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Abstract: Feature extraction in cloud shadows is a difficult problem in the field of optical remote
sensing. The key to solving this problem is to improve the accuracy of classification algorithms
by fusing multi-source remotely sensed data. Hyperspectral data have rich spectral information
but highly suffer from cloud shadows, whereas light detection and ranging (LiDAR) data can be
acquired from beneath clouds to provide accurate height information. In this study, fused airborne
LiDAR and hyperspectral data were used to extract urban objects in cloud shadows using the
following steps: (1) a series of LiDAR and hyperspectral metrics were extracted and selected; (2) cloud
shadows were extracted; (3) the new proposed approach was used by combining a pixel-based
support vector machine (SVM) and object-based classifiers to extract urban objects in cloud shadows;
(4) a pixel-based SVM classifier was used for the classification of the whole study area with the
selected metrics; (5) a decision-fusion strategy was employed to get the final results for the whole
study area; (6) accuracy assessment was conducted. Compared with the SVM classification results,
the decision-fusion results of the combined SVM and object-based classifiers show that the overall
classification accuracy is improved by 5.00% (from 87.30% to 92.30%). The experimental results
confirm that the proposed method is very effective for urban object extraction in cloud shadows
and thus improve urban applications such as urban green land management, land use analysis,
and impervious surface assessment.

Keywords: LiDAR data; hyperspectral data; shadow extraction; decision fusion; multi-resolution
object-based classifier; support vector machine classifier

1. Introduction

With the acceleration of urbanization, the problems of urban population expansion, resource
shortage and traffic congestion are becoming increasingly serious. The trend in urban development
is the increasing construction of smart cities according to appropriate spatial information, thereby
improving the efficiency of urban management. The ability to acquire information about urban
objects quickly and accurately is an important factor to ensure the smooth progress of intelligent cities.
With the advantages of providing a synoptic view and rich spatial and spectral information, remote
sensing can accurately obtain urban object information at various scales [1–9], and is becoming one of
the most effective tools for urban object extraction [10].

Up to now, many scholars have carried out relevant studies on the extraction of urban objects
with medium- and high-resolution optical images. With the accelerating process of urbanization,
the types of urban objects are becoming increasingly complex, which makes urban object extraction
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more challenging. Examples of such challenges are as follows: (1) similar spectral characteristics are
shared by many different urban land types, such as cement pavements, parking_lots, roads, rooftops,
sidewalks, and buildings. Remote sensing data from a single source cannot meet the needs of current
remote sensing applications [11,12]; (2) high-resolution optical remote sensing images may encounter
serious problems with shadows, such as building shadows and cloud shadows; (3) medium-resolution
optical remote sensing images have the mixed pixel problem; (4) the acquisition of optical remote
sensing images is easily affected by the weather, which leads to weak spectral information in shadow
areas. To overcome these limitations of single-source remote sensing data, studies have been carried
out on urban object extraction that is based on multi-source remote sensing data [7–9,13].

With the continuous development of sensor technology, we can obtain different remote sensing
images more conveniently and quickly, and this provides a prerequisite for multi-source image
data fusion. Airborne hyperspectral data can acquire hundreds of continuous spectral bands that
can provide the precise spectral information of land objects [14]. High-density light detection and
ranging (LiDAR) point cloud data can provide precise height information [15]. These two data
sources are complementary to each other, so their combination is very helpful for obtaining spectral
and height information classification [16]. Up to now, many scholars have applied fused airborne
LiDAR and hyperspectral data in various studies for a variety of purposes such as tree species
classification [17–21], forest biomass estimation [22–25], and urban object extraction [26–36]. These
studies have mainly concentrated on the following aspects: (1) Extraction of feature parameters,
such as attribute profile parameters [26] and morphological attribute profile [27]. (2) Fusion methods,
such as pixel-level [28–32], feature-level [27,30,33], and decision-level fusion [34–37]. Among them,
pixel-level fusion mainly uses layer stacked feature parameters. Luo et al. [31] fused LiDAR and
hyperspectral data by layer stacking, and they employed the maximum likelihood and support
vector machine (SVM) classifiers to classify urban objects. Compared with the classification results
of hyperspectral data alone, the overall accuracy of layer stacking fused hyperspectral and LiDAR
data was improved by about 9.00%. Feature-level fusion is a method in which features are derived
first, and comprehensive analysis and processing are then carried out. Man et al. [30] proposed
new methods to fuse LiDAR and hyperspectral data in pixel-level and feature-level fusion, and they
used object-based and SVM classifiers to extract urban land use information. In comparison with
hyperspectral data alone, hyperspectral-LiDAR data fusion improved the overall accuracy by 6.80%
(from 81.70% to 88.50%) when the SVM classifier was used. Meanwhile, compared with the SVM
classifier alone, the combined SVM and object-based method improved the overall accuracy by 7.10%
(from 87.60% to 94.70%). Zhang et al. [27] fused LiDAR and hyperspectral data in feature-level fusion,
and improved the overall accuracy from 80.49% to 89.93% in comparison with hyperspectral data
alone. Decision level fusion is used to classify and identify each image individually, and then get the
optimal decision results. Zhong et al. [36] fused LiDAR and hyperspectral data in decision-level fusion,
and improved the overall accuracy from 87.80% to 90.80% when compared with hyperspectral data
alone. Bigdeli et al. [34] applied a decision-fusion method based on multiple support vector machine
system for fusing hyperspectral and LiDAR data, the overall accuracy was improved from 88.00% to
91.00% in comparison with hyperspectral data alone. (3) Classification methods have included spectral
angle mapping [28], random forest [32,38,39], maximum likelihood classification [28,29,31,33,36,40],
support vector machine [29,31,34,36,38–40], and object-based classification [41,42]. In general, many
studies have shown that LiDAR and hyperspectral data fusion could overcome some of the limitations
of using a single data source for object extraction [43].

Although many studies have fused LiDAR and hyperspectral data for urban object extraction
and obtained improved classification results [31], there are still some problems that need to be further
investigated. For example, few studies have focused on urban object extraction in shadows by using
hyperspectral and LiDAR data. Against the background of accelerated urbanization, it is essential to
make full use of the advantages of multi-source remotely sensed data to improve the overall accuracy of
urban object extraction and support intelligent cities and urban planning activities. While the pixel-based
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SVM classifier works well with high-dimensional data classification, it is difficult to achieve high
classification accuracy using the pixel-based SVM classifier in shadow areas because of missing spectral
information. Besides that, the advantage of LiDAR height information is not fully utilized. Therefore,
there is a need to explore other methods for fusing LiDAR and hyperspectral data. Object-based
classification is an evolving technology that is driven by the understanding of objects rather than
pixels [44]. This study aims to extract urban objects in shadows using fused airborne LiDAR and
hyperspectral data, and utilizes the advantages of LiDAR data in shadows to improve the overall
accuracy of urban object extraction. We propose a new workflow to fuse hyperspectral and LiDAR data
for the classification of remotely sensed scenes with cloud shadows. The proposed method comprises
the following steps. Firstly, cloud shadow areas are extracted. Secondly, a multi-scale object-based
classification method is used to classify cloud shadow areas. Thirdly, the whole study area is classified
with pixel-based support vector machine algorithms. Finally, decision-level fusion is conducted to
improve the overall classification accuracy of the whole study area, including the cloud shadow areas.

The remainder of this paper is organized as follows: Section 2 describes the study area and
data; Section 3 describes the proposed workflow with a detailed description of the proposed method;
Section 4 presents the results and discussions; and Section 5 draws the conclusions.

2. Study Area and Data

2.1. Study Site

The study area is in Houston in the southeast of Texas, USA (Figure 1), covering an area of
approximately 4 km2, extending from 95◦19′13.56”W to 95◦22′9.94”W and 29◦43′0.96”N to 29◦43′32.34”N.

2.2. Datasets

The datasets used in this study are provided by the 2013 IEEE GRSS Data Fusion Contest [43] (URL:
http://www.grssieee.org/community/technical-commitees/data-fusion/) and include airborne
hyperspectral imagery, LiDAR point cloud data, training data and validation data.

2.2.1. LiDAR Data

The LiDAR data used in the present study were acquired on 22 June 2012 between the times
14:37:55 and 15:38:10 UTC (Coordinated Universal Time). The sensor recorded five returns and intensity
information at a platform altitude of 609.6 m, with an average point spacing of 0.74 m. In this study,
the intensity of LiDAR data was not calibrated, and the atmospheric effects were not considered.
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2.2.2. Hyperspectral Data

The hyperspectral imagery data were acquired on 23 June 2012 between the times of 17:37:10 and
17:39:50 UTC. The sensor is CASI and its above ground height is 1676.4 m. There are 144 spectral bands
in the 380-1050 nm region. The hyperspectral imagery was calibrated to at-sensor spectral radiance
units (SRUs), which are equivalent to units of µWcm−2sr−1nm−1. The spectral and spatial resolutions
were 4.8 nm and 2.5 m, respectively.

2.2.3. Training and Validation Data

In this study, 12 classes were identified: (1) grass; (2) grass_synthetic; (3) road; (4) soil; (5) railway;
(6) parking_lot; (7) tennis_court; (8) running_track; (9) water; (10) trees; (11) building; and (12) highway.
Training and validation samples for classification were both provided by the 2013 IEEE GRSS Data
Fusion Contest [43] (URL: http://www.grss-ieee.org/community/technical-commitees/data-fusion/).
Table 1 shows detailed information on the training and validation samples.

Table 1. Details of training and validation samples used for classification.

Sample No. Class
Training Validation

No. of Polygons No. of Pixels No. of Polygons No. of Pixels

1 grass 27 352 50 1731
2 grass_synthetic 2 192 1 505
3 road 14 140 35 891
4 soil 13 186 20 1056
5 railway 1 31 7 293
6 parking_lot 26 376 33 1306
7 tennis_ court 2 181 3 247
8 running_track 2 187 5 473
9 water 7 182 7 143
10 trees 15 173 49 880
11 building 51 341 100 1289
12 highway 5 109 7 299

3. Methodology

The methodology flowchart consists of six major parts: (1) data preprocessing; (2) cloud shadow
extraction; (3) extraction of urban objects from cloud shadow areas using a multi-scale object-based
classifier; (4) extraction of urban objects from the whole study area using a pixel-based SVM classifier;
(5) decision fusion of the classification results of shadow areas and the whole study area; (6) accuracy
assessment for evaluating the performance of the proposed method.

3.1. Data Preprocessing

The LiDAR point clouds were processed into four raster datasets: a digital surface model (DSM),
a digital elevation model (DEM), a normalized digital surface model (nDSM), and intensity imagery.
The detailed steps are as follows: (1) Terrasolid software was used to filter the raw point cloud data
into ground and non-ground points. (2) Inverse distance weighted interpolation (IDW) was used
to interpolate ground points to the DEM. (3) The first returns of the LiDAR point cloud data were
interpolated to create the DSM. (4) The nDSM was generated by subtracting the DEM from the DSM.
Finally, the intensity values of the LiDAR point cloud data were interpolated by IDW in ArcGIS 10.2.
The spatial resolution of the four raster datasets was 2.5 × 2.5 m.

Since the hyperspectral imagery has 144 narrow spectral bands, and some of these bands
are particularly affected by atmospheric effects, atmospheric correction is necessary during the
preprocessing of hyperspectral data. In this study, atmospheric correction was applied to the
hyperspectral data using the FLAASH model in ENVI 5.1. Then the hyperspectral imagery after
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atmospheric correction was processed to generate the normalized difference vegetation index (NDVI).
In order to avoid band redundancy [45–47], the 144 spectral bands of hyperspectral imagery were
processed using the minimum noise fraction rotation (MNF) and principal component analysis (PCA) in
ENVI 5.1. It has been demonstrated that the textural features derived from the gray-level co-occurrence
matrix (GLCM) can significantly improve the classification accuracy of satellite images [48,49].
Therefore, the first band of PCA was used to generate the GLCM for texture analysis.

The first 22 bands of MNF (MNF22), nDSM, intensity, GLCM homogeneity, GLCM dissimilarity,
and GLCM entropy were selected for urban land use classification. The pixel size of the above
parameters was 2.5 × 2.5 m. Figure 2 shows the flowchart of the whole study.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 
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3.2. Shadow Area Extraction

Usually, shadows refer to areas in which the imaging rays are completely or partially obscured by
obstacles. The pixel value of a shadow area is generally lower than that of the surrounding imaged
area. The loss of spectral information of ground objects in shadow areas increases the difficulty of
classification. To improve the accuracy of urban object extraction in shadow areas, it is necessary to
investigate new methods.

In recent years, many scholars have proposed a variety of shadow detection methods, such as
model based and shadow attribute-based detection methods [41,50–53]. Because the cloud shadow
area is very large in our study, and the derivation of the shadow area is not the primary goal of
this work, a simple shadow detection method based on area attribute filters was employed [50].
The attribute filters are connected operators. On the basis of a given criterion, attribute filters operate
on the connected components that compose an image. Each component of the image is evaluated
by the criterion. An arbitrary attribute γ (e.g., area, volume, etc.) of component C is compared
with a given reference value λ, which is the filter parameter. Taking γ(C) > λ as an example, if the
criterion is verified, the regions remain unaffected; otherwise, they will be set to the gray level of
a darker or brighter surrounding region, depending on the transformation used (i.e., thickening or
thinning). In this study, by gradually increasing the threshold of the area attribute, progressively more
bright objects were filtered out, leaving dark shadow areas. In this study area, two shadow areas
were detected: one is large and dark, and the other is small. As we conducted decision fusion of
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the classification results, the small shadow area was found to be too small to conduct classification
individually, let alone decision fusion of the final results. Therefore, only the large main shadow
area was chosen for the study. Then, the shadow areas were binarized and used as masks for the
subsequent object extraction. M = {mij} denotes the cloud-shadow mask, with pixel values of mij = 0
in the cloud-shadow region and mij = 1 in the shadow-free region. Figure 3 shows the hyperspectral
imagery in the shadow area in the true color display and false color display. The vegetation in the
shadow area is more apparent in the false color display of the hyperspectral data.
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3.3. Extraction of Urban Objects in Cloud Shadow Areas

Information extraction from shadow areas has been a difficult problem in the field of remote
sensing. This study mainly utilizes the advantage of airborne LiDAR data and an object-based
classification method to improve fusion classification accuracy.

Compared with traditional pixel-based classification methods, object-based classification is an
evolving technology that can make full use of spatial, texture, spectral, and other information of the fused
data, and it also can reduce the “salt and pepper effect”. Firstly, a multi-resolution segmentation algorithm
was used to segment imageries with a certain scale level. Secondly, threshold segmentation classification
was conducted to extract urban objects in shadow areas using attributes such as shape, length, and
area. As the process is complicated, more detailed information is given in the following sections, which
illustrate the images used in the segmentation and the parameters used in the classification. Figure 4
shows a detailed flowchart of the object-based classification in the shadow areas.

3.3.1. Image Segmentation

In object-based classification, segmentation aggregates pixels into objects according to their
similarity [44]. As the accuracy of image segmentation significantly influences the classification
accuracy [54], the process was performed using the multi-resolution segmentation algorithm (FNEA,
fractal net evolution approach) in Trimble eCognition®Developer 9.0. In order to avoid the subjectivity
of scale parameter selection and the time-consuming trial-and-error method, the estimation of scale
parameter 2 (ESP2) tool was selected to obtain the optimal scale parameter [55–58]. As an automated
tool for segmentation assessment, ESP2 can automatically identify suitable segmentation parameters
(SPs) for multi-resolution segmentation on the basis of local variance across scales. The advantages
of this strategy are that: (1) different layers have different weights; (2) the attribute (pixel value) and
shape of objects are taken into account in the segmentation process; (3) the method is flexible and can
make full use of the fused data. After image segmentation, different features were extracted from
spectral images to classify the urban objects in the cloud shadows.
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3.3.2. Classification Algorithms

(1) Extraction of Buildings

In the hyperspectral imagery, much of the spectral information of shadow areas was lost, so the
extraction of objects in shadow areas was difficult. However, some features were still identifiable;
for example, vegetation could be identified due to its strong reflectance in the near infrared band.
Therefore, we first analyzed the distribution of trees using the normalized difference vegetation index
(NDVI), and we then determined the threshold for separating vegetation and non-vegetation on
the basis of the NDVI image, which provided a theoretical basis for the subsequent classification.
Figure 5 shows the spectral reflectance curves of vegetation in shadow areas. Figure 6 (left) shows
the NDVI imagery of the shadow areas. Then, vegetation samples were selected randomly to get
their distribution in NDVI imagery, and Figure 6 (right) shows the distribution of vegetation samples
in different intervals of NDVI imagery. According to the statistics of sample spectral characteristics,
vegetation information in shadow areas was apparent, and the NDVI of vegetation in shadows was
greater than 0.3. In addition, the LiDAR height data could assist in the extraction of objects in the
shadows. Therefore, the fusion of hyperspectral and LiDAR data could produce better classification
results in shadow areas. In order to extract buildings, the nDSM data were first segmented into
homogeneous regions using the multi-resolution segmentation method (MRS). The MRS algorithm
was run using a shape parameter of 0.4 and a compactness parameter of 0.2. The optimal segmentation
scale is 2 according to the calculation of ESP2. Here “scale” means the size of segmented objects,
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and “shape” and “compactness” are heterogeneity criteria used for merging neighboring objects. Firstly,
nDSM was segmented, and then height and NDVI thresholds were used to separate non-ground objects
from trees. Secondly, the extracted small objects were merged into large objects. Finally, the geometry
parameters (e.g., area, length) were used to separate buildings from other non-ground urban objects.
The rules for extracting buildings were set as follows:

• Mean nDSM ≥ 2 m and Mean NDVI ≤ 0.4;
• Merge the extracted segments;
• Length ≤ 450 m and Length/Width ≤ 10;
• Area ≥ 95 m2.
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Figure 6. Normalized difference vegetation index (NDVI) imagery of the shadow area (left) and the
distribution of vegetation samples in different intervals of the NDVI (right). Here, longitudinal and
transverse axes represent the number of samples and NDVI, respectively.

(2) Extraction of trees

In shadow areas, urban objects with height information include buildings, trees, and highways.
Therefore, trees were extracted using height information of the nDSM and NDVI. The nDSM data were
first segmented into homogeneous regions. Then, the scale, shape, and compact parameters were set
as 2, 0.4, and 0.2, respectively. After the nDSM was segmented, the height and NDVI thresholds were
used to separate trees from non-ground objects. Then, the extracted small objects were merged into
large objects. Finally, the geometry parameters (e.g., area, length) were used to separate trees from
other non-ground urban objects. The detailed rules were set as follows:

• Mean NDVI ≥ 0.4 and Mean nDSM ≥ 1 m;
• Merge the extracted segments;
• Area ≥ 5 m2.



Remote Sens. 2019, 11, 713 9 of 19

(3) Extraction of grass

In shadow areas, the NDVI could be used to separate vegetation and non-vegetation. In addition,
the height information of the nDSM could be used to separate trees and grass. Therefore, the rules for
the extraction of grass were set as follows:

• Mean NDVI ≥ 0.4 and Mean nDSM < 0.5 m;
• Assign the non-extracted objects to unclassified.

(4) Extraction of highways

Because of the spectral similarity, it is difficult to extract highways, railways, and roads, especially
in cloud shadow areas. Here, the unclassified areas were first used as a mask; then, the combined image
(Intensity + NDVI + PCA3) was segmented into homogeneous regions using the multi-resolution
segmentation method (MRS). The MRS algorithm was run using a shape parameter of 0.1 and a
compactness parameter of 0.5. The optimal segmentation scale is 60 according the calculation of ESP2.
Finally, the rules were set as follows:

• 10 ≤ Intensity ≤ 71;
• Merge the extracted segments;
• Length ≥ 750 m;
• 2100 m2 < Area < 55,000 m2.

(5) Extraction of railways and roads

Because of the spectral similarity and cloud shadow effect, it is difficult to separate roads from
railways. Using the same processing steps as (4) above, the scale, shape, and compact parameters were
set as 5, 0.1, and 0.5. Finally, the rules for railway extraction were set as:

• Mean nDSM ≥ 0 m;
• 55 < Intensity < 100;
• Merge the extracted segments;
• 125 m ≤ Length ≤ 500 m;
• 2.2 ≤ compactness ≤ 2.4.

(6) The rules for road extraction were set as:

• Mean nDSM ≥ 0m;
• Mean Intensity ≥ 10;
• 100 m ≤Length ≤ 300 m;

3.4. Extraction of Urban Objects in the Whole Study Area

As high-dimensional, multi-source data were used in this study, the traditional parametric classifiers
would have been inadequate. The support vector machine (SVM) classifier is a nonparametric algorithm
that can produce better classification results with limited training samples [59]. SVM is a supervised
machine learning method based on a set of theoretical machine learning algorithms [44,60]. The SVM
classification method is dependent on finding a separating hyperplane that provides the best classification
between two classes in a multi-dimensional feature space. In an Rn classification situation, the hyperplane
can be determined by the following expression. Here, (yi, xi) is a training sample; i = 1, 2, . . . . . . n; and
w is a vector that is perpendicular to the classification hyperplane.

{x ∈ Rn|(w ∗ x) + b = 0}, x ∈ Rn, b ∈ R (1)
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The hyperplane should maximize the distance between itself and the margin (Figure 7). Here,
the margin means the distance from hyperplane to the nearest sample. The larger the margin, the lower
the error of classification.

min
1 ≤ i ≤ k

yi(w ∗ xi + b) ≥ 1 (2)

where 1
‖w‖ is the distance from the nearest point to the hyperplane. The function can also be written as:

yi(w ∗ xi + b) ≥ 1 (3)

Finally, the classification plane that can produce the lowest ‖w‖2 is the optimal hyperplane.
In SVM, the linear and radial basis function (RBF) is frequently used [44,61], and therefore,

RBF was used in this study. The input parameters of SVM in the ENVI 5.1 software include “gamma”
(γ), “penalty parameter”, “pyramid levels”, and “classification probability threshold”. Since SVM is
sensitive to the selection of parameters, cross-validation was used to determine the optimal parameters
for the SVM classifier in this study. All of the samples were divided into five parts equally. Each part
of the samples was set as an individual validation sample, and the remaining parts were set as training
samples. Finally, the average of the five classification accuracies was used as the performance index of
the classifier. Using the MATLAB platform, the search range of “penalty parameter” and “gamma” (γ)
was set as 0.01–32,768. After cross-validation, the optimal penalty parameter (C) was 1024, the optimal
gamma parameter (γ) was 0.045, and the accuracy of cross-validation was 98.70%. In this study, the γ

parameter was set to 0.045, the penalty parameter was set to 1024, the pyramid parameter was set to 0,
and the classification probability threshold was set to 0.
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3.5. Decision Fusion

The definition of image fusion is the combination of two or more different images into a new
image using certain algorithms. On the basis of the stage at which fusion happens, image fusion can be
divided into three levels: pixel-level, feature-level, and decision-level [62,63]. Decision-level fusion is
performed by classifying and identifying each image individually and then getting the optimal decision
results. In this study, decision-level fusion was used to make full use of the rich spectral information of
hyperspectral data and the advantages of airborne LiDAR data for urban object extraction in shadow
areas. As expressed in Equation (4), the final classification map is obtained by the fusion of the two
maps: Mapall and Mapshadow.

Map f usion = Mapall + Mapshadow (4)

In the above function, Map f usion means the final classification map after the decision fusion;
Mapall means the classification result obtained by using the SVM classifier and the training samples;



Remote Sens. 2019, 11, 713 11 of 19

Mapshadow means the classification results in shadow areas obtained by using the object-based classifier.
The decision fusion process was conducted in ArcGIS 10.2 software. As shown in Table 1, each number
(class code) represents a type of urban object: for example, 1 represents grass, and 10 represents tree.
The detailed fusion steps are as follows:

(1) Subset Mapall with the boundary of the shadow areas;
(2) The class code of the urban objects in Mapshadow defined as trees, buildings, grass, highway,

and railway was set to 0, and the class code of the other objects was set to 1;
(3) The raster calculator in ArcGIS 10.2 software was used to multiple (1) by (2);
(4) The class code of the other objects was set to 0;
(5) The raster calculator was used to add (3) and (4).

3.6. Accuracy Assessment

To evaluate the effectiveness of the integration of hyperspectral data and LiDAR data for the
classification of urban shadow areas, confusion matrix analysis and the accuracy index (AI) were
used [64]. The confusion matrix provides the overall accuracy (OA), the user’s accuracy (UA), and the
producer’s accuracy (PA) [30,65]. The confusion matrix is composed of m columns by m rows. By using
the confusion matrix, one could determine the number of samples and the number of misclassified
samples/missing samples and then analyze the accuracy. The formula for calculating the AI coefficient
is shown in Equation (5) [66]:

AI(%) =

[
n− (OE + CE)

n

]
× 100 (5)

where OE represents omission error, and CE represents commission error.
In addition, McNemar’s test is conducted to assess the levels of statistically significant difference

for all the classification accuracies [44,67–70]. McNemar’s test is a nonparametric test applied to
confusion matrices which have a 2 × 2 dimension. The test is based on chi-square (χ2) statistics,
which is computed from two error matrices and given as Equation (6) [44].

χ2 =
( f12 − f21)

2

( f12 + f21)
(6)

Here, f12 represents the number of cases that are wrongly classified by classifier 1 but are correctly
classified by classifier 2, while f21 represents the number of cases that are correctly classified by
classifier 1 but are wrongly classified by classifier 2.

4. Results and Discussion

4.1. Classification Results of Cloud Shadow Areas

The classified image in the shadow area is shown in Figure 8. The results show the capability of
the proposed object-based method in hyperspectral and LiDAR data fusion for mapping objects in
shadow areas. The proposed object-based classification method can employ the attribute (pixel value)
and the shape of objects to make full use of the advantages of the height information from LiDAR data
and the spectral information from hyperspectral data. In addition, the proposed method can mitigate
the effect of shadows. As can be seen, the nDSM imagery in Figure 9 shows the exact distribution of
urban objects with height information, such as buildings and trees, while the hyperspectral imagery
in Figure 9 shows the urban objects in shadow areas, especially vegetation in false color display.
Therefore, by visual comparison of Figures 8 and 9, the proposed method can classify buildings, trees,
and grasses more accurately than the SVM classifier.



Remote Sens. 2019, 11, 713 12 of 19
Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 

 

 

Figure 8. Classified maps in the shadow area obtained from object-based classification (left) and the 
traditional pixel-based support vector machine (SVM) classifier (right). 

 

Figure 9. The nDSM imagery of the cloud shadow area (left) and the hyperspectral data of the cloud 
shadow area (right). 

4.2. The Decision-fusion Result of the Whole Study Area 

The nDSM data are relatively consistent and stable across heterogeneous urban areas, so it is 
possible to extract objects with height information using the object-based classification method. The 
decision fusion result of the two classifiers is much better than that of the SVM classifier. The resulting 
classified images of the whole study area are shown in Figure 10. The decision-fusion results of SVM 
and OB (object-based classifier) are much better than those of SVM only.  

 

 

 

Figure 8. Classified maps in the shadow area obtained from object-based classification (left) and the
traditional pixel-based support vector machine (SVM) classifier (right).

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 

 

 

Figure 8. Classified maps in the shadow area obtained from object-based classification (left) and the 
traditional pixel-based support vector machine (SVM) classifier (right). 

 

Figure 9. The nDSM imagery of the cloud shadow area (left) and the hyperspectral data of the cloud 
shadow area (right). 

4.2. The Decision-fusion Result of the Whole Study Area 

The nDSM data are relatively consistent and stable across heterogeneous urban areas, so it is 
possible to extract objects with height information using the object-based classification method. The 
decision fusion result of the two classifiers is much better than that of the SVM classifier. The resulting 
classified images of the whole study area are shown in Figure 10. The decision-fusion results of SVM 
and OB (object-based classifier) are much better than those of SVM only.  

 

 

 

Figure 9. The nDSM imagery of the cloud shadow area (left) and the hyperspectral data of the cloud
shadow area (right).

4.2. The Decision-fusion Result of the Whole Study Area

The nDSM data are relatively consistent and stable across heterogeneous urban areas, so it
is possible to extract objects with height information using the object-based classification method.
The decision fusion result of the two classifiers is much better than that of the SVM classifier. The
resulting classified images of the whole study area are shown in Figure 10. The decision-fusion results
of SVM and OB (object-based classifier) are much better than those of SVM only.
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4.3. Accuracy Assessment of the Final Decision Fusion Result

In order to quantify the performance of the proposed method in shadow object extraction, the SVM
classification results of the whole study area and the final decision fusion result were compared for
accuracy assessment. The accuracy assessments of the classification results are shown in Tables 2 and 3.
Table 2 indicates that, compared with the SVM classifier only, the fused SVM and OB classifier improved
the overall accuracy by 5.00% (from 87.30% to 92.30%). The error statistics of the accuracy assessment
for 12 classes are listed in Table 3. Since the overall classification results using the kappa-statistic were
close, the significance of the results using McNemar’s test statistic was valuated. A total of 14,202 pixels
were compared for the accuracy assessment. The non-diagonal cells in the error matrix that represent
incorrectly classified pixels after classification with the SVM classifier include 2868 pixels, and the
proposed method results include 1473 pixels. In contrast, the diagonal totals that represent the correctly
classified values for SVM include 12,412 pixels, and those for the proposed method’s classification
include 13,109 pixels. A two-by-two contingency matrix was constructed for the above correctly
classified and incorrectly classified pixels and then evaluated using McNemar’s test. The results
indicate a chi-square test statistic value of 1304.18, which exceeds the chi-square test critical value
of 11.07 (alpha = 0.05) [44]. Thus, the superiority of the proposed method over SVM is accepted.
As mentioned earlier, the same training and validation samples were used for all of the classification
experiments. Therefore, the proposed method (SVM + OB) significantly improves the classification
accuracy, which also means that the proposed object-based classification method can effectively extract
urban objects in shadow areas with fused hyperspectral and LiDAR data.

Table 2. Comparison of overall accuracy of SVM and SVM + OB (object-based) decision-fusion results
using fused hyperspectral and LiDAR data. OA means overall accuracy.

Data
SVM SVM + OB

OA (%) Kappa Coefficient OA (%) Kappa Coefficient

hyperspectral + LiDAR 87.30% 0.85 92.30% 0.91

Table 3. Classification results at the class level using SVM and SVM + OB classifiers. PA, producer’s
accuracy; UA, user’s accuracy; AI, accuracy index.

Classes
SVM SVM + OB

PA (%) UA (%) AI (%) PA (%) UA (%) AI (%)

grass_synthetic 98.94 100.00 98.93 98.94 100.00 98.93
tree 90.61 99.09 88.71 97.12 96.58 93.49
soil 100.00 98.23 98.20 100.00 98.23 98.20

water 98.60 100.00 98.58 98.60 100.00 98.58
road 71.42 88.85 47.42 71.42 88.85 47.42

highway 57.58 83.63 6.76 89.54 88.82 75.72
railway 96.85 71.35 56.58 96.02 85.44 78.81

tennis_court 100.00 92.31 91.66 100.00 92.31 91.66
running_track 98.77 99.65 98.40 98.77 99.65 98.40

grass 94.18 99.57 93.38 98.98 99.22 98.17
building 88.95 80.69 63.64 94.50 92.85 86.08

parking_lot 81.02 75.57 44.25 81.02 79.75 51.18

As seen in Table 3, all classes reach a high accuracy except the road, railway, highway, parking_lot,
and building classes. Compared with the SVM classifier only, the proposed method improves AI of
trees from 88.71% to 93.49%, the AI of highways from 6.76% to 75.72%, the AI of railways from 56.58%
to 78.81%, the AI of grass from 93.38% to 98.17%, and the AI of buildings from 63.64% to 86.08%.
Using the proposed method to extract shadow area objects improves the overall accuracy from 87.30%
to 92.30%, and it also improves the AI of the tree, highway, railway, grass, and building classes by
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4.78%, 68.96%, 22.23%, 4.79%, and 22.44%, respectively. In order to better display the performance
of object-based classification, the classification results of buildings, trees, grass, and highway using
SVM and object-based classifiers are shown in Figure 11. Figure 11 compares the classified urban
objects in shadow areas (especially buildings, trees, grass, and highway) resulting from the proposed
object-based classification method with those resulting from the traditional pixel-based SVM classifier.
As shown in Figure 11 (the blue circle), more buildings (especially residential areas) have been extracted.
In addition, the shapes of the buildings are more complete. As shown in Figure 11, it was not possible to
extract trees in shadow areas using the traditional pixel-based SVM classifier, whereas the object-based
classifier could extract most of the trees in shadow areas. This is mainly because the object-based
classifier can make full use of the height information in the nDSM and spectral information of the
NDVI imagery, as is the case for the grass. Highways are difficult to extract from hyperspectral imagery,
let alone highways in shaded areas. In this study, intensity imagery derived from LiDAR data was also
used to extract highways.
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4.4. Discussion

In cloud shadow areas, the spectra of the objects are missing, making it difficult to extract urban
objects. In this study, two different types of remotely sensed data and a proposed classification method
were used to extract objects in cloud shadow areas. The advantages of the method are that: (1) the
pixel-based SVM classifier is effective for high -dimensional data classification; (2) the object-based
classification method is suitable for classifying nDSM data [71]; (3) decision fusion can fuse different
types of data from different sensors, and it is independent of errors in data registration. In this respect, the
decision-fusion method is much better than fusion at other levels [72,73]. The object-based classification
method uses LiDAR elevation data and shape attributes to separate buildings, trees, and elevated
roads. Usually, these are always above ground and part of the highway is aboveground. The elevation
information of the nDSM was used to extract the above objects from others. Furthermore, although
some spectral information was missing, the NDVI of trees and grass was still obvious and valuable for
the separation of vegetation and non-vegetation areas. Therefore, the height information of the nDSM,
the spectral information of the NDVI, and the flexible parameters of the object-based classification
method were used for the object extraction from cloud shadows. Table 2 shows that the overall accuracy
increases from 87.30% to 92.30%. Table 3 shows increased accuracy for buildings, highways, trees,
grasses, and railways. Figure 11 also shows the advantage of the object-based classification method in
cloud shadow areas using fused hyperspectral-LiDAR data. All of these results indicate the effectiveness
of the proposed method.

The results from this study can also be compared with other classifications using fused
hyperspectral and LiDAR data. Man et al. [30] fused LiDAR and hyperspectral data in a pixel-level
and feature-level fusion strategy, and the overall accuracy of the classification was improved to 94.70%.
Because different segmentation methods and spectral band combinations were used, the threshold
values are a little different between the two studies. Luo et al. [50] classified the cloud-shadow area
with fused hyperspectral and LiDAR data. This study mainly focused on the selection of training data
in cloud-shadow areas. The proposed method improves the overall accuracy by 5.00% for the whole
study area. However, the scale parameter of the segmentation was unsuitable for all classes. Different
urban objects have different heterogeneities. In order to satisfy the best segmentation effect of different
urban objects, it is necessary to find the most suitable segmentation scale and obtain different types of
image objects. Therefore, the multi-resolution segmentation method was used for the segmentation
and the subsequent classification. In summary, the method proposed in this study is valuable for
improving the accuracy of urban land cover classification in cloud shadows.

5. Conclusions

The aims of this study are to explore the performance of a proposed method for the extraction of
objects in shadow areas using fused hyperspectral and LiDAR data. Although previous studies have
evaluated the performance of fused hyperspectral and LiDAR data in urban land use classification,
to our knowledge, few studies have attempted to explore the fused hyperspectral and LiDAR data
in shadow areas, especially using the object-based hierarchical classification method. This study
combined a pixel-based SVM classifier and an object-based hierarchical classifier to extract urban
objects in shadow areas using fused hyperspectral and LiDAR data. The following conclusions can be
drawn on the basis of these results.

(1) The proposed method yields better accuracy and is confirmed by visual interpretation in urban
shadow areas. The decision fusion results of the SVM and object-based classifiers improve the overall
classification accuracy by 5.00% (from 87.30% to 92.30%). The overall accuracy improvement mainly
occurs in the extraction of objects in the shadow area. In particular, this was observed for the classes
of tree (AI increased from 88.71% to 93.49%), highway (AI increased from 6.76% to 75.72%), railway
(AI increased from 56.58% to 78.81%), grass (AI increased from 93.38% to 98.17%), and building (AI
increased from 63.64% to 86.08%). This is mainly because of the height information of the LiDAR
datasets and the flexibility of the object-based classifier, which was very helpful for the separation of
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trees and low vegetation, buildings, and roads. Overall, the results from this study suggest that the
combination of the pixel-based SVM classifier and object-based classifier with fused hyperspectral
and LiDAR data has considerable potential to achieve high classification accuracy in urban land use
classification, especially for urban object extraction in shadow areas.

(2) Compared with the pixel-level fusion of hyperspectral and LiDAR data, the decision-level
fusion of pixel- and object-based classifications is very effective for urban object extraction in shadow
areas. However, the segmentation threshold values and rules used in this study may not be readily
applicable to other urban areas using the same remotely sensed data.

(3) In the future, the object-based classifier will be applied to the whole study area, and decision
level will be fused with the pixel-based SVM classifier in order to obtain a better result and further
evaluate the performance of the proposed method for the whole study area. Furthermore, more
classification algorithms and multi-source remote sensing data will also be considered to further
improve the classification results of the shadow areas.
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