Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability
Abstract
:1. Introduction
2. Datasets
2.1. Satellite Data
2.2. Digital Elevation Models (DEMs)
3. Methods
3.1. Satellite Data
3.2. Topographic Analysis
4. Results: The History of the Surge and Collapse Events
4.1. The 1960s Situation
4.2. The 1987–1995 Surge
4.3. The Developing Slope Instability
4.4. The 2003/4 Surge and Collapse
4.5. The 2007 Surge and Collapse
4.6. Further Head Wall Degradation after 2009
4.7. The Surge and Collapse in 2016
4.8. Elevation Changes and Topographic Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Digital Elevation Model |
ESRI | Environmental Systems Research Institute |
ETM+ | Enhanced Thematic Mapper + |
HMA | High Mountain Asia |
GIS | Geographic Information System |
GLIMS | Global Land Ice Measurements from Space |
OLI | Operational Land Imager |
RO | Rock Outrcrop |
SRTM | Shuttle Radar Topography Mission |
TM | Thematic Mapper |
UTM | Universal Transverse Mercator |
Appendix
Nr. | Sensor | Date | Nr. | Sensor | Date | Nr. | Sensor | Date |
---|---|---|---|---|---|---|---|---|
1 | Corona | 30.12.1964 | 16 | L7 ETM+ | 16.08.2002 | 31 | L5 TM | 23.09.2007 |
2 | Corona | 16.12.1969 | 17 | L7 ETM+ | 03.08.2003 | 32 | L7 ETM+ | 02.11.2007 |
3 | L5 TM | 15.08.1987 | 18 | L5 TM | 12.09.2003 | 33 | L7 ETM+ | 16.08.2008 |
4 | L5 TM | 30.06.1988 | 19 | L5 TM | 14.10.2003 | 34 | L5 TM | 11.08.2009 |
5 | L5 TM | 21.09.1989 | 20 | L5 TM | 15.11.2003 | 35 | L5TM | 14.08.2010 |
6 | L5 TM | 06.07.1990 | 21 | L5 TM | 18.01.2004 | 36 | L7 ETM+ | 24.07.2011 |
7 | L5 TM | 11.09.1991 | 22 | L7 ETM+ | 26.01.2004 | 37 | L7 ETM+ | 12.09.2012 |
8 | L5 TM | 31.08.1993 | 23 | L5 TM | 03.02.2004 | 38 | L8 OLI | 16.04.2013 |
9 | L5 TM | 14.05.1994 | 24 | L7 ETM+ | 11.02.2004 | 39 | L8 OLI | 06.06.2014 |
10 | L5 TM | 20.07.1995 | 25 | L7 ETM+ | 05.08.2004 | 40 | L8 OLI | 12.08.2015 |
11 | L5 TM | 24.09.1996 | 26 | L5 TM | 14.09.2004 | 41 | L8 OLI | 29.07.2016 |
12 | L5 TM | 10.08.1997 | 27 | L7 ETM+ | 09.09.2005 | 42 | S2 MSI | 30.07.2016 |
13 | L5 TM | 31.07.1999 | 28 | L7 ETM+ | 26.07.2006 | 43 | S2 MSI | 28.09.2016 |
14 | L7 ETM+ | 25.07.2000 | 29 | L5 TM | 20.09.2006 | 44 | S2 MSI | 18.10.2016 |
15 | L7 ETM+ | 13.08.2001 | 30 | L7 ETM+ | 15.09.2007 | 45 | S2 MSI | 04.08.2017 |
References
- Qiu, J. Ice on the run. Science 2017, 358, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Bevington, A.; Copland, L. Characteristics of the last five surges of Lowell Glacier, Yukon, Canada, since 1948. J. Glaciol. 2014, 60, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef] [Green Version]
- Häusler, H.; Ng, F.; Kopecny, A.; Leber, D. Remote-sensing-based analysis of the 1996 surge of Northern Inylchek Glacier, central Tien Shan, Kyrgyzstan. Geomorphology 2016, 273, 292–307. [Google Scholar] [CrossRef] [Green Version]
- Herreid, S.; Truffer, M. Automated detection of unstable glacier flow and a spectrum of speedup behavior in the Alaska Range. J. Geophys. Res. Earth Surf. 2016, 121, 64–81. [Google Scholar] [CrossRef]
- Pitte, P.; Berthier, E.; Masiokas, M.H.; Cabot, V.; Ruiz, L.; Ferri Hidalgo, L.; Gargantini, H.; Zalazar, L. Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002–2006 surge. J. Geophys. Res. Earth Surf. 2016, 121, 111–127. [Google Scholar] [CrossRef]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef]
- Paul, F.; Strozzi, T.; Schellenberger, T.; Kääb, A. The 2015 surge of Hispar Glacier in the Karakoram. Remote Sens. 2017, 9, 888. [Google Scholar] [CrossRef]
- Round, V.; Leinss, S.; Huss, M.; Haemmig, C.; Hajnsek, I. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere 2017, 11, 723–739. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef]
- Wendt, A.; Mayer, C.; Lambrecht, A.; Floricioiu, D. A glacier surge of Bivachny glacier, Pamir mountains, observed by a time series of high-resolution digital elevation models and glacier velocities. Remote Sens. 2017, 9, 388. [Google Scholar] [CrossRef]
- Sund, M.; Lauknes, T.R.; Eiken, T. Surge dynamics in the Nathorstbreen glacier system, Svalbard. Cryosphere 2014, 8, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Sevestre, H.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–659. [Google Scholar] [CrossRef]
- Dunse, T.; Schellenberger, T.; Hagen, J.O.; Kääb, A.; Schuler, T.V.; Reijmer, C.H. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere 2015, 9, 197–215. [Google Scholar] [CrossRef]
- Haeberli, W.; Huggel, C.; Kääb, A.; Zgraggen-Oswald, S.; Polkvoi, A.; Galushkin, I.; Zotikov, I.; Osokin, N. The Kolka–Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. J. Glaciol. 2004, 50, 533–546. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Rototaeva, O.V.; Nosenko, G.A. The September 2002 Kolka Glacier catastrophe in North Ossetia, Russian Federation: Evidence and analysis. Mt. Res. Dev. 2004, 24, 78–83. [Google Scholar] [CrossRef]
- Huggel, C.; Zgraggen-Oswald, S.; Haeberli, W.; Kääb, A.; Polkvoi, A.; Galushkin, I.; Evans, S.G. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Hazards Earth Syst. Sci. 2005, 5, 173–187. [Google Scholar] [CrossRef]
- Evans, S.G.; Tutubalina, O.V.; Drobyshev, V.N.; Chernomorets, S.S.; McDougall, S.; Petrakov, D.A.; Hungr, O. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 2009, 105, 314–321. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Gao, Y.; Thompson, L.; Mosley-Thompson, E.; Muhammad, S.; Zong, J.; Wang, C.; Jin, S.; Li, Z. Two glaciers collapse in western Tibet. J. Glaciol. 2017, 63, 194–197. [Google Scholar] [CrossRef]
- Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.; et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 2018, 11, 114–120. [Google Scholar] [CrossRef]
- Gilbert, A.; Leinss, S.; Kargel, J.; Kääb, A.; Yao, T.; Gascoin, S.; Leonard, G.; Berthier, E.; Karki, A. Mechanisms leading to the 2016 giant twin glacier collapses, Aru range, Tibet. Cryosphere 2018, 12, 2883–2900. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhang, Y.; Wei, J.; Jiang, Z.; Wu, K. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. J. Glaciol. 2018, 64, 397–406. [Google Scholar] [CrossRef]
- Faillettaz, J.; Funk, M.; Vincent, C. Avalanching glacier instabilities Review on processes and early warning perspectives. Rev. Geophys. 2015, 53, 203–224. [Google Scholar] [CrossRef]
- Drobyshev, V.N. Glacial catastrophe of 20 September 2002 in North Osetia. Russ. J. Earth. Sci. 2006, 8, ES4004. [Google Scholar] [CrossRef]
- Ye, Q.; Zong, I.; Tian, L.; Cogley, J.G.; Song, C.; Guo, W. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13. J. Glaciol. 2017, 63, 273–287. [Google Scholar] [CrossRef]
- Brando Abroad. Available online: http://www.brandoabroad.com/single-post/2017/09/22/The-life-of- Chinese-construction-workers-a-million-miles-from-home-Days-9-10 (accessed on 9 March 2019).
- Wenying, W. Glaciers in the north-eastern part of the Ch’ing-hai–hsi-tsang (Qinghai–Xizang) Plateau (Tibet) and their variations. J. Glaciol. 1983, 29, 383–391. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Shean, D. High Mountain Asia 8-Meter DEM Mosaics Derived from Optical Imagery; Version 1, Tile 391; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Jamieson, S.S.R.; Ewertowski, M.W.; Evans, D.J.A. Rapid advance of two mountain glaciers in response to mine-related debris loading. J. Geophys. Res. Earth Surf. 2015, 120, 1418–1435. [Google Scholar] [CrossRef]
Zone Name | Elevation (m) | Length (m) | Mean Slope (°) | |||
---|---|---|---|---|---|---|
Minimum | Maximum | Range | ||||
A | Deposit | 4250 | 4450 | 200 | 2000 | 5.7 |
B | Transition | 4450 | 4800 | 350 | 1200 | 16.3 |
C | Flat glacier | 4800 | 5250 | 450 | 2000 | 12.7 |
D | Steep glacier | 5250 | 5900 | 650 | 900 | 35.8 |
Overall slope | 4250 | 5250 | 1000 | 5200 | 10.9 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, F. Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability. Remote Sens. 2019, 11, 708. https://doi.org/10.3390/rs11060708
Paul F. Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability. Remote Sensing. 2019; 11(6):708. https://doi.org/10.3390/rs11060708
Chicago/Turabian StylePaul, Frank. 2019. "Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability" Remote Sensing 11, no. 6: 708. https://doi.org/10.3390/rs11060708
APA StylePaul, F. (2019). Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability. Remote Sensing, 11(6), 708. https://doi.org/10.3390/rs11060708