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Abstract: Landslides are typically triggered by earthquakes or rainfall occasionally a rainfall event
followed by an earthquake or vice versa. Yet, most of the works presented in the past decade
have been largely focused at the single event-susceptibility model. Such type of modeling is found
insufficient in places where the triggering mechanism involves both factors such as one found in
the Chuetsu region, Japan. Generally, a single event model provides only limited enlightenment
of landslide spatial distribution and thus understate the potential combination-effect interrelation
of earthquakes- and rainfall-triggered landslides. This study explores the both-effect of landslides
triggered by Chuetsu-Niigata earthquake followed by a heavy rainfall event through examining
multiple traditional statistical models and data mining for understanding the coupling effects. This
paper aims to compare the abilities of the statistical probabilistic likelihood-frequency ratio (PLFR)
model, information value (InV) method, certainty factors (CF), artificial neural network (ANN) and
ensemble support vector machine (SVM) for the landslide susceptibility mapping (LSM) using
high-resolution-light detection and ranging digital elevation model (LiDAR DEM). Firstly, the
landslide inventory map including 8459 landslide polygons was compiled from multiple aerial
photographs and satellite imageries. These datasets were then randomly split into two parts: 70%
landslide polygons (5921) for training model and the remaining polygons for validation (2538). Next,
seven causative factors were classified into three categories namely topographic factors, hydrological
factors and geological factors. We then identified the associations between landslide occurrence
and causative factors to produce LSM. Finally, the accuracies of five models were validated by
the area under curves (AUC) method. The AUC values of five models vary from 0.77 to 0.87.
Regarding the capability of performance, the proposed SVM is promising for constructing the regional
landslide-prone potential areas using both types of landslides. Additionally, the result of our LSM
can be applied for similar areas which have been experiencing both rainfall-earthquake landslides.
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1. Introduction

Among the various natural hazards, landslides are recognized as one of the most destructive and
hazardous threats in several parts of the mountainous world. It has been noticed that about 5% of all
fatalities in earthquake events are caused by coseismic landslides, in some cases even more [1]. For
example, the recent Hokkaido Eastern Iburi earthquake on 6 September 2018, about 80% of the fatalities
are caused by the landslides alone [2]. Apart from the fatalities, they also cause huge economic losses
by damaging properties such as buildings, bridges and roads; this trend is observed more than any
other natural disasters, such as earthquakes, typhoons, heat waves, sinkhole collapses, floods and
forest fires [3–6]. The increased amount of urbanization and economic development together with
the unusual frequency of severe regional precipitations owing to global climate change, the landslide
hazard losses are expected to rise in the future [7–9]. To mitigate and reduce the economic losses and
risks associated with the landslide hazards, there is an urgent requirement to identify and map the
landslide-prone areas.

Landslide susceptibility mapping (LSM) is regarded as a prime step for in the implementation of
immediate disaster management planning and risk mitigation measures [4,6,10–12]. Most LSM models
issued hitherto have been targeted at single-type-induced landslides [13,14]. Nevertheless, in areas such
as the Chuetsu area, Japan, where landslides can be mainly activated by both earthquakes and heavy
rainfall, some snow-melt, it is essential to couple frequently both types into the susceptibility modeling
primarily because of the following reasons: (i) earthquake-induced, as well as rainfall-triggered
landslides, are solely governed by interrelated environmental factors and partial understanding of
landslide occurrence without considering their differences will produce misleading results [15]; (ii) it
can be seen that after a strong seismic activity, rainfall-triggered landslides are prone to increase in
both scale and amount, an area with steeper slopes become more susceptible [16]. Thus, an earthquake-
triggered model is probably to have the ability to enhance a rainfall-induced landslide.

Large physically based landslide susceptibility processes rely on digital elevation model (DEM) to
characterize the terrain parameters which fundamentally describe the local elevation, slope, hydrologic
and various other geomorphic processes. Although the wide range of available DEMs in today’s world
produces a rapid analysis of terrain attributes, several studies have shown the effects of grid size in the
final portrayal of the land surface models [17–19]. Therefore, the selection of an appropriate grid size
is significant in any susceptibility mapping. By comparing varying resolutions of DEM (30 m vs. 6 m;
10 m vs. 2 m DEM), Dietrich and Montgomery [20] concluded that, with a finer elevation model, the
patterns of classifications are much more strongly defined by the ridge and valley characteristics. In
another study, Claessens et al., [21] studied the distribution of slope and other terrain factors for shallow
landslide mapping using four different elevation model (10 m, 25 m, 50 m and 100 m) and concluded
that uncertainty in the results increases with the coarser DEM. The accuracy of freely accessible DEM
also sometimes poses a question [17]. Recently, with the technological advancement in light detection
and ranging (LiDAR) methods, usage of high-resolution digital elevation model (DEM) in landslide
assessment accuracies has become progressively improved over time [22,23]. Jaboyedoff et al., [24] and
others [25] attributed the significance of LiDAR DEM in landslide mapping studies and advocated that
application of LiDAR data for landslide researches would noticeably boost in the coming years, given
extensive data availability. For example, Dou et al., [23] used 2 m LiDAR DEM to discriminate the
different landslide types and indicate that LiDAR DEM data area promising in landslide delineation.
The near-precise information available from LiDAR data, when incorporated with cutting-edge data
mining techniques, is able to produce highly accurate LSM [22,25]. Regarding the prompt state of
development in LiDAR technology, several potential features present in the data is still not explored to
the full potential such as the capability to quantify topographic features at catchment level as well as
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the connection of these with the hydrological factors including wetness index. Moreover, only very
limited researches have scrutinized the identical study area by applying multiple statistical techniques
to assess the reliability of models based on rainfall- and earthquake-triggered landslides.

In recent studies, various approaches of the LSM have been developed and explained in
numerous papers [13,26,27]. These approaches can mainly be categorized into three groups, that
is, heuristic [28,29], deterministic [21,30] and statistical [31,32] techniques. The heuristic techniques
are built on the expert’s knowledge to group landslide-prone areas into several ranks from high
to low classes. This method is often used for susceptibility mapping in large areas [21]. Whereas,
deterministic techniques rely on numerical modeling of the physical mechanism that controls slope
failure [29]. However, they are not appropriate for a large-scale mapping because of their troublesome
and unpractical need of a huge array of data, that is, rock mechanical properties, the wetness and soil
saturation and soil depth. Statistical and probabilistic techniques including bivariate, multivariate
statistical methods, certainty factor, as well as knowledge-based techniques such as artificial neural
networks and fuzzy logic approaches [33,34] are known as promising methods for predicting the
landslides [13].

Our study is built upon this prior experience in different models to investigate the comprehensive
performance of the susceptibility models using LiDAR DEM data. We address two research questions
in this paper: (i) do the sophisticated data mining methods provide a better predictive competency
compared with the traditional statistical methods? And (ii) how different the results while using
multi-type landslides instead of single type landslides? For achieving the first objective, we analyze and
compare the accuracy of LSM maps generated by five different techniques including three traditional
statistical methods, that is, probabilistic likelihood-frequency ratio model (PLFR), information value
(InV), certainty factor approach (CF); and the two machine learning techniques namely, artificial
neural network (ANN) and support vector machine (SVM) in a regional-scale analysis. For achieving
the second objective, we used the inventory of both earthquake-and rainfall-induced landslides in
the analysis.

2. Overview of the Study Area

Landslides are frequently reported after earthquakes and rainfall events in the Chuetsu area,
Niigata Prefecture, Japan [35]. This area has a steep mountainous topography and conducive geology
that makes it inclined to severe landsliding [23]. Extensive landslides in this area are reported after two
major seismic events; Chuetsu earthquake in 2004 and Niigata Chuetsu-Oki earthquake in 2007 [35,36].
The heavy rainfall in summers, typhoons and snow melting brought occasional debris movement
as well [37]. The present work is carried out in an area within the Higashiyama hill region in the
Niigata-Chuetsu region Japan (Figure 1) which covers approximately 290 km2 area. The elevation
ranges between 22 m and 734 m with an average elevation of 206 m above the sea level. The area
receives an annual rainfall equaling 2000 mm, chiefly delivered by typhoons, as well as those during
the summer and winter snow period from Japan Meteorological Agency.

Metamorphic and sedimentary rocks belong to the Paleocene to the Quaternary period, as well
as folded mountain belts distributed over NNE-SSE axes represent the geologic characteristic of the
studied portion [38]. The epicenter of the 6.8 M Chuetsu earthquake of 2004 with the hypocenter
at the depth of 13 km was located only a few kilometers away from the study region. This event
also resulted in serious aftershocks in southern Higashiyama Mountain. Consequently, thousands of
mass movement events occurred in the region (Figure 2). Numerous roads, houses, bridges and other
infrastructures were severely damaged. The damages due to the event were largely concentrated on
the Imo river basin the extent to which makes it necessary to assess similar hazards to mitigate the
damages in the future.
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Figure 1. (a) Location of Japan; (b) landslide distribution, randomly divided into two sets: training 
and testing. 

 
Figure 2. Illustrating the characteristics and different types of landslides in the study area: (a) shallow 
spread in the north of the Hitotsuminesawa with water, Nagaoka city; (b) rotational soil slide in north 
of Mushigame; (c) bedrock collapse severely destroyed the road in Nagaoka; (d) translational slide, 
an arrow display secondary scarp in the Uonuma city (Images provided by NIED). 
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3. Materials and Methods

The framework for the LSM in this research is depicted in Figure 3. Initially, the earthquake-
and rainfall-induced landslides were delineated by interpreting multiple aerial photographs, satellite
imageries and ground truths to construct a comprehensive landslide inventory for the study area.
This database includes the landslide inventories provided by the National Research Institute for
Earth Science and Disaster Prevention (NIED), Japan, as well as those prepared by the first author.
Next, the relationship between landslide distribution and the causative mechanism were analyzed.
Thereafter, the LSM maps were produced by traditional statistical models and data mining techniques,
respectively. At last, the five models were examined and verified for accuracy using the receiver
operating characteristic curve (ROC) function.
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3.1. Landslide Inventory and Data Collection

The events in the past are significant in predicting the events in the future [39]. Thus, an inventory
of past events is the most important information in mitigating any hazards [29,40]. A landslide
multi-inventory database provides the geospatial coordinates of the past events, time of their
occurrences and characteristics; this information is valuable for any methods of landslide risk or
hazards assessment [29,34]. Furthermore, the quality and reliability of landslide data are also equally
important as it will affect the subsequent results. This study uses the landslides inventory provided by
the NIED, Japan as well as those prepared by the first author; both representing landslides as polygons
feature class. A total of 8459 landslides triggered by the earthquake- and rainfall-induced landslides
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were used in susceptibility analysis. The landslides data were then randomly divided into a proportion
of 70 and 30 for creating the LSM models and for validating the models, respectively. The total area of
landslides covers an area of approximately 6.67 km2, which is about 2.29% of the entire study area.
We obtained the frequency–area distribution curve by plotting the landslide area (AL) data versus the
probability density (P (AL)) values. The resultant frequency–area distribution exhibits a power-law
with a good fit (R2 = 0.99) as shown in Figure 4. This distribution displayed the segment for medium
to large landslides with a visible rollover (at about 102 m2).
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The resolution of DEM used in this analysis is a 2 m airborne LiDAR-derived product, which
provides minute information such as scarp surface of landslides in detail. The post-earthquake LiDAR
DEM of 2 m resolution with root-mean-square error (RMSE) within 0.12 m was produced from airborne
LiDAR data surveyed in 2005, released by the GSI of Japan, 2007. The point density was greater than
1 pt/m2 with a 70,000 Hz pulse rate frequency. The LiDAR technique has been proved as a valuable
tool in the applications of geological engineering and monitoring ground movements, including the
investigation of landslides [25]. The LiDAR DEM was obtained through the Geographical Survey
Institute (GSI) data repository. The data pertaining to lithology and distance to the density of the
geologic boundaries were prepared from the geological maps (scale 1:50,000) provided by Geological
Survey of Japan-GSJ [38]. The details of data collection were given in Table 1.

3.2. Common Factors Controlling Earthquake- and Rainfall-Induced Landslides

The landslide causative factors are crucial significance for the LSM. Coseismic landslides are
largely controlled by topographic, seismic and geologic factors [41–43]. Whereas the rainfall-induced
landslides are dependent on climatic, topographic, as well as geologic factors [42,44]. In the present
study, we analyzed the control of seven common landslide-causative parameters used in both
earthquake-triggered as well as rainfall-induced landslides. This selection is based on the literature
that discussed spatial relationships between landslide occurrence and causative parameters [34,41,43].
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They are: (1) elevation, (2) slope angle, (3) slope aspect, (4) plan curvature, (5) drainage density, (6)
lithology and (7) density of geologic boundaries. Each factor was classified into several sub-classes.
The details of each class can be referred to Figure 5. The topographic related factors such as elevation,
slope aspect, slope angle, drainage density and plan curvature were derived from the LiDAR DEM
provided by the GSI. The geological factors like lithology and the density of geologic boundaries were
prepared from the 1:50,000 geological maps of GSJ. All the factors were processed in a GIS platform
ArcGIS 10.3. The brief delineation of each landslide causative factor map in the present study is
given below.

Table 1. Data collection in the study area.

Thematic Layer Causative Factors Data Type Scale or
Resolution Classes Producer Description

Landslide
inventory map Landslide Polygon 1:50,000 Continuous NIED and

interpretations
Landslide
occurrence

Geological map Lithology Polygon
1:50,000

Non-continuous Geological Survey
of Japan

Type of
lithology

Density of
geological
boundary

Line Continuous Density of
geologic unit

Topographic map

Elevation Continuous
Geographical
Survey Institute

Elevation-m
Slope angle Continuous Slope degree
Slope aspect ARC/INFO 2 × 2 m Continuous Direction

Plan curvature Grid Continuous Concave or
convex

Hydrological Map Drainage density Continuous Density

3.2.1. Elevation

Central to most of the landslide susceptibility models is the elevation of the terrain and number
of landslides [7,45]. It is the measure of height above the m. s. l., controlled and influenced the
distribution of vegetation. A worldwide database of coseismic landslides by Tanyaş et al., (2018) [46]
shows that approximately 80 percent of landslides are located between 100 m to 800 m elevation with
a mean of 524 m. In the study area, the elevation ranges between 0 m and 735 m and the landslide
largely occurred between 130 m and 413 m elevation ranges in Figure 5a.

3.2.2. Slope Angle

Slope angle refers to the inclination or rate of change in surface elevation for each pixel. Slope
is an important variable that is found to affect the shear resistance, runoff rate and soil moisture and
thus it is also one of the most significant factors affecting the stability of slope [30,47]. Typically, with
an increased steepness, the number of landslides increases. However, it varies with the type of slides
such as rock falls, shallow landslides and deep-seated landslides. The slope angle varied between
0◦–70◦. Most of the landslides were observed on the slope between 17◦ to 55◦. This is consistent with
the global landslide database of Tanyaş et al., (2018) [46] where 80% of landslides are found occurred
between 10◦–45◦ slope angle in Figure 5b.

3.2.3. Slope Aspect

Aspect indicates the downslope direction, it is also related to is related to the orientation of
precipitation, exposure to sunshine and wind impact [40]. The relationship between aspect and
landslide occurrences are identified in a number of studies [4,32]. Their studies indicate that aspect
influences the distribution of landslide by the propagation direction of seismic waves. Further, aspect
also relates to the slipping orientation of the seismogenic fault [41]. Also, when the hillsides suffer
from the dense precipitation to reach saturation, it influences the infiltration properties of the ground,
permeability, as well as pore water pressure. The peak landslide areal density is observed for South,
South-East and South-West a sloping direction in Figure 5c.
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3.2.4. Plan Curvature

Planform curvature or simply plan curvature delineates the morphology of the topography
and is measured perpendicular to the orientation of the maximum slope [45,48]. This parameter is
the divergence or convergence of water during downhill flow affecting the landslide occurrences.
Ohlmacher (2007) [49] demonstrates that landslide hazard should properly address the complex
association exists between plan curvature, landslide types and the landslide susceptibility. We grouped
the plan curvature into two categories, that is, concave (negative value) and convex (positive value).
There is no clear effect of curvature on landslide susceptibility, as both curvatures (convex and concave)
have almost similar number of failures in Figure 5d.

3.2.5. Drainage Density

Drainage density (DD) network interplays the movement of landslide associated with infiltration
of water. DD (m−1) is the total length of the stream network in a drainage watershed divided by
the watershed area. The stream channel networks are extracted from high-resolution LiDAR DEM
data. A practical D8 algorithm has been widely used to compute the DD in the available ArcGIS
environment [50]. Stream heads were assumed to be located where the drainage area is 0.1 km2

following Hayakawa and Oguchi [51]. The extracted the stream network overlaid the Google Earth
image for validating the quality and uncertainties of extraction from DEM data. Drainage network
and drainage density are also an indirect measure of groundwater conditions. During any seismic
event, the pore pressure built-up occurring in the vicinity could trigger coseismic landslides. Similar
behavior can also be noticed during the excessive rainfall conditions when infiltration capacity exceeds
a certain threshold. Several scholars proved the impact of the landslide process on geomorphological
characteristics of the drainage network [34,45]. For instance, Oguchi (1997) [52] proved that there is a
correlation between drainage density and landslide distribution (DL) in steep Japanese mountains.
For this study, the peak landslide aerial density is observed for density class 6–9 in Figure 5e.

3.2.6. Density of Geologic Boundaries

Lithological boundaries are marked as the plane of discontinuity and generally are zones of
weakness. They influence the rock strength. The higher value of the density of geologic boundaries
indicates more susceptible to landslide occurrences. In the present study, the density of geological
boundaries was computed from the geologic boundary data with the help of GIS software using a
circle of 200 m radius as they are found appropriate in a study by Kawabata and Bandibas (2009) [53]
for this location. The landslide density increases with the increased density of lithological boundary
and the peak values are observed for class 15–27 in Figure 5f.

3.2.7. Lithology

Bedrock geology plays a significant role in the landslide failure and their distribution because
different rock types and lithological units behave differently to alterations in the geomorphic process,
permeability and strength of rocks and soils [7,37]. Influence of lithological control on landslide
distributions in the Japanese archipelago has been noticed in several studies [37,41]. In the Higashiyama
Mountain and its surroundings, lithology was classified into 35 categories (Table 2). In this case, the
landslides mostly occurred at the age of Late Pliocene, Late Pliocene–Early, Marine Pleistocene, Late
Miocene–Early Pliocene and the type of lithology, such as sand and silt, sandstone, massive mudstone,
sandstone and alternation of sandstone in Figure 5g. Previous studies also reported a high number of
landslide density in sedimentary rocks [34,37,41].
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Table 2. Classification of geologic substrata in the study area (revised from Takeuchi and
Yanagisawa, 2004).

Geologic Age Lithology Geologic Unit

Holocene

Gravel, sand and silt a
Gravel and sand al

Debris, gravel and sand d
Gravel and sand f

Gravel, sand and silt tk

Late Pleistocene
Debris and colluvial soil c

Gravel, sand and silt tl2
Gravel, sand and silt tl1

Middle Pleistocene

Gravel, sand and silt tm2
Gravel, sand and silt tm1
Gravel, sand and silt th2
Gravel, sand and silt th1

Gravel, sand and mud Oy
Late Pliocene–Early Marine silt and sand Ue

Pleistocene
Gravel, sand and silt Ud
Gravel, sand and silt Uc

Gravel and sand tk2

Late Pliocene
Sandstone W

Sandy siltstone and alternation of sandstone and siltstone S
Early Pliocene– Andesite, dacite lava and pyroclastic rock Ka

Late Pliocene

Tuffaceous sandstone and Andesitic pyroclastic rock Sy
Massive mudstone Um

Andesitic pyroclastic rock Uv
Sandstone Ks

Mudstone interbedded with sandstone Ku

Late Miocene–
Sandstone interbedded with mudstone Kl

Andesitic pyroclastic rock Av

Early Pliocene Sandstone and alternation of sandstone and mudstone As
Massive mudstone Am

Late Miocene
Dacite, andesite lava and volcanic breccia Tv

Massive mudstone Ts

Middle Miocene–
Dacite lava and pyroclastic rock Nd

Andesitic pyroclastic rock Sv
Late Miocene Hard shale and alternation of sandstone and shale Sm

(Water) (w)
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3.3. Methods

Different statistical methods have been used for individually producing a series of modeling of
landslide susceptibility maps.

3.3.1. Probabilistic Likelihood-Frequency Ratio

Probabilistic likelihood-frequency ratio model (PLFR) is established on the assertive relationship
flanked by the spatial distribution of landslides and each relative-causative factor, displaying the
interrelation between the location of landslides and causal parameters affecting the landslides
occurrence in a certain area [54,55]. In order to foresee the future landslides, the basic assumption is
that the occurrence of landslides are largely controlled by certain landslide factors and the imminent
landslides will also happen under the similar circumstances as the historical events [55].

According to the aforementioned assumption, the PLFR is the “ratio of the probability of landslide
occurrence to the probability of non-landslide occurrence” for related factors’ attributes [54]. The
PLFR is calculated for each factor from their relationship to landslide distributions. The higher the
ratio value, the better the correlation between landslide incidence and the given causative factor [55].
A value of 1 and greater indicates that the particular class of landslide has a stronger relationship with
the landslide occurrence. Otherwise, it has a lower correlation. PLFR is expressed as:

PLFR =

(
No.of landslides

Total of landslides
No.of landslides in domains

Total of pixels

)
(1)
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No. of landslides and No.of landslides in domains represent the number of landslides in each
class and number of landslides in each domain, respectively; Total of landslides and Total of pixels
denote the total landslides and a total number of pixels in the entire the study area. And the landslide
susceptibility index, LSI is the sum of the all ratios estimated for each causal factor. LSI thus
provides a degree of certainty in forecasting landslides. Summation of each factor’s probabilistic
likelihood-frequency ratios are calculated by the following equation:

LSI = ∑ PLFR = PLFR1 + PPFR2+ . . .+PLFRn (2)

where PLFR is the rating value of each factor. The greater the LSI value, the higher the risk of landslide
occurrence and vice versa.

3.3.2. Information Value Method

The information value (InV) method has been successfully used in various field of geosciences,
medicine, economy and biology [31]. With this bivariate statistical analysis method, each of the
individual parameters is integrated with the landslide inventory database and weight of landslide
density to each landslide causative factor class is then calculated.

For this approach, the landslide occurrence is regarded as a dependent variable and each causative
factor influencing this condition is regarded as an independent variable. Aleotti and Chowdhury
(1999) [15] showed that InV requires five steps: (1) selection of significant factors, their mapping and
classification into a number of correlative groups; (2) their overlay analysis with landslide inventory
database; (3) determine the landslide density for each causal factor; (4) assign weight to each causal
factors; (5) finally calculate the eventual hazard based on the weighted values.

Bivariate statistical models are regarded to be a quantitative method in landslide hazard zonation,
however, there exists a certain degree of subjectivity in the analysis. Additionally, it should be
appreciated that in many cases, the employed factors may have a problem of high correlations, which
causes the noise of resulting models [32,54].

The LSM is performed by applying InV method-statistical index (Wi) approach. The Wi (InV)
approach is based on the statistical correlation between inventoried landslides and the attributes of
various causative factors. The Wi value of each parameter is defined as the difference between the
density of each parameter class and the average density of landslide [56]. Wi is calculates using the
following equation:

Wi = ln
(

DensClass
DensMap

) = ln (

Npix(Si)
Npix(Ni)

∑ Npix(Si)
∑ Npix(Ni)

) (3)

Wi: the weight assigned to a causative parameter class (e.g., elevation, aspect, slope);
DensClass: the landslide density (LD) within this parameter class;
DensMap: the LD for the whole study area
Npix(Si): the total number of pixels that contains landslide in a certain parameter;
Npix(Ni): the total number of pixels contained in a certain parameter class;
Eventually, the LSM by InV model was produced by the subsequent equation:

LSMwi = (Wielevation) +
(

Wislope angle

)
+
(

Wislope aspect

)
+
(

Widensity of geological boundary

)
+
(

Widrainage densitys

)
+
(

Wiplan curvature

)
+
(

Wilithology

) (4)

3.3.3. Certainty Factors

The certainty factors (CF), a numerical value that articulates a measure of belief or the degree of
certainty is a method widely used in rule-based systems for managing the uncertainty [7,33]. The CF
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technique deals with the problem of integrating heterogeneous data and therefore is considered as one
of the probable favorability functions (FF). [57]. CF can be expressed as:

CF =

{ PPa−PPs
PPa∗(1−PPs)

if PPa ≥ PPs
PPa−PPs

PPs∗(1−PPa)
if PPa < PPs

(5)

where, PPa is the conditional probability of having a number of landslide events occurring in class
a and PPs is the prior probability of having a total number of landslide events in the study area. We
found the PPs in the study area as 0.26.

The CF value is calculated for each class layer using Equation (5). These layers are then integrated
pairwise based upon the parallel-combination rule given in the following equation [33]:

Z =


CF1 + CF2−CF1CF2 CF1, CF2 ≥ 0
CF1 + CF2 + CF1CF2 CF1, CF2 < 0

CF1+CF2
1−min(|CF1|, |CF2|) CF1, CF2, opposite signs

(6)

The pairwise combination is operated until all the CF layers are brought together. The CF values
range between −1 and +1 in which −1 indicates false and +1 indicate true. A positive CF corresponds
a high certainty of landslides, while a negative CF corresponds to a low certainty of landslides. A
value of zero corresponds to conditional probability similar to prior probability and hence difficult to
determine the certainty [7].

3.3.4. Artificial Neural Network

Artificial Neural Networks (ANN) based on data mining techniques is known as a popular
artificial intelligent method used to solve many problems of real worlds such as modeling nitrate
pollution of groundwater [58], prediction of wind speed and wind direction [59] and forecasting the
blast-produced ground vibration [45]. Furthermore, ANN is widely used in landslide modeling and
mapping previously [53,60]. The principle behind ANN is defined on the behavior of the human
brain in which learning algorithms are used for classification and prediction. It uses the average
of the weighted sum of numerous sigmoid to define a decision function. In ANN modeling, the
back-propagation technique is the typically used error distribution criteria to train the neural networks
because of its flexible and adaptive ability [60].

In landslide prediction, the structure of the ANN includes a three-layer neural network as shown
in Figure 6; an input neuron, a hidden neuron and an output neuron, where input neurons represent
the landslide causative factors (slope, aspect, etc.), hidden neurons represent the activation function
utilized for driving the input neurons to forecast output neurons and output neurons represent
predictive variables (non-landslide or landslide) [61]. The backpropagation ANN empowered training
by defining the weights of each causative factor. This trained algorithm was then used first for testing
the data during the classification stage, which then omitted during the training period. Weights are
defined by altering the number of hidden neurons and the learning curve between the input and
hidden layers and between the hidden and output layers.

To opt the proper number of hidden neurons, the neurons were randomly set and performed in
ten times of network to select the average value of R2 for decreasing the effect of the initial value in the
ANN model.

Let u = (u1, u2, . . . , un) represent n input neurons whereas v = (v1, v2) represent output neurons.
For prediction of landslides, the activation function used in hidden neurons is expressed as follows:

v = f

(
n

∑
i=1

ωiui + β

)
(7)

where ωji are defined as the connection weights between input neurons ui and output neurons v and
β are defined as the bias. The detailed parameter settings can be referred to the Table 3.
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Table 3. The setting variables in the artificial neural network (ANN) model.

Variables Variables Setting

Root mean square error (RMSE) 0.001
Initial weights 0.1–0.25
Learning rate 0.01

Number of epochs 3000 iterations
Momentum parameters 0.9

Activation (transfer) function for layers Transig for hidden layer, purelin for the output layer

3.3.5. Support Vector Machine

Support vector machine (SVM) is a high-performing supervised machine learning technique
based on statistical learning theory, in which the input space is mapped to a feature space and then, in
the feature space, a hyperplane is constructed to differentiate classes (e.g., the presence and absence of
landslides) [62]. Typical SVM is divided into the two-class and multi-class SVM (grouping of a chain of
two-class SVM). According to the literature, two-class SVM is the most commonly used model [10,23].
The details of two-class SVM can be referred studies. Figure 7 illustrates the scheme of SVM principle
in which circle and squares denote two–class samples. In order to classify linearly, the kernel function
converts the input samples into a high-dimensional space. The separating hyperplane (H) is one
of the probable planes for separating the two classes; the space between the two dotted lines in the
so-called margin.

In a landslide application, consider a set of training vectors xi; the classes denoted as yi = ±1
(i = 1, 2 . . . n). The landslides and non-landslide points are in the input space for originally converting
nonlinear data to a linearly separable data with the support of an optimum separating hyperplane.
SVM find an optimal hyperplane by differentiating the classes using the optimization function [62]:

Min
w,b,ξ

:
1
2

wTw + c
1

∑
i=1

ξ
i

(8)

Subjected to the constraints mentioned in the equation:

yi(wTφ(xi) + b) ≥ 1− ξi
ξi ≥ 0

(9)

where, w represents a coefficient vector, b represents the offset of the hyperplane from the origin,
represents the positive slack variable, c (> 0) represents the penalty variable of the errors; and the
kernel function is expressed as:

k(xi, xj) = φ(xi)
T
φ(xj) (10)
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Four types of kernels in SVM are linear, polynomial, radial basis function and sigmoid. The
corresponding equations are listed below:

Linear function (LF) : k
(
xi, xj

)
= xT

i xj (11)

Polynomial function (PF) : k
(
xi, xj

)
=
(
γxT

i xj +Υ
)d

, Υ > 0 (12)

Radial basis function (RBF) :
(

xi, xj
)
= exp

(
−γ
∣∣xi − xj

∣∣2), Υ > 0 (13)

Sigmoid function (SF) k
(
xi, xj

)
= tan h

(
γxT

i xj

)
+ Υ, Υ > 0 (14)

where Υ and γ denote factors of kernel functions. During these four types of kernel functions, RBF
usually provides a better predictive capability for LSM than other kernel functions in non-linear
classification [23,63]. Additionally, a novel ensemble model was proposed by integrating normalized
InV values from the bivariate analysis with BF-SVM kernel. Thus, in this study, RFB coupled with InV
method was used to implement to produce LSM. Finally, five LSM maps were created on the platform
of ArcGIS 10.3 into five classes (Very low, Low, Moderate, High and Very high) based on the natural
break classification approach which is good when there are big jumps in data values.
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3.4. Accuracy Assessment of the Models

All susceptibility models must be verified for their accuracy of predictions. An unverified
prediction model and susceptibility maps are nonetheless meaningless and hence do not have any
scientific significance [57]. Several studies have addressed the issue of LSM validation [13,64].

Most commonly, the models are verified with an independent set of data that was not used for
training the model. Irigaray et al. (2006) [65] and others reported a three following approach to obtain
an independent sample of the landslide for validation purpose.

From the total landslide inventory map of the study area, create two sets of randomly divided
landslide polygons, one for the susceptibility analysis and one for validation the models;

The susceptibility analysis should be performed in a part of the whole study area; the obtained
result should be tested in another part, distinctly with different landslides;

The analysis should be carried using landslides occurred in a certain period and validation should
be performed by means of landslides occurred in a different period. This is the most sufficient to test
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the validity of the “prediction” mode, however, the toughest to apply as it needs knowledge of the
temporal distribution of landslides during adequately long-time spans.

In this study, we applied the first approach to validate the LSM map that has been proposed by
some works [45]. Validating models are tested by receiver operating characteristics (ROC). ROC is
found to be a very valuable indicator to evaluate the superiority of deterministic and probabilistic
detection and forecast systems [66–68]. The resultant ROC curve demonstrates the performance of
the classifier system by plotting the fraction of false positive out of the entire actual negatives (FRP =
false positive rate) versus the fraction of the true positive out of the entire actual positive (FPR = true
positive rate) as its discrimination threshold is varied in Table 4. The area under the ROC curve (AUC)
can characterize the quality of a forecast system by describing the system’s ability to correctly predict
the occurrence or non-occurrence of a predefined event. It is a curve measured the sensitivity-y-axis
and the 1-specificity x-axis gained by the error matrix.

Y = Sensitivity =
(
∑ True positive

)
/
(
∑ Condition positive

)
= TN/(TN + FP) (15)

Specificity =
∑ True negative

∑ Condition negative
= TN/(TP + FN) (16)

X = 1 − Specifity = 1− ∑ True negative
∑ Condition negative

= 1− TN
TP + FN

(17)

Table 4. Contingency table of calculation of ROC curve.

Total Number
Event Sum

Condition Positive Condition Negative

Test result
Positive True positive (TP) False positive (FR) TP + FR

Negative False negative (FN) True negative (TN) FN + TN
Sum TP + FN FR + TN TP + FR+ FN+ TN

The AUC can be calculated by the trapezoidal rule of integral calculus. The AUC value varies
from 0.5 to1.0. The ideal model would have an AUC value of 1.0. According to Yilmaz (2009), the
relationships between the accuracy ratings and AUC are usually listed as followed Table 5.

Table 5. The accuracy ratings of AUC value.

Rank Range Description

1 0.9–1 Excellent
2 0.8–0.9 Good
3 0.7–0.8 Acceptable
4 0.6–0.7 Poor
5 0.5–0.6 Failed

4. Results

4.1. Modeling Result with the Probabilistic Likelihood-Frequency Ratio

The relationship between the spatial location of the landslides and landslides causative factors are
processed as shown in Table 6. According to Table 6, the PLFR values of elevation classes are greater
than 1 at the ranges of 131–190 m, 190–46 m, 301–357 m, 357–413 m with the highest value (1.74). The
results show that PLFR values increase with increasing altitudes till it reaches 357 m elevation in the
study area. Its values drop further and become less than 1 after 413 m. This means that the possibility
of landslide occurrence increases till it reaches a certain height and then decreases when the altitude is
higher than 413 m.
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With slope angle factor, PLFR values are greater than 1 from 17◦ to 55◦. The landslide occurrence in
the slope classes 17◦–27◦, 27◦–39◦ and 39◦–55◦ are 22.17%, 39.42% and 23.85%, respectively. Following
the general trend, it can be seen that the occurrence of landslides progressively increases with an
increasing slope. The percentage of landslide occurrences drops sharply after reaching the 55◦ slope
angle. According to the results, it is clear that almost the landslide occurrence increases from one slope
gradient up to a certain extent and then it decreases. The shear stress of the soil usually increases
following with increasing slope angle.

For the aspect class, the significant number of landslides happened among east, southeast, south,
southwest and west-facing directions, their frequency ratio value is all greater than 1. It indicates
that the direction from east to west is highly susceptible to the landslide occurrence. A plausible
explanation for this condition is that from east to west facing directions are general concerning fully
rock weathering. Therefore, around these directions are susceptible to occur landslides.

For the plan curvature, the PLFR value of convex (1.15) has a large value than 1, while concave
value (0.89) is less than 1. The results show that many landslides occurred at the convex areas.

The causative factor of drainage density (DD) has a larger value than 1 with the range of 2–4, 4–6
and 6–9. The maximum PLFR value is 1.12. Otherwise, the density of DR is greater than 9, the PLFR
value becomes less than 1 and it has a lower probability of landslide occurrence.

In the case of the lithology, it is clear to see that the frequency ratios of Av, Um, KI, Uv, Am, Ku, S,
As, W, Tv, th1, Ks are all more than 1. According to the investigation of lithological conditions, the
landslides occurred mostly in the sandstone, massive mudstone, sandstone, gravel, sand and silt area
corresponded with positive PLFR values.

In the case of the density of the geological boundary, from the 2–27, the PLFR values are higher
than 1. The maximum PLFR value is 1.63 and the followed value is 1.49. The largest and second
largest probabilities of landslide occurrence are 25.26%, 21.73% respectively. The density of geological
boundary is less than 2 and the PLFR value is less than 1 which indicates that a lower percentage of
landslide occurs in the density of geological boundaries.

4.2. Modeling Result with the Information Value (InV)

The result of the information value method and the relationship between the spatial location of
the landslides and landslides causative factors are processed as shown in Table 6. According to Table 6,
the InV values of elevation classes are susceptible at the ranges of 131–190 m, 190–246 m, 301–357
m, 357–413 m with the highest value (2.98), followed by 2.94 and 2.88. Results show that InV values
decrease with the decreasing and increasing altitude in the study area. These results are similar to and
PLFR’s results.

Regarding slope angle factor, the highest InV value is 0.57 from 39◦–55◦, followed by 0.52
from 27◦–39◦. The landslide occurrence in the slope classes, 27◦–39◦ and 39◦–55◦ are 27.97%, 36.7%,
respectively. Again, what is observed similar to the PLFR, results of InV also shows that the occurrence
of landslides gradually increases with an increasing slope angle until it drops after 55◦ slope angle
due to the relatively lower percentage of the total study area. According to the results, it is clear that
almost the occurrence of landslides increases from one slope gradient up to a certain extent and then it
decreases because of increasing the shear stress of the soil with increasing slope angle. Therefore, the
gentle slope has a relatively lower frequency of landslide occurrence because of the lower shear stress
corresponded with a lower gradient. The steep slope angle normally causes the collapse to occur.

For slope aspect, landslides were prone to occur in the East, SE, South, SW and West facing
slopes. The highest Wi value is 2.76 in the south direction, the following 2.66 in the south-east and
south-west direction. To the density of geological boundary, as its values increases, the Wi values also
increases that means more landslides occurred. The maximum Wi value 3.31 is obtained for the class
with densest geological boundary (15–27) followed by a value of 2.82 in the lower geological density
class (10–15). The greater density of geological boundaries indicates a plane of weakness or zone of
discontinuity that leads to instability of rock bodies.
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Table 6. Spatial relationship between the relative factors and landslides by CF, PLFR and InV models.

Factors Class Percentage of Domain (%) Percentage of Landslides (%) CF PLFR Wi (InV)

Elevation (m)

0–73 18.14 1.01 −0.96 0.06 −0.2
73–131 17.67 6.86 −0.68 0.39 1.41

131–190 15.36 19.96 0.31 1.3 2.71
190–246 13.49 23.37 0.57 1.73 2.98
246–301 11.65 19.35 0.54 1.66 2.94
301–357 8.73 15.23 0.58 1.74 2.88
357–413 6.57 9.32 0.4 1.42 2.66
413–477 4.89 4.23 −0.17 0.87 1.74
477–561 2.67 0.51 −0.85 0.19 0.5
561–735 0.84 0.15 −0.86 0.18 −0.42

Slope angle (◦)

0–10 39.37 4.72 −0.91 0.12 −1.25
43390 12.91 9.74 −0.3 0.75 0.01
17–27 19.62 22.17 0.17 1.13 0.36
27–39 21.75 39.42 0.61 1.81 0.52
39–55 6.2 23.82 1 3.84 0.57
55–70 0.16 0.14 −0.18 0.85 0.42

Slope aspect

Flat 17.97 7.72 −0.88 0.85 1.81
Northeast 9.5 6.34 −0.4 0.67 2.21

East 10.06 11.12 0.13 1.11 2.48
Southeast 9.7 15.01 0.48 1.55 2.66

South 9.19 15.76 0.57 1.71 2.76
Southwest 10.34 15.73 0.47 1.52 2.66

West 11.99 14.15 0.21 1.18 2.54
Northwest 11.78 8.98 −0.3 0.76 2.25

North 9.48 5.19 −0.53 0.55 2.08

Plan curvature
Concave 57.46 49.49 −0.18 0.89 2.27
Convex 42.54 50.51 0.21 1.15 2.53
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Table 6. Cont.

Factors Class Percentage of Domain (%) Percentage of Landslides (%) CF PLFR Wi (InV)

Drainage density

0–2 27.24 21.25 −0.31 0.78 1.97
2–4 27.24 28.66 0.02 1.05 2.35
4–6 24.57 29.89 0.2 1.22 2.63
6–9 15.45 17.28 0.1 1.12 2.55

9–20 5.5 2.92 −0.56 0.53 1.77

Density of geological boundary

0–2 30.82 15.59 −0.58 0.51 1.6
2–5 20.67 21.73 0.03 1.05 2.34
5–7 20.79 25.26 0.21 1.22 2.52

7–10 15.13 18.19 0.19 1.2 2.51
10–15 9.47 14.13 0.42 1.49 2.82
15–27 3.13 5.09 0.5 1.63 3.31

Lithology

w 3.22 1.05 −0.68 0.33 1.8
Av 2.07 2.34 0.34 1.13 2.28
Um 6.63 13.34 0.78 2.01 3.09
a 13.87 0.49 −0.97 0.04 −0.86
Sy 1.78 1.47 −0.04 0.83 2.01
Kl 3.26 6.21 0.75 1.91 3.13
Uv 1 2.49 0.89 2.49 3.25
Am 10.81 19 0.7 1.76 3.11
Ka 0.37 0.01 −0.97 0.04 −2.04
Ku 7.74 21.41 0.94 2.76 3.71
Oy 0.08 0.01 −0.86 0.16 1.27
tk2 0.39 0 −1 0 0
al 0.41 0 −1 0 0
Uc 7.23 0.72 −0.91 0.1 0.44
f 0.89 0.11 −0.89 0.12 1.76
tm2 2.22 0.09 −0.96 0.04 −1.72
tl1 0.76 0 −1 0 −2.77
S 10.01 12.9 0.46 1.29 2.88
Ud 2.86 0.72 −0.76 0.25 0.1
tl2 2.51 0.49 −0.82 0.19 1.2
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Table 6. Cont.

Factors Class Percentage of Domain (%) Percentage of Landslides (%) CF PLFR Wi (InV)

c 2.17 2.14 0.22 0.98 2.37
As 0.08 0.26 1 3.27 3.12
W 5.77 8.01 0.52 1.39 2.8
Sm 0.56 0.04 −0.94 0.07 −2.88
Nd 0.58 0.31 −0.44 0.54 1.53
th2 1.13 0 −1 0 0
tk 5.41 0.03 −1 0.01 −3.89
Ue 4.59 3.76 −0.05 0.82 2.35
tm1 0.09 0 −1 0 0
d 0.13 0 −1 0 0
Tv 0.7 0 −1 0 0
th1 0.17 0.19 0.33 1.12 2.44
Ks 0.5 2.42 0.82 4.86 4.1
Ts 0.01 0 −1 0 0
Sv 0 0 −1 0 0
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For the plan curvature, the value of convex (2.53) is a little larger than the value of concave (2.27).
In concave and convex, the percentage of landslide occurrences is very close (51%, 49%, respectively).
The drainage density shows that Wi value for 2–4, 4–6 and 6–9 are greater than 2. The Wi maximum
value is 2.63 observed with 4–6 DD class. The highest percentage of landslide occurrences, 32.51%, also
relates to the same DD class followed by 27.04% of the 2–4 DD class. The results of the lithology show
that landslide is susceptible to in these types, namely massive mudstone, sandstone and alternation of
sandstone and mudstone.

4.3. Modeling Result with the Certainty Factors

In Table 6, positive values of CF close to one are observed for the elevation classes 131–190 m,
190–246 m, 246–301 m and 301–357 m equaling 19.96%, 23.37%, 19.35% and 15.23%, respectively. It can
also be seen from Table 6 that for an altitude of 190 m to 357 m, the CF values are greater than 0.5. This
suggest that landslides are frequent in the mid-altitude and therefore their CF values; We observed
that the ratio total pixels documented in mid-altitude are greater than that in the higher altitudes;
whereas lower elevated areas are having the gentle slope and thus are not prone to landslides.

For slope class, CF values are found close to one from 17◦ to 55◦ class. The spatial distribution of
landslides in the slope classes 17◦–27◦, 27◦–39◦ and 39◦–55◦ are 22.17%, 39.42% and 23.85%, respectively.
Similar to PLFR and InV, the results are consistent for CF also which shows a gradual increase of
landslide percentage till it reaches the slope angle 55◦.

For aspect class, most of the landslide occurrences are found in the East, SE, South, SW and West
facing slopes with a CF value between 0.13 and 0.57. The maximum percentage of landslides is found
along the southern slope followed by SW slopes, equaling 15.76% and, 15.73%.

Curvature, the second derivate of the slope, provides valuable information on landslide
occurrences. In this study, the CF corresponding to concave curvature gives a negative (−0.18) value,
whereas the convex curvature corresponds to a positive (0.21) value. In most cases, the convexity
indicates a low CF value than the concavity because of more water retention capacity in concave slopes
which increases the soil moisture content that ultimately reduces the soil stability. Contrary to this, we
found that concavity is not responsible for the landslide occurrences in this study region because most
of the landslides are seismically induced. Mountaintops tend to collapse in coseismic cases because of
topographic amplification differences.

A positive CF is recorded for the drainage density (Dd) classes 2–4, 4–6 and 6–9. The maximum
CF is recorded for the study area is 0.2 which is observed for the Dd class 4–6, corresponding to 29.89%
of landslide occurrences. As mentioned before, the largest chunk of landslides in Chuetsu-Niigata
inventory is collected for the 2004 earthquake, the observed CF values are comparatively very small,
which confirms the results.

CF values are found strong positive for the following lithology classes: Sandstone and alternation
of sandstone and mudstone from Late Miocene–Early Pliocene (As); mudstone interbedded with
sandstone (Ku), Andesitic pyroclastic rock (Uv), sandstone (Ks), massive mudstone (Um), sandstone
interbedded with mudstone (KI) from Early Pliocene-Late Pliocene; and Massive mudstone (Am)
from Late Miocene–Early Pliocene equaling 1.0, 0.94, 0.89, 0.82, 0.78, 0.75, 0.70, 0.52, respectively. The
highest percentage of landslides among the lithology classes, 21.4%, occurred in Ku, followed by Am
(19%) and Um (13.34%). The bedrock in the area of major landsliding consists of a folded sequence of
sandstone, mudstone and their interbedding and the results point to the occurrence of landslides in
the weakly cemented lithological groups.

We found that the CF values are always positive for the density of the geological boundary. The
maximum CF is observed for the class 15–27 equaling 0.5; followed by the class 10–15 equaling 0.42.
The percentage distribution of landslide occurrences in the above-mentioned classes is 25.26% and
21.73%, respectively. The negative CF value of the geological-density class lower than 2 indicates that
geological uniformity affects the stability of the area. The higher density of geological boundaries
suggests frequent process activity which leads to instability.
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4.4. Modeling Result with the ANN

From Figure 8, it can be observed that when the number of hidden neurons is 12, R2 has the
highest values (0.92). The structures of the ANN (input–hidden–output) were set as 7–12–1. The
weights between each layer were acquired by training the ANN to calculate the contribution of each
landslide causative factor.

Remote Sens. 2018, 10, x FOR PEER REVIEW  1 of 30 

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/remotesensing 

4.4. Modeling Result with the ANN 

From Figure 8, it can be observed that when the number of hidden neurons is 12, R2 has the 
highest values (0.92). The structures of the ANN (input–hidden–output) were set as 7–12–1. The 
weights between each layer were acquired by training the ANN to calculate the contribution of each 
landslide causative factor.  

 

Figure 8. Number of hidden neurons impacts the ANN network: Coefficient of determination R2 has 
the largest value (0.96) when the number of hidden neurons is 11. 

To examine the robustness of the ANN model, it was repeated 10 times, each with a random set 
of landslide data nominated from the whole data pool. There were no much variances in the results. 
The standard deviation was 0.0029. Thus, the random sampling sets did not have an obvious effect 
on the results. In this study, the average values were calculated to interpret the results. When the 
ANN achieved the minimum RMSE values (0.001), the whole pixels of the study area was fed into 
the ANN network to evaluate the LSM map. The final weights for the smallest error were 
documented in the procedure and weights of each factor were fixed for the entire study area. The sets 
of landslide susceptibility index values attained in all pixel were then converted into raster in GIS 
setting. 

4.5. Modeling result with the SVM 

The RBF applied in this model used the subsequent factors: γ = 0.5 and C = 10, convergence 
epsilon = 0.003 and maximal iterations = 5000. The results of the scenarios were next analyzed to 
decide the optimal kernel resulting in the best predictive capability. In this study, the RBF-SVM 
integrated with the InV method was selected for the improvement of the LSM map. The likelihood 
of landslide occurrence drops in the range from 0 to 1 that was transferred into the ArcGIS 10.3 
package for visualization. Finally, the landslide susceptibility index values were reclassified into five 
classes: very low, low, moderate, high and very high using the natural break method, for easier visual 
clarification of the LSM. Figure 9. shows the spatial likelihood of landslide occurrences with the five 
classes, from very low (dark green) where landslides are not anticipated to very high (red) where 
landslides are possible using five methods. 

Figure 8. Number of hidden neurons impacts the ANN network: Coefficient of determination R2 has
the largest value (0.96) when the number of hidden neurons is 11.

To examine the robustness of the ANN model, it was repeated 10 times, each with a random set
of landslide data nominated from the whole data pool. There were no much variances in the results.
The standard deviation was 0.0029. Thus, the random sampling sets did not have an obvious effect
on the results. In this study, the average values were calculated to interpret the results. When the
ANN achieved the minimum RMSE values (0.001), the whole pixels of the study area was fed into the
ANN network to evaluate the LSM map. The final weights for the smallest error were documented in
the procedure and weights of each factor were fixed for the entire study area. The sets of landslide
susceptibility index values attained in all pixel were then converted into raster in GIS setting.

4.5. Modeling result with the SVM

The RBF applied in this model used the subsequent factors: γ = 0.5 and C = 10, convergence
epsilon = 0.003 and maximal iterations = 5000. The results of the scenarios were next analyzed to decide
the optimal kernel resulting in the best predictive capability. In this study, the RBF-SVM integrated
with the InV method was selected for the improvement of the LSM map. The likelihood of landslide
occurrence drops in the range from 0 to 1 that was transferred into the ArcGIS 10.3 package for
visualization. Finally, the landslide susceptibility index values were reclassified into five classes: very
low, low, moderate, high and very high using the natural break method, for easier visual clarification
of the LSM. Figure 9. shows the spatial likelihood of landslide occurrences with the five classes, from
very low (dark green) where landslides are not anticipated to very high (red) where landslides are
possible using five methods.
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4.6. Model Validation

For the validation process, the total landslides of the entire study area were randomly divided
into two groups: training data (5921) and validation data (2538). A ROC plot of sensitivity (true
positive rate) and 1-specificity (false positive rate) was made for validation. The prediction rate curves
of AUC values of five models (PLFR, InV, CF, ANN and SVM) for validation are 0.77, 0.79, 0.81,
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0.85 and 0.87, respectively in Figure 10. According to AUC results, it can be seen that SVM, ANN
and CF models (AUC > 0.8) are considered good for application in landslide susceptibility mapping.
Additionally, PLFR and InV models (0.7 < AUC < 0.8) are regarded as acceptable. Among these five
models, the highest prediction accuracy is the SVM model. Therefore, it can draw a conclusion that the
performance of the presented models in this study can satisfy the requirements of landslide prediction.
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Figure 11 shows that 91.87% of the total landslides occurred in 54.48% of the area classified as
high (high and very high) for the PLFR. As for the CF model, 94.52% of the total landslides in 63.67% of
the area as high (high and very high). For the InV method, 93.28% accounted for the entire landslides
happened in the 55.76% of the area classified from high to very high susceptibility levels. In the case
of ANN model, 95.51% of total landslides occurred at 60.26%, while, SVM 96.84% of total landslide
occurred in 58.67% of the study area. Among the five models, over 90% landslides occurred in the
high area. The above results display that the prediction landslide occurrence of three models agrees
with the real condition. From their comparisons, we can see that the most landslides occurred at high
and very high susceptible areas of SVM model, while more areas were predicted the susceptible-areas
for the CF models, followed by ANN, SVM and PLRM models.



Remote Sens. 2019, 11, 638 24 of 30
Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 30 

 

 
Figure 11. Comparison of the relative distribution of susceptibility levels using PLFR, InV, CF, ANN 
and SVM models, respectively. 

5. Discussion 

In recent years, landslide susceptibility studies proposed using various models have been 
targeted mostly on a single event-type approach. However, in areas such as Japan, massive landslides 
can be triggered by earthquakes as well as cyclones. In such areas, a single-event approach may not 
produce high ROC values, but they do not necessarily provide a complete explanation of landslide 
occurrence due to complex natures of sliding mechanisms. Instead, such models overlook the effect 
of the type of landslide analyzed. Previously, Chang et al. [42] and Li et al. [70] studied multi-event 
landslide types for areas in Taiwan and China. However, studies pertaining to the Japanese 
archipelago is limited to multi-event landslide analysis with the exception of Iwahashi et al. [71] and 
others [72]. Nevertheless, their studies were focused on landslide characterization rather than a 
susceptibility modeling approach. This study used landslides triggered by the 2004 Niigata-Chuetsu 
earthquake and rainfall events in the subsequent period to develop a comprehensive susceptibility 
model for the region. The models were validated by a mix of both earthquake and rainfall-induced 
landslides (30%). Despite having given a mixed input, the results returned high ROC values (0.87 and 
0.85) indicating the acceptance of SVM and ANN models. More importantly, this study highlights 
the consideration of slope factor (CF = 1 for class 39°–55°) as an important variable in the Japanese 
mountainous terrains while modeling the landslide susceptibility. This also confirms the trend noted 
by Oguchi [73].  

Methods for generating LSM maps are numerous based on the GIS platform and many 
published works discuss to solve the shortages and problems in landslide assessment. The result in 
this work continues to confirm that the quality of landslide susceptibility assessment is dependent 
on the method used; where two machine learning models, SVM (AUC = 0.87) and ANN (AUC = 0.85) 
have clearly better prediction performance than those of the other statistical models. This is because 
both SVM and ANN have high capacities to deal with non-linear and complex problems as landslides 

Figure 11. Comparison of the relative distribution of susceptibility levels using PLFR, InV, CF, ANN
and SVM models, respectively.

5. Discussion

In recent years, landslide susceptibility studies proposed using various models have been targeted
mostly on a single event-type approach. However, in areas such as Japan, massive landslides can be
triggered by earthquakes as well as cyclones. In such areas, a single-event approach may not produce
high ROC values, but they do not necessarily provide a complete explanation of landslide occurrence
due to complex natures of sliding mechanisms. Instead, such models overlook the effect of the type
of landslide analyzed. Previously, Chang et al. [42] and Li et al. [69] studied multi-event landslide
types for areas in Taiwan and China. However, studies pertaining to the Japanese archipelago is
limited to multi-event landslide analysis with the exception of Iwahashi et al. [70] and others [71].
Nevertheless, their studies were focused on landslide characterization rather than a susceptibility
modeling approach. This study used landslides triggered by the 2004 Niigata-Chuetsu earthquake
and rainfall events in the subsequent period to develop a comprehensive susceptibility model for the
region. The models were validated by a mix of both earthquake and rainfall-induced landslides (30%).
Despite having given a mixed input, the results returned high ROC values (0.87 and 0.85) indicating
the acceptance of SVM and ANN models. More importantly, this study highlights the consideration of
slope factor (CF = 1 for class 39◦–55◦) as an important variable in the Japanese mountainous terrains
while modeling the landslide susceptibility. This also confirms the trend noted by Oguchi [72].

Methods for generating LSM maps are numerous based on the GIS platform and many published
works discuss to solve the shortages and problems in landslide assessment. The result in this work
continues to confirm that the quality of landslide susceptibility assessment is dependent on the method
used; where two machine learning models, SVM (AUC = 0.87) and ANN (AUC = 0.85) have clearly
better prediction performance than those of the other statistical models. This is because both SVM and
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ANN have high capacities to deal with non-linear and complex problems as landslides as confirmed in
various previous studies [60,73]. In contrast to the SVM model and the ANN model, three statistical
models (PLFR, InV and CF) have difficulties to model the complex landslides of the Chuetsu region.
This is because these are bivariate models that did not take in the account the complex interactions of
the seven causative factors. However, each method has its own unique characteristics and advantages
in terms of their ability to include input variables and information provided in temporary stages or
the final output that is used to analysis. Such as PLFR-bivariate analyses can help provide a clear
understanding of the details of classes in each of the causative factors, which were well reflected in the
output maps. The main advantages of CF approach is that CF supplies the advantage of rendering
the definition of susceptible classes transparent for the researchers, who are not required to offer a
priori the definition of hazard classes but is only charged to interpret a-posteriori the final certainty
values and to subdivide the resultant interval into meaningful sub-intervals [33]. For the PLFR model,
this is the simplest amongst three models and relatively easy to perform in the ArcGIS platform. The
main merits of InV procedures are that the professional, who carries out the analysis, determine the
factors combinations of factors used in the evaluation and enable the introduction of expert knowledge
into the process [56]. Among the presented three traditional methods, they could provide the details
analysis in each class and the results of the relationship between landslide occurrence and causative
factors are very similar. The two soft-computing data mining techniques, that is, ANN and SVM,
had diverged results. The strength of SVM is ascribed to the accompanying of using a radial basis
function (RBF) with the InV values output to create the output map. Additionally, the SVM model is
noticeable for processing both the linear and non-linear classification set. The SVM model targets to
draw decision boundaries between data support vector points from different class types and separate
them with maximal margins [10,23]. To learn the complex functions, SVM uses kernels, while ANN
uses multilayer perceptron. The ANN model produced a smooth output with limited details to
delineate the hazard zones. The AUC curve plots display that LSM maps produced applying the SVM
model is the highest prediction accuracy, followed by the ANN model. CF has the best performance
among three traditional statistical models, yet the PLFR model has the lowest accuracy. However, these
outcomes indicate that all the models in this study proved reasonably good accuracy in prediction
LSM of the Chuetsu area.

Apart from the models what we have compared in this study, there are other more sophisticated
approaches are mentioned in the recent literature [74]. Indeed, the comparison of different machine
learning models and their performance issues has become a trend in the LSM studies [11,74] However,
assessment of model performance not only depends on the methods, but also it is mainly decided by
the quality of the collected data [56]. For example, a random forest (RF) model applied using historical
222 landslides in Jiangxi, China with the help of 25 m DEM returned only a ROC value of 0.75 [75].
On a similar note, Dou et al. [34] studied the Osado Island adjoining Niigata using ANN and a 10 m
DEM returned a ROC value lower than that achieved for this study. In another example, a case study
of the Cameron Highlands, Malaysia using 11 landslide factors and 81 landslide locations by SVM
approach achieved maximum accuracy of 0.81 only [76] Thus, the quality of the landslide inventory
and high-resolution conditioning factors are important to all statistical models. The current research
utilized fine aerial photographs and LiDAR-derived data for conditioning the input variables. This
study, regardless of applying multi-event type landslides and traditional machine learning techniques,
therefore, achieved a better performance using high-quality dataset.

6. Conclusions

This work carried out a comprehensive assessment of landslides at Chuetsu region in the
Niigata Prefecture, Japan. These landslides occurred due to combinations of both earthquake and
rainfall-induced events. Based on the results, the following conclusions are offered:

I. The high quality of the susceptibility map can be obtained with the use of data mining (SVM
and ANN) for landslides triggered by both earthquake and rainfall.
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II. Although traditional statistical techniques, PLFR, InV and CF, provide low prediction
performance of landslide models; however, they are still useful, that is, capacities to reveal
high probabilities of the landslide of causative factors’ classes.

III. LiDAR-derived data are an important source for deriving high-quality susceptibility map.
IV. Landslide susceptibility maps developed in this study are of great importance for sustainable

urban development and thus the local government. The information derived from the
constructed map may be helpful in preliminary decision-making and policy planning. For
the hazard zonation, they could opt for some low susceptibility index as a relatively safe area
to design the appropriate countermeasures. Furthermore, more relative data are needed to
acquire for wide application in more regional areas.
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