergence Criterion

An important aspect when applying the MCMC method is determining when to safely stop.
The solution proposed by Dosso [47,56] is that samples of two independent chains are periodically
compared until they are deemed to have satisfied an objective convergence criterion. In this paper, the
DREAM algorithm is adopted, which uses multiple chains to achieve different trajectories running
in parallel and explore the posterior target distribution. Compared with the dual chain scheme used
by Dosso, multiple chains are more applicable for complex posterior distributions involving long
tails, correlated parameters, multimodality, and numerous local optima, offering robust protection
against premature convergence and opening up the use of a wide arsenal of statistical measures to test
whether convergence to a limiting distribution has been achieved [57]. Here the convergence of the
inversion process is monitored with the R̂ statistic proposed by Gelman and Rubin [58,59]. If R̂ is large,
this means the parameter space is not fully explored by the chains, and more iterative simulations are
needed. Alternatively, if R̂ is close to 1, it can be concluded that the samples within the chains are
close to the target probability distribution. The threshold of R̂ used in this paper is 1.2, and the actual
convergence criterion is that R̂ remains below the threshold for 3000 simulations.

3.3. Model Selection

One of the main purposes of this paper is to determine which model best matches the measured
data. For model-based Bayesian inversion, the Bayes factor [60] is the most common evaluation
criterion, which provides a quantitative index to judge competing models. The Bayes factor of Mod1

with respect to the alternative Mod2 can be calculated by:

B(Mod1,Mod2)
= EV1/EV2 (61)

which is equivalent to the ratio of the evidence, EV1 and EV2, for two competing models. The evidence
for a selected model Modi is defined as the integral of the likelihood function over the prior distribution:

EVl =
∫

L(m|Modl )P(m)dm l = 1, 2. (62)

In practice, most regions of the parameter space in the prior distribution correspond to small
likelihood function values and make negligible contributions to the integral. Similar to importance
sampling, the prior distribution can be replaced by the PPD to restrict the integral space to those areas
that make significant contributions to the integral, reducing unnecessary parameter space sampling
in abundance and computation to approximate the evidence to the greatest extent [61]. Similar to
Equations (53)–(56), the samples within the Markov chains are used to approximatively calculate the
evidence in this paper by:

EVl ≈
1

Ns

Ns

∑
i=1

L(mi|Modl ). (63)

The value of evidence can be interpreted by the scale proposed by Robert and Adrian [60], as
shown in Table 3, where the scale is divided into four (increasing) levels of support for proposition
Mod1 relative to Mod2.
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Table 3. Bayes factor scale and corresponding interpretation.

log10B(Mod1,Mod2) Evidence in favor of Mod1

<0 Mod2 is favored
0 to 0.5 Not worth more than a bare mention
0.5 to 1 Substantial
1 to 2 Strong

>2 Decisive

4. Experimental Measurements, Results, and Discussion

This section presents and analyzes the results of the Bayesian inference performed in this work.
First, a description of the laboratory measurements is given in Section 4.1. Then, the parameter
inversion results based on the laboratory measurements are analyzed. Finally, the model selection and
comparison results are discussed in Section 4.3.

4.1. Experiment Description

Specialized to the monostatic case, backscattering strength was measured in a rectangular tank
using a directional transducer. As shown in Figure 2, a circular arc was used to mount the transducer,
and the bottom was filled with river sand. The thickness of the sand layer in the tank was 0.5 m,
and the diameter of the circular arc was 3 m. The associated data-processing methods have been
described in detail by Jackson [3,62], and only a brief summary of the experimental configuration will
be given here. The mean-square voltage at the terminals of the transducer was averaged over groups of
50 successive pings consisting of 10 measurements at five evenly spaced positions in the y direction as
the arc moved along the y-axis. This double-averaging was done to mitigate the fluctuation of a single
measurement and the potential weak heterogeneity differences of the sand as well as the unevenness
of the bottom surface. The transducer was high-frequency broadband, which could move along the arc,
and separate passes were made with different grazing angles and frequencies. The grazing angle range
and frequencies used in the experiment were 20◦–70◦ and 100 kHz, 120 kHz, and 140 kHz, respectively.
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Figure 2. Diagram of backscatter measurements.

Figure 3 shows measured backscattering strength as a function of grazing angle at different
frequencies. It can be seen that the backscattering strength has only a weak frequency dependence.
There is a slight drop of backscattering strength above the critical angle of 30◦ which is consistent with
the measurements given by Williams [10]. Although no field experiments were carried out, the authors
believe that laboratory measurements are more manageable and provide adequate fitness between
model and data. Of course, more subsequent field data for model selection analysis are required due
to the limitations of laboratory measurements. This work features the use of a remote sensing scheme
with multiple models and lays a foundation for future practical field applications.
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4.2. Parameter Inversion

The parameter priors used for the parameter inversion were the same as those for the sensitivity
analysis as shown in Tables 1 and 2. A total of five chains were used during the sampling process and
deemed sufficient for parameter dimensions of all models. Under the premise of final convergence, the
number of total generations varied between 120,000 and 400,000 depending on the model. The PPDs
and Bayes factors were estimated by Equations (51), (52), and (61) using the last 60,000 DREAM
samples. Estimates of the one- and two-dimensional marginal PPDs for the three models obtained via
Bayesian parameter inversion applied to the backscattering strength data are shown in Figures 4–9.
The estimates of PPDs for each of the input parameters required by the fluid, grain-shearing elastic,
and poroelastic models were obtained by kernel density estimation based on the DREAM samples.

4.2.1. Fluid Model

Figure 4 displays the estimates of one-dimensional marginal PPDs for the fluid model parameters.
Inspection of the figure reveals that the roughness spectral exponent γ2, roughness spectral strength
ω2, density fluctuation spectral exponent γ3, and porosity β were well resolved by the inversion, as
their PPDs are much narrower than their respective priors. This is consistent with the results of the
sensitivity analysis. The density fluctuation spectral strength ω3, the ratio of compressibility to density
fluctuations µ, the ratio of mass density of grains to water ρr, and the ratio of bulk modulus of grains
to water Kr were somewhat resolved by the inversion, as their PPDs changed appreciably from their
respective priors. This is not clearly seen in the results of the sensitivity analysis due to its limited
resolution. The PPDs of the remaining parameters (mean grain diameter d, tortuosity α, permeability
κ) only have a weak peak compared to their priors and provide an unreliable parameter inference.
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Figure 4. Estimates of one-dimensional marginal posterior probability distributions (PPDs) for fluid
model parameters.
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The two-dimensional characteristics obtained by the inversion of the fluid model are presented in
Figure 5, where the two-dimensional marginal PPDs are shown on the top right, and parameter
correlations are shown on the bottom left. For intuitive and qualitative understanding, the
two-dimensional PPDs have their own color bars, which are not given in the figure. The quantitative
correlations are given by the correlation matrix map. The same display applies to the two-dimensional
distribution for the next two models. It can be seen that parameter pairs with appreciable positive
correlations are as follows: roughness spectral exponent γ2 and roughness spectral strength ω2,
roughness spectral exponent γ2 and porosity β, roughness spectral strength ω2 and porosity β, and
the ratio of bulk modulus of grains to water Kr and porosity β. Parameter pairs with appreciable
negative correlations are the ratio of compressibility to density fluctuations µ and density fluctuations
spectral exponent γ3. Note that parameters with obvious correlation are basically the parameters that
are well resolved, as shown in Figure 4. When compared with the roughness spectral exponent γ2, the
roughness spectral strength ω2 with a relatively low Borgonovo index obtains satisfactory resolution
by inversion due to the correlation, and this also appears in the next two inversion results.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 30 

 

appreciable negative correlations are the ratio of compressibility to density fluctuations  𝜇  and 
density fluctuations spectral exponent 𝛾ଷ . Note that parameters with obvious correlation are 
basically the parameters that are well resolved, as shown in Figure 4. When compared with the 
roughness spectral exponent 𝛾ଶ , the roughness spectral strength 𝜔ଶ  with a relatively low 
Borgonovo index obtains satisfactory resolution by inversion due to the correlation, and this also 
appears in the next two inversion results.  

  
Figure 5. Estimates of two-dimensional marginal PPDs for fluid model parameters (top right) and 
correlation matrix map (bottom left). 

4.2.2. Grain-Shearing Elastic Model 

Estimates of the one-dimensional marginal PPDs for the grain-shearing elastic model parameters 
obtained via inversion applied to backscattering strength are shown in Figure 6. We can see by 
comparing PPDs and priors that the roughness spectral exponent 𝛾ଶ, roughness spectral strength 𝜔ଶ, 
density fluctuation spectral exponent 𝛾ଷ, and porosity 𝛽 are resolved to a relatively high degree by 
the inversion. It can be noticed that the resolution of porosity 𝛽 for the grain-shearing elastic model 
is weaker than that for the fluid model. This could be due to the difference in density ratios used in 
the two models, as shown in Equations (33) and (17), while sediment mass density is most closely 
related to porosity. The density fluctuation spectral strength 𝜔ଷ , the ratio of compressibility to 
density fluctuation 𝜇, the ratio of mass density of grains to water 𝜌, the ratio of bulk modulus of 
grains to water 𝐾 , material exponent 𝑛 , and compressional viscoelastic relaxation time 𝜏ଵ  are 
somewhat resolved by the inversion. The PPDs of the compressional rigidity coefficient 𝛾ଵ and shear 

Figure 5. Estimates of two-dimensional marginal PPDs for fluid model parameters (top right) and
correlation matrix map (bottom left).



Remote Sens. 2019, 11, 562 18 of 30

4.2.2. Grain-Shearing Elastic Model

Estimates of the one-dimensional marginal PPDs for the grain-shearing elastic model parameters
obtained via inversion applied to backscattering strength are shown in Figure 6. We can see by
comparing PPDs and priors that the roughness spectral exponent γ2, roughness spectral strength ω2,
density fluctuation spectral exponent γ3, and porosity β are resolved to a relatively high degree by
the inversion. It can be noticed that the resolution of porosity β for the grain-shearing elastic model
is weaker than that for the fluid model. This could be due to the difference in density ratios used in
the two models, as shown in Equations (33) and (17), while sediment mass density is most closely
related to porosity. The density fluctuation spectral strength ω3, the ratio of compressibility to density
fluctuation µ, the ratio of mass density of grains to water ρr, the ratio of bulk modulus of grains
to water Kr, material exponent n, and compressional viscoelastic relaxation time τ1 are somewhat
resolved by the inversion. The PPDs of the compressional rigidity coefficient γ1 and shear rigidity
coefficient γt did not appreciably change from their priors. It is not difficult to find that the results in
Figure 6 are consistent with most of the previous results of sensitivity analysis in Figure 1b.
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Figure 6. Estimates of one-dimensional marginal PPDs for grain-shearing elastic model parameters.

Included in Figure 7 are the estimated two-dimensional marginal PPDs and parameter correlations
obtained by the inversion based on the grain-shearing elastic model. From Figure 7 we can see
that the parameter correlations of the grain-shearing elastic model are similar to those for the fluid
model. In addition, the unique parameter pair of grain-shearing elastic models with appreciable
positive correlation is the ratio of bulk modulus of grains to water Kr and material exponent n.
The parameter pair with appreciable negative correlation is compressional rigidity coefficient γ1 and
material exponent n.
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Figure 7. Estimates of two-dimensional marginal PPDs for grain-shearing elastic model parameters
(top right) and correlation matrix map (bottom left).

4.2.3. Poroelastic Model

The estimated one-dimensional marginal PPDs for the parameters of the poroelastic model are
shown in Figure 8. Comparing the marginal PPDs to their respective priors indicates that the roughness
spectral exponent γ2, roughness spectral strength ω2, density fluctuation spectral exponent γ3, ratio of
compressibility to density fluctuation µ, porosity β, ratio of mass density of grains to water ρr, ratio of
bulk modulus of grains to water Kr, and cementation exponent m are well resolved by the inversion.
The resolution of porosity β of the poroelastic model is similar to that of the grain-shearing elastic
model, and this may be due to the same form of density ratio. The density fluctuation spectral strength
ω3 and high-frequency asymptotic increase Ky are somewhat resolved by the inversion, and the others
(mean grain diameter d, pore shape factor aB, Poisson’s ratio of grains ν, low-frequency asymptotic
frame bulk modulus Kbo, bulk relaxation frequency fk) have unreliable resolutions. The resolutions
of the two ratios of the poroelastic model, ρr and Kr, are slightly better than those of the previous
two models. The possible reason is that the poroelastic model treats both porosity and elasticity and
has inherent advantages for porous mediums such as sandy sediments, for which it is possible that
the fluid and granular phases will vibrate differently in response to acoustic excitation [3]. From a
mathematical perspective, the two parameters can be more coupled with the scattering strength, as
shown by the equations in Appendix B. The resolutions of interface roughness parameters (roughness
spectral exponent γ2, roughness spectral strength ω2) and volume inhomogeneity parameters (density
fluctuation spectral exponent γ3, density fluctuation spectral strength ω3, ratio of compressibility to
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density fluctuations µ) of the three models have a certain degree of difference, while the common
parameters of the poroelastic model have slightly better resolution in general. Compared with the
previous sensitivity analysis results in Figure 1c, the results here show better resolution and have more
information about model parameters. Despite the total number of model parameters and the number
of parameters that are somewhat resolved, the inversion based on the poroelastic model provides four
more well-resolved parameters than that based on the other two models. The resolutions of common
parameters of the poroelastic model are also slightly better than that of the other two models. From
the perspective of the PPDs of the model parameters, more reliable information of sediment properties
is provided by the inversion based on the poroelastic model, which can be considered superior to the
other two models.Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 30 
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Figure 9 shows the estimates of two-dimensional marginal PPDs and parameter correlations
obtained by the inversion based on the poroelastic model. In addition to the parameter correlations
similar to the fluid model, the parameter pair, which is the ratio of bulk modulus of grains to water Kr

and cementation exponent m, has an appreciable positive correlation. It should be viewed with caution
that these correlations are only shown by the samples, and not all of them have practical physical
meaning. The same attention needs to be paid to the two-dimensional marginal PPDs of the previous
two models. Indeed, it is difficult to provide a physical reason for the parameter correlations shown by
the inversion results, as part of them cannot be measured by any means. The authors believe that the
universality of these correlations needs to be further verified and analyzed by model-based inversions
using additional measurements for different types of sandy sediments. Taking available sediment
properties measured in situ as intermediate quantities of parameter pairs with correlations may help
explain the correlations.
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4.3. Model Comparison and Selection

The model comparison and selection results obtained by the inversion using backscattering
strength data are shown in Figures 10–12. Figure 10 gives a comparison of the uncertainties of
the ratios of compressional and shear sound speed in sediment to compressional sound speed in
water. The uncertainties of attenuation of the two types of sound waves are also shown in Figure 10.
The sets of estimated sound speed ratios and attenuation at different frequencies are calculated by
the samples with the three geoacoustic models, EDFM, VGS(λ), and CREB. The PPDs of sound speed
ratio and attenuation are also obtained by kernel density estimation based on the estimated sets.
Because of the finite number of three frequencies, the frequency dependences for sound speed and
attenuation are not obvious in these results. Comparing the PPDs of compressional wave indicates
that the predicted uncertainties of CREB are slightly more concentrated than those of EDFM and
their maximum posterior estimates are very close to each other, as shown in the left side of Figure 10.
The PPDs of the compressional wave of EDFM and CREB have a slight sound speed ratio difference and
an appreciable attenuation difference compared to VGS(λ). This suggests that the scattering strengths
of the fluid and poroelastic models are more sensitive to attenuation than the grain-shearing elastic
model. Besides, the scattering strengths of the three models are much more sensitive to compressional
sound speed than attenuation as the PPDs of compressional speed ratio are all highly concentrated.
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Figure 10. Comparison of uncertainties of ratios of compressional and shear sound speed in sediment
to compressional sound speed in water and corresponding attenuation.

From the right side of Figure 10, it can be seen that shear sound speed predicted by CREB is larger
than that predicted by VGS(λ) and the uncertainties of attenuation are roughly similar. Compared with
compressional sound speed, the shear sound speed in sandy sediments is much lower. This suggests
that the addition of shear waves is only a minor modification to model the scattering strength [3]
and the uncertainty of shear sound speed is larger than that of compressional sound speed. Since
slow compressional waves supported in a poroelastic medium are given theoretically and have never
been observed in natural marine sediment, the uncertainties of sound speed and attenuation for slow
compressional waves are not given here.

Figure 11 depicts a comparison of the uncertainties of backscattering strength predicted by
the samples. The DREAM samples were substituted into each model to calculate the estimated
backscattering strength set at different frequencies and angles. For a selected model at a selected
frequency, the estimated backscattering strength set at each angle was statistically transformed into
a probability distribution, which is represented by a vertical color strip. All the vertical color strips
for the whole angle range were spliced together along the x-axis to form the subgraphs in Figure 11.
Experimental measurements are also shown in the figure. In general, all three models are well matched
with the experimental measurements. Appreciable differences of uncertainties of the estimated
backscattering strength for the three models can be seen in Figure 11, and the fluid model has the
most concentrated posterior predictive distributions. The results of the fluid model are only slightly
different from those of the poroelastic model near the critical angle. Compared with the fluid and
poroelastic models, the results for the grain-shearing elastic model have the greatest uncertainties and
smallest concentration. The fluid model seemingly does the best job of matching the frequency and
angle dependence of the backscattering strength data for sandy sediments. Comparing Figures 10
and 11, it can also be seen that differences of uncertainties of the estimated backscattering strength
correspond to the differences of uncertainties of the estimated sound speed and attenuation for the
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three models. The fluid and poroelastic models are similar, and they both have appreciable differences
compared with the grain-shearing elastic model.
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The comparison of Bayes factors of different model pairs obtained by the inversion based on the
backscattering strength data is summarized in Figure 12. Referring to the factor scale given in Table 3,
the evidence in favor of the fluid model over the grain-shearing elastic model can be considered
substantial. The Bayesian evidence for the fluid and poroelastic models is similar, with the fluid model
slightly favored. This similarity and the similarity of compressional sound speed and attenuation,
as shown in Figure 10, can be understood since the EDFM used in the fluid model is essentially an
approximation of the full Biot–Stoll model and the corrected and reparametrized extended Biot–Stoll
model is used in the poroelastic model. It has been proven that backscattering strength, compressional
sound speed, and attenuation predicted by the fluid model based on the EDFM are very close to the
predictions of full Biot–Stoll theory for sandy sediment [10,12,19]. The poroelastic model, which takes
sediment composed of grains and water as a two-phase system, is essentially the most reasonable
approximation for sandy sediments. In this sense, the poroelastic and fluid models are both superior to
the grain-shearing elastic model. Although the Bayes factors show slight differences between the fluid
and poroelastic models, we still consider the poroelastic model to be the best because the inversion
based on the poroelastic model provides the best-resolved parameters, as discussed in Section 4.2.3.
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Figure 12. Comparison of Bayes factors calculated for each pair of models through Bayesian inference
applied to backscattering strength data. Number superimposed over each matrix element is the base
10 logarithm of the Bayes factor for a given pair of models.

5. Conclusions

Based on the combination of geoacoustic models and corresponding scattering models, Bayesian
inversion and model selection techniques are applied to compare three sediment acoustic models: the
fluid model with EDFM, the grain-shearing elastic model with VGS(λ), and the poroelastic model
with CREB. The combination allows us to use backscattering strength measured remotely to carry out
the parameter inversions. Parameter uncertainties are given by the one- and two-dimensional PPDs
estimated by the DREAM samples.

Two studies were carried out using the inversion results. First, the resolution and correlation
of parameters for the three models were compared based on the estimates of PPDs. The poroelastic
model provides more well-resolved parameters than the other two models. In general, the resolutions
of common parameters of the poroelastic model are also slightly better than those of the other two
models. In other words, the inversion based on the poroelastic model can provide more highly resolved
information about sediments properties, some of which are difficult to measure directly.

The second study involved model comparison and selection using model predictions and Bayes
factors. Based on the DREAM samples, the predictions using different models and acoustic frequencies
were calculated for qualitative comparative analysis with the backscattering strength measurements,
and the Bayes factors of the three models are calculated for quantitative comparison. From the analysis,
it appears that all three models can produce predictions that agree with the measurements, though
the fluid and poroelastic models appear to outperform the grain-shearing elastic model. It should be
viewed with caution that the model comparison results are obtained by the inversion based only on
the limited measurements of sandy sediments. Indeed, the effectiveness of the poroelastic model for
sandy sediments has been authenticated and is noticeable.

The results in this paper indicate that the best model for sandy sediments is the poroelastic model.
However, it has been suggested that the elastic model presumably is better for softer sediments than
the poroelastic model. Besides, the interface roughness scattering model that accommodates shear can
provide an appreciable correction to the fluid model for consolidated sediments such as rock seafloor,
which has a greater shear wave speed than the sound speed in water. Much attention has been paid
to model sound propagation in sandy sediments, and no single model can be applied to all types of
sediment. Despite its importance, this topic has largely been ignored in the literature to date. We have
performed a comparative study of evidence estimation for the remote sensing of sediment properties in
this paper. This was an attempt to implement a combination of several different models for geoacoustic
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inversion, and the model that best matches the measurements was obtained. The attempt provides a
relatively feasible remote sensing scheme for various types of sediments under unknown conditions.
However, this scheme should be regarded as tentative and requires more measurements of different
types of sediment for validation.
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The in-water wave vectors of incident and scattered directions are defined as follows [63]:

ki = kw
(
cos θi cos∅iex + cos θi sin∅iey − sin θiez

)
(A1)

ks = kw
(
cos θs cos∅sex + cos θs sin∅sey − sin θies

)
(A2)

where kw = 2π f /cw is the acoustic wavenumber in water. cw and f are speed of sound in water and
acoustic frequency, respectively. It is noted that one may set ∅i = 0 without loss of generality if the
seafloor is isotropic in the statistical sense. The horizontal components and vertical component of the
above wave vectors respectively are

Ki = kw
(
cos θi cos∅iex + cos θi sin∅iey

)
(A3)

kiz = ki −Ki (A4)

Ks = kw
(
cos θs cos∅sex + cos θs sin∅sey

)
(A5)

ksz = ks −Ks (A6)

where the uppercase, boldface symbols represent the horizontal components. The following wave
vector differences needed in the model calculation are defined:

∆K = Ks −Ki (A7)

∆kz = ksz − kiz (A8)
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Based on the Snell’s law, the wave vectors for the incident and scattered compressional waves in
the sediment are

kpi = Ki −
√

1/a2
1 − cos2 θi kwez (A9)

kps = Ks −
√

1/a2
1 − cos2 θs kwez (A10)

where a1 is the acoustic complex speed ratio. Then, the real part of the vector difference of the scattered
and incident waves that propagate in sediment is

∆kp = Re
{

kps − kpi
}

(A11)

The magnitude of a difference vector is denoted without boldface in the paper. we may set
∅i = ∅s = 0, θs = π − θi for backscatter.

Appendix B

The needed quantities for the elastic interface roughness scattering model are given by the
following expressions [3]:

D1 = −1 + S +
1

a2
1aρ cos 2θts cos 2θti

−
a2

t

[(
a−2

t − 2 cos2 θs − 2 cos2 θi + 2S
)

S + 2 cos2 θs cos2 θi

]
aρ cos 2θts cos 2θti

(A12)

D2 = −4a3
t sin θs sin θts

cos 2θts cos 2θti

[
a−2

1 sin2 θ1i cos2 θs +
(

cos2 θi − S
)

S
]

(A13)

D3 = −4a3
t sin θi sin θti

cos 2θts cos 2θti

[
a−2

1 sin2 θ1s cos2 θi +
(

cos2 θs − S
)

S
]

(A14)

D4 =
2a4

t aρ sin θs sin θts sin θi sin θti

cos 2θts cos 2θti

[
2
(

a−2
t − 2S

)
S− 4 cos2 θs cos2 θi

(
1− 2a2

t a−2
1

)]
− sin θi sin θs

(
aρ − 1

)
(A15)

where S = cos θs cos θi cos∅s and the complex cosines needed are obtained by

cos θmn = am cos θn, m = 1, t and n = i, s (A16)

The needed quantities for the poroelastic interface roughness scattering model are given by the
following expressions [39]:

vi(K) =
√

a−2
i − cos2 θ, i = w, 1, 2, t (A17)

Y1(K) =


vw(K)

0
0
0
0

0
v1(K)

0
0
0

0
0

v2(K)

0
0

0
0
0

vt(K)

0

0
0
0
0

vt(K)

 (A18)

Y2(K) =



vw(K)

0

0

0

0

0

0

−v1(K)

0

0

0

0

0

0

−v2(K)

0

0

0

0

0

0

−vt(K)

0

0

0

0

0

0

−vt(K)

0

0

0

0

0

0

−vw(K)


(A19)
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P(n)
wm(K) = Kwkwδmn, m = 1, 2, 3 (A21)

P(n)
w4 (K) = −Kwkwδ3n (A22)

P(n)
w5 (K) = −e+wn(K) (A23)

P(n)
1m (K) = −k2

1k−1
w
[
(H − 2U − R1C)δmn + 2Ue−1m(K)e−1n(K)

]
, m = 1, 2, 3 (A24)

P(n)
14 (K) = −k2

1k−1
w (MR1 − C)δn3 (A25)

P(n)
15 (K) = k1k−1

w (1− R1)e−1n(K) (A26)

P(n)
2m (K) = −k2

2k−1
w
[
(H − 2U − R2C)δmn + 2Ue−2m(K)e−2n(K)

]
, m = 1, 2, 3 (A27)

P(n)
24 (K) = −k2

2k−1
w (MR2 − C)δn3 (A28)

P(n)
25 (K) = k2k−1

w (1− R2)e−2n(K) (A29)

P(n)
vm (K) = Uk2

t k−1
w
[
e−tm(K)e−vn(K) + e−tn(K)e−vm(K)
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, m = 1, 2, 3 (A30)

P(n)
v4 (K) = 0 (A31)

P(n)
v5 (K) = −ktk−1

w (1− Rt)e−vn(K) (A32)

P(n)
hm (K) = −Uk2
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w
[
e−tm(K)e−hn(K) + e−tn(K)e−hm(K)

]
, m = 1, 2, 3 (A33)

P(n)
h4 (K) = 0 (A34)

P(n)
h5 (K) = ktk−1

w (1− Rt)e−hn(K) (A35)

Q(n)
m (K) = Kwkwδmn, m = 1, 2, 3 (A36)

Q(n)
4 (K) = −Kwkwδn3 (A37)

Q(n)
5 (K) = −e−wn(K) (A38)

where kq = kw/aq, q = 1, 2, t . δmn is the Kronecker delta, e±ij (K), i = w, 1, 2, t, h, v is the jth spatial components
(x, y, z) of vector e±i (K). The expressions of e±i (K) and Ri are

e±i (K) =


ai
[
cos θ cos∅ex + cos θ sin∅ey ± vi(K)ez

]
, i = w, 1, 2, t,

sin∅ex − cos∅ey, i = h,

at
[
∓vt(K) cos∅ex ∓ vt(K) sin∅ey + cos θez

]
, i = v,

(A39)

Ri =


aρ

(aicw)2−H
(aicw)2−C

, i = 1, 2,

aρ − U
ρw(aicw)2 , i = t.

(A40)
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