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Abstract: Grassland contributes to carbon storage and animal feed production. Its yield is largely
determined by the cutting times of grassland. Previous studies have used remote sensing data for
grassland biomass estimation, but only a few studies have focused on SAR remote sensing approaches
for automatic grassland cutting status detection. Due to the occurrence of multiple cuttings in a
year, it is crucial to effectively monitor grassland cutting events in order to achieve accurate biomass
estimations of a whole season. In this study, we examined the capabilities of multilayer perceptron
neural networks for automatic grassland cutting status detection using SAR imagery. The proposed
model inputs are a time series dataset of VV and VH Sentinel-1 C-band SAR and second-order
texture metrics (homogeneity, entropy, contrast and dissimilarity). The proposed approach has been
successfully tested on a dataset collected from several fields in Germany in 2016, with an overall
accuracy of 85.71% for the validation set.
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1. Introduction

Grassland covers 40% of the global landmass and is a primary contributor to the production of
forage for dairy and meat industries [1,2]. Further, it stores about 34% of the global carbon stock [3].
Therefore, grassland can be considered a key component in regulating the global carbon cycle [4] and
animal biodiversity [5,6]. In order to preserve grassland where regular cutting is not economically
feasible, the European Union (EU) has decided to pay subsidies to farmers [7]. These payments
are scaled according to cuttings in a precisely mapped area in a given year, which have highlighted
the need for accurate mapping of cutting events. Moreover, the monitoring of grassland cutting
events is crucial considering their ecological and agricultural importance as well as their key role in
modeling yearly grassland yield [8]. As in-situ observations are time-consuming and costly, it would
be advantageous to find a more cost- and time-efficient method to determine whether, when and to
what extent a grassland has been mown. To address the aforementioned issues, remote sensing may
be used as a more cost- and time-effective technique that provides information on cutting status (cut
or uncut fields) at a high frequency over large spatial scales [9].

In the remote sensing-related literature, grassland has not been studied as thoroughly as other
agricultural crops [10]. Most of the remote sensing approaches have focused on the agronomy of
grassland [1,4], such as growth rate modeling [11] or biophysical parameter retrieval, including
chlorophyll content [12] and Leaf Area Index (LAI) [13]. These approaches rely on the use of optical
remote sensing. Synthetic Aperture Radar (SAR) images have not been explored extensively in
grassland studies [12,14]. Since SAR data remain relatively independent of perturbances in the
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propagation medium and sun illumination conditions, they are suitable for effective agricultural
monitoring [15,16]. C-band and X-band SAR data with wavelengths of ≈5 and ≈3 cm, respectively,
are often used in the studies of agricultural crops and grassland biomass due to their high data
availability [17,18]. For example, Stiles et al. and Oh et al. demonstrated that the HH and VV ratio
in C-band SAR is sensitive to surface roughness [19,20]. Luckman and Hill et al. further showed
that the dominant scattering mechanism over grassland in C-band is volume scattering [21,22]. As a
result, Hill et al. found a strong linear relationship between grassland vegetation height and C-band
backscatter [23]. Tamm et al. used 12-day repeat pass Sentinel-1 interferometric coherence for analyzing
mowing events on agricultural grasslands. The results showed that after a mowing event, the median
values of VV and VH polarization were statistically significantly higher when compared to pre-event
values [24].

C-band SAR data are also frequently used for classification approaches. For example,
Schieche et al. used multi-temporal C-band backscatter to classify grassland into three categories
of pasture, fallow and meadow [25]. Barrett et al. evaluated the performance of Random Forests
(RF), Support Vector Machines (SVM) and the rarely used Extremely Randomized Trees (ERT) for
discriminating grassland types over two large heterogeneous areas in Ireland using multi-temporal,
multi-sensor radar and ancillary spatial datasets. The archived overall accuracies were 88.7% and 97.9%
for single frequency and combined frequency classifications, respectively [18]. Furthermore, SAR
images are used to distinguish between grassland and other agricultural crops, as seen in Smith and
Buckley who used multi-temporal fully polarimetric RADARSAT-2 data to classify various grassland
and crop types with an overall accuracy of 78% [26]. Hong et al. used SAR intensity and optical data
to distinguish between alfalfa and grassland [12].

However, determining and isolating the scattering mechanisms from grasslands is difficult due to
various factors. One factor is penetration depth, which depends on the moisture, density and geometric
structure of both plants and soil. With C-Band backscatter, the plant canopy is the dominating
influence factor [27]. Similarly, grassland coverage and density influence both the incidence angle
and polarization dependence of radar backscatter [14]. In comparison with HH polarization, which
interacts more strongly with broad-leaved canopies, several studies have reported stronger backscatter
from grass at VV polarization [22,28]. Due to differences in grazing intensity and moisture conditions
of grasslands over the year, it seems impossible to determine a single wavelength, polarization and
season that are best suited to detect cutting events.

Based on the authors’ knowledge, there are only a few studies that have focused on
SAR approaches for grassland cutting status detection, which are mainly devoted to X-band.
Voormansik et al. demonstrated that mown and unmown grassland differ less than 2 dB in VV
polarization at X-band [7]. Moreover, Schuster et al. found that multi-temporal TerraSAR-X
HH polarization is useful for cutting status detection in natural habitats [29]. Voormansik et al.
demonstrated the use of multi-temporal, dual polarimetric X-band for detecting mowing events [30].
In contrast to studies of agricultural crops, only a limited number of studies exists on the use of
machine learning models for grassland [31–33] despite machine learning models potentially being
very competitive in terms of accuracy and speed of information retrieval [33]. Moreover, there is a
lack of detailed analyses of machine learning models for grassland cutting status detection from SAR
images in the literature. In the present study, we therefore propose and demonstrate a fast and accurate
algorithm using SAR images to detect cutting status at a given point in time.

This paper is organized as follows. After a brief overview of the dataset used, information on
field campaign and experimental sites is given. Section 3 outlines the data processing methods and
the algorithm used to detect cutting status. Sections 4 and 5 contain results and discussion. Section 6
provides a conclusion and potential future investigations on this topic.



Remote Sens. 2019, 11, 711 3 of 13

2. Materials

2.1. Experimental Sites

The study sites (presented as white points in Figure 1) are located in the state of Bavaria, Germany.
The first site (Triesdorf) is located southwest of Nuremberg in a rural, sparsely populated region of
Middle Franconia in northern Bavaria at an elevation of approximately 420 m above sea level on
relatively flat lowland terrain. The typical soil type of the region is brown earth, which originated from
weathered sand- and claystone [34].
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Figure 1. Map of Germany with locations of in-situ study areas highlighted in white. The colors
represent relief elevation.

The second site (Kempten) is located in southern Bavaria, east of Lake Constance and close to
the Alps. This site is found in the Alpine Foreland at an elevation of around 750 m above sea level
on relatively flat terrain of a former river basin in an otherwise hilly region. The typical soil type
of the region is brown and para brown earth, which originated from limestone and loamy moraine
sediments [34].

The mean temperatures of 2016 were above the long-term average at both test sites (8.9 and
8.6 ◦C). The total precipitation was significantly below average in Triesdorf (596 mm) and slightly
above average in Kempten (1330 mm). The 30-year average (1981–2010) temperatures were 8.3 and
7.6 ◦C while the average yearly precipitations were 751 and 1261 mm for Triesdorf and Kempten,
respectively [35]. According to the Koeppen Geiger climate classification, the climate for the study
areas can be classified as a temperate, oceanic type (warm summer, wet winter; Climate zone Cfb).

2.2. Remotely Sensed Data

The dataset that we used consists of 50 Sentinel-1 Ground Range Detected (GRD), Interferometric
Wide swath mode (IW) images captured in 2016. Focused Sentinel-1 C-band SAR data was detected,
multi-looked and projected to ground range using an Earth ellipsoid model in order to create Level-1
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GRD products. The resulting products have approximately square pixel spacing (~10 m in range
and azimuth) with reduced speckles. We used the images from acquisition dates every nine days
(with some exceptions) from three geometries defined by the Relative Orbit Number (RON) (Table 1).
Figure 2 summarizes the acquisition dates for each geometry.

Table 1. RONs and their parameters used in this study. The values are given for the study areas.

RON Asc/Des AcquisitionTime
(UTC)

Average Incidence Angle (degree)

Triesdorf Kempten

Near Far Near Far

66 Des 05:32:45 35.18 35.29 35.22 35.27
117 Asc 17:06:08 37.15 37.26 37.19 37.24
168 Des 05:24:47 36.21 36.32 36.42 36.47
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Kempten sites, respectively.

2.3. Ground Truth Campaign

We have used a total of five fields in each of our study sites (Triesdorf and Kempten). The
investigated grasslands are intensively used and cut four to five times throughout a season. The typical
cutting times were early May, mid of June, late July and October while there was sometimes a fifth
cutting in early September. Having been run in parallel to the Sentinel-1 acquisitions, the field surveys
of the Bavarian state research center for agriculture (LfL) provided the exact dates of cutting events
for each test field (e.g., on 25 August 2017, field one in Kempten is cut), enabling us to determine the
cutting status in each image.

3. Methods

3.1. Data Preprocessing

For preprocessing of SAR data, we used the open source Sentinel-1 toolbox (S1TBX) that is
provided by the European Space Agency (ESA). Figure 3 shows a schematic view of the preprocessing
flow. Since the proposed model relies on highly accurate radiometric values, we removed thermal
noise. To improve the co-registration accuracy, we applied the precise orbit model to each image.
This provides information about the geometric location of the SAR images that improves the position
accuracy during co-registration. In the next phase, we calibrated all images to the backscatter coefficient.
After this, the radiometric terrain flattening using Shuttle Radar Topography Mission (SRTM) 3 sec
data and bilinear interpolation was applied to the dataset. For speckle filtering, a 3 × 3 Lee filter
was applied and finally, the images were georeferenced using a digital terrain model (Range Doppler
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Terrain Correction, SRTM) and re-projected to Universal Transverse Mercator (UTM), WGS84. For
further analysis, we transformed the corrected intensity data to the logarithmic scale (unit dB).Remote Sens. 2017, 9, x FOR PEER REVIEW  5 of 13 

 

 
Figure 3. Schematic view of the Sentinel-1 pre-processing workflow. 

3.2. ANN Model Description 

Artificial Neural Networks (ANNs) are useful in modeling a variety of nonlinear behaviors [36]. 
ANNs are composed of neurons that are nonlinear computational elements. The neurons establish 
inverse mapping, which discriminates the relations between inputs and outputs during the training 
phase. Several studies point out that ANNs are robust in terms of computational speed, stability and 
accuracy with respect to other investigated algorithms [36,37]. 

One of the most popular ANNs topologies is the feedforward topology in which each neuron of 
a layer is connected to all neurons of the successive layer but has no feedback to neurons in the 
previous layers [38]. In feedforward ANNs, the weighted sum of input datasets is computed with an 
activation function by each neuron in the network. Equation 1 presents the mathematical 
representation of ANNs [38]: 

𝑓௫ =  𝑤𝑑 + 𝑏 
ୀଵ  (1) 

where d1, . . . , dn are inputs; w1, . . . , wn are associated connection weights; and b is the bias value. The 
most commonly used activation function is the sigmoid function. An example of the sigmoid function 
is the logistic function that is in the range of [0, 1]: 𝜑௩ =  1 (1 + 𝑒ି௩)ൗ  (2) 

where a is the curve steepness for v. The hyperbolic tangent function provides better results than 
those obtained with the sigmoid function of Equation 2. Therefore, in this study, we used an anti-
symmetric form of sigmoid function with the range from −1 to 1 (hyperbolic tangent function) 
(Equation (3)). 𝜑௩ =  𝑡𝑎𝑛ℎ௩ (3) 

Figure 4 provides the backpropagation algorithm for the training of the network, which is very 
common in remote sensing studies [39,40]. The backpropagation algorithm minimizes the Mean 
Square Error (MSE) between the multilayered feedforward perception output and the desired output 
by using a gradient search technique [38]. 

Figure 3. Schematic view of the Sentinel-1 pre-processing workflow.

3.2. ANN Model Description

Artificial Neural Networks (ANNs) are useful in modeling a variety of nonlinear behaviors [36].
ANNs are composed of neurons that are nonlinear computational elements. The neurons establish
inverse mapping, which discriminates the relations between inputs and outputs during the training
phase. Several studies point out that ANNs are robust in terms of computational speed, stability and
accuracy with respect to other investigated algorithms [36,37].

One of the most popular ANNs topologies is the feedforward topology in which each neuron of a
layer is connected to all neurons of the successive layer but has no feedback to neurons in the previous
layers [38]. In feedforward ANNs, the weighted sum of input datasets is computed with an activation
function by each neuron in the network. Equation 1 presents the mathematical representation of
ANNs [38]:

fx =
n

∑
j=1

wjdj + b (1)

where d1, . . . , dn are inputs; w1, . . . , wn are associated connection weights; and b is the bias value. The
most commonly used activation function is the sigmoid function. An example of the sigmoid function
is the logistic function that is in the range of [0, 1]:

ϕv = 1/
(
1 + e−av) (2)

where a is the curve steepness for v. The hyperbolic tangent function provides better results than those
obtained with the sigmoid function of Equation 2. Therefore, in this study, we used an anti-symmetric
form of sigmoid function with the range from −1 to 1 (hyperbolic tangent function) (Equation (3)).

ϕv = tanhv (3)

Figure 4 provides the backpropagation algorithm for the training of the network, which is very
common in remote sensing studies [39,40]. The backpropagation algorithm minimizes the Mean
Square Error (MSE) between the multilayered feedforward perception output and the desired output
by using a gradient search technique [38].
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3.3. Model Implementation

In this study, we used multilayer perceptron neural networks, which are the most suitable topology
for information retrieval [38,41]. We have used VV and VH polarization backscattering intensities
that are expected to be more suitable for grassland cutting status monitoring compared to HH and
HV polarization [42,43]. Therefore, six of the input parameters include VV and VH polarization
backscattering intensity for the checking date; VV and VH polarization backscattering intensity for
nine days before the checking date; and VV and VH polarization backscattering intensity for eighteen
days before the checking date.

Further input variables are the second-order texture metrics (Table 2), including Homogeneity,
Entropy, Contrast and Dissimilarity (for the checking date), that are calculated for each polarization
(eight parameters in total for both VV and VH channels). Second-order texture metrics show the
number of occurrences of the relationship between a pixel and its specified neighboring pixels [44]. We
used a 3 × 3 kernel as it is considered to be suitable for computing the texture matrix and extracting
enough spatial information to distinguish among different land features [45]. All the input parameters
were normalized to a range [−1, 1] using the following equation [40]:

Dnew = 1− (2(D− Dmin)/Dmax − Dmin) (4)

where Dnew is the normalized value, Dmin is the minimum value and Dmax is the maximum value in
the parameter dataset.

Overall, the dataset consists of 70 samples (checking dates), which were utilized for
training/testing and validating the model. We randomly selected 60% and 10% of the data set
for training and testing, respectively. The remaining samples (10 and 11 samples for Triesdorf and
Kempten, respectively) were used for final model validation. The network training was repeated
ten times for each topology. Subsequently, we selected the network with the highest accuracy,
which implies that the retained model resides within the best 10% of the distribution of all possible
models [46].
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Table 2. List of input variables used. Gr stands for the distinct grey level numbers.

Name Acronyms Formula Equation Number

VV SAR Intensity VV-Int — —
VH SAR Intensity VH-Int

VV SAR Homogeneity VV-Hom Gr
∑

i=1

Gr
∑

j=1

1
(i−j)2+1

∗ DNij (Equation 5)
VH SAR Homogeneity VH-Hom

VV SAR Entropy VV-Ent Gr
∑

i=1

Gr
∑

j=1
log

(
DNij

)
∗ DNij (Equation 6)

VH SAR Entropy VH-Ent

VV SAR Contrast VV-Con Gr
∑

i=1

Gr
∑

j=1
(i− j)2 ∗ DNij (Equation 7)

VH SAR Contrast VH-Con

VV SAR Dissimilarity VV-Dis Gr
∑

i=1

Gr
∑

j=1
|i− j| ∗ DNij (Equation 8)

VH SAR Dissimilarity VH-Dis

The early stopping procedure was used to determine the stop point for the training since it enables
the optimization of the generalization properties of the network to avoid overfitting [38]. The early
stopping procedure constantly evaluates the performance of the network during the training process.
The number of hidden nodes was optimized by trial and error and ranged between 5 and 35 depending
on the number of input parameters. The output function of the network returns 0 for a detected cutting
and 1 if no cutting occurred. The simulation of the ANNs was conducted with the Stuttgart Neural
Network Simulator (SNNS) [47].

4. The Results

In the final step of the model development, we analyzed different topologies by changing the
input parameters of the model in order to assess the influence of different sets of inputs on model
accuracy. We started by considering only VV and VH parameters for the checking date as the input
layer (called “a” in Table 3) of the models. After this, we increased the input parameters to six and ten
by adding the VV and VH parameters of 9 days and 18 days before the checking dates (called “b” in
Table 3) and the homogeneity and entropy parameters (for VV and VH polarizations) for the checking
date (called “c” in Table 3), respectively. Finally, we increased the input parameters to fourteen by
adding contrast and dissimilarity parameters (for VV and VH polarizations) for the checking date
(called “d” in Table 3). For each input set, the topology and calibration with the highest performance in
terms of overall accuracy and MSE has been selected and presented in Table 3. Table 3 also highlights
the model architecture (no. of input parameters – no. of nodes in the hidden layer – output) of the
best models.

Table 3. Comparison of results using different input parameter combinations; the model architecture
[x–y–z] summarizes the number of input parameters [x], the number of nodes in the hidden layer [y]
and the number of output nodes [z].

(a) (b) (c) (d)

NN model architecture 2–7–1 6–15–1 10–25–1 14–31–1
Overall accuracy [%] 14.28 47.61 80.95 85.71

MSE 5.60 3.20 0.06 0.008

Figure 5 exemplarily presents the MSE of the test set “d” as a function of the number of hidden
nodes. Considering generalization, time load and accuracy, the network with 31 nodes provided the
lowest MSE compared with the other possibilities. In total, approximately 9000 training cycles were
sufficient for training the network. The results of the accuracy assessment based on our validation
dataset are shown in Table 4.
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Table 4. Confusion matrix and accuracies of the validation set on input set “d”.

Ground-Truth Total User’s Accuracy%

Cut Uncut

Predicted
Cut 6 1 7 85.71

Uncut 2 12 14 85.71
Total 8 13 21

Producer’s Accuracy (%) 75.00 92.30
Overall Accuracy (%) 85.71

Cohen’s Kappa 0.69

Cohen’s Kappa for the input set “d” (Table 4) shows that the proposed algorithm achieves
acceptable detection results for the validation dataset (with an overall accuracy of 85.71%). For cutting
events, the commission and omission errors are 25.00% and 14.29%, respectively. Growing (no cutting)
events show a commission error of 7.7% and an omission error of 14.29%.

5. Discussion

The results presented in Table 3 demonstrate that increasing the number of components in the
input layer progressively decreased the MSE. We observed a significant improvement when the
second-order texture metrics of the checking date were added to the input layer (MSE reduced by
3.14), which indicates that the ANN is able to constructively combine the information of each input
node. The best overall accuracy of 85.71% is obtained for the model generated by the input set “d”,
which results in an increase of 71.43% in the overall accuracy compared to the best model using VV
and VH parameters for the checking date (input set a). The overall accuracies increased by 52.38% and
57.14% when the homogeneity/entropy (input set b) and contrast/dissimilarity parameters (for VV
and VH polarizations), respectively, were used along with the other parameters (input set c).

For model evaluation, it is essential to identify the conditions in which the proposed approach
generates poor accuracies. The highest commission error (25%) occurred at a cutting event at Triesdorf
on October 27th, 2016. For this date, no significant correlation could be established between the
backscattering coefficient and the vegetation biomass. Since various factors, i.e., system-dependent
(e.g., radar wavelength, mean incidence angle, polarization) and target/weather-dependent (e.g., wind
speed, temperature and precipitation) influence the microwave scattering of grassland, it is difficult to
isolate a single factor.

Weather clearly affects both structure and water content of grass significantly. For example,
Wooding et al. proved that rainfall of about 10 mm prior to SAR acquisition has led to increases
of 1–4 dB in the backscattering of grass, bare soil and wheat-bare soil cover types [48] while Wind
affects plant microclimates. Temperature changes are important due to the highly differing dielectric
properties of ice and liquid water. Moreover, different species associations showed differences in the
backscatter response that were partially related to herbage height. Furthermore, these differences
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were significantly influenced by canopy structure and underlying soil condition and biomass water
content [48].

Therefore, we checked the weather data before and during October 27. Since the weather stations
in the study site did not record any rainfall or wind speed five days before Sentinel-1 overpass, a
direct influence of rainfall or wind can be neglected. The species composition of the test fields is
unknown. However, we assume that the species composition does not significantly change between
the third/fourth and fifth cut. In spring and early summer, early cutting may positively influence
the occurrence of rapidly growing grasses while smaller growing grasses and herbs may be reduced.
Therefore, the species composition may be of special interest when analyzing different grassland types.

Furthermore, soil moisture influences the backscattering signal. Schieche et al. proved that the
soil water content has little influence on C-Band backscatter in the presence of dense vegetation [25],
which may explain why the proposed approach failed to detect a cutting event at Triesdorf on October
27th, 2016. In Germany, the grassland fields that were cut 4–5 times a year show a low amount of
biomass in autumn (the field measurements indicate less than 100 grams/sqm) in comparison with
the biomass amount in April–May (more than 3.0 kg/sqm of biomass on the study sites). We assume
that there are different contributions of soil backscatter in October and late spring/summer [49,50].
Therefore, a sparsely vegetated field with a high amount of soil contributing to the total backscatter
probably caused the outlier event on October 27.

We assume that model performance can be improved by adding further input parameters, such
as the average incidence angle. A shallow incidence angle data would allow us to retrieve more
vegetation signals. Furthermore, the underlying soil is more evident at steeper incidence angles as
the SAR pulse travel length through the vegetation layer increases with an increase in the incidence
angle. Moreover, Ulaby et al. demonstrated the effect of varying incidence angles on backscattering
coefficients along the crop cycle [51]. They mentioned that the difference can reach 0.35 dB0−1 in
C-band over bare soils and decreases to a value close to zero when the surface is fully vegetated (about
0.05 dB0−1). Tamm et al. demonstrated that median VV and VH polarization coherence values were
significantly higher after a mowing event [24]. Therefore, the use of interferometric coherence could
also be beneficial for increasing the performance of the model.

6. Conclusions

The aim of this study was to demonstrate the capability of multilayer perceptron neural networks
as an automated method for grassland cutting status detection. There were four different sets of input
parameters, which include (a) VV and VH parameters for the checking date; (b) VV and VH parameters
of 9 days and 18 days before the checking dates plus set ‘a’; (c) homogeneity and entropy parameters
(for VV and VH polarizations) for the checking date plus set ‘b’; and (d) contrast and dissimilarity
parameters (for VV and VH polarizations) for the checking date plus ‘c’. These sets of parameters were
used for model development in order to assess the influence of different inputs on model accuracies.

We used four different setups with an increasing number of input parameters (2 to 14, including
VV and VH parameters for the checking date as well as 9 days and 18 days before the checking dates,
homogeneity, entropy, contrast and dissimilarity).

Twenty-one different models with varying numbers of hidden nodes (for each input set) were
separately trained. The network with 14 input parameters and 31 hidden nodes performed best in
terms of generalization, time load and accuracy (overall accuracy of 85.71% for the validation dataset).
The results demonstrate that the machine learning inversion model is capable of detecting grassland
cutting status with a good level of precision. Nevertheless, multilayer perceptron models can be
enhanced by a larger and more diverse training/testing dataset.

Concerning polarization as a system-dependent influencing factor, several studies have reported
stronger backscatter from grass in VV polarization compared to HH polarization, which interacts
more strongly with broad-leaved canopies [52,53]. The geometric and dielectric properties of different
grassland types change rapidly over the year, which alters the backscatter signal response. For each
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acquisition date, the test fields across the study areas are under heterogeneous conditions due to
differences in grazing intensity and moisture conditions. As a result, it seems infeasible to determine a
single wavelength or polarization that is best suited to detect cutting events.

We suggest that model performance might be further improved by adding different frequencies,
angles of observation and polarization as input parameters. However, the presented model
demonstrated the general applicability of neural network approaches and SAR data for cutting
status detection.
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