Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”
Abstract
:1. Introduction
2. Overview of Contributions
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Wind Energy Association. Available online: https://wwindea.org/information-2/information/ (accessed on 22 March 2019).
- WindScanner.eu. Available online: http://www.windscanner.eu/ (accessed on 22 March 2019).
- Mikkelsen, T.; Siggaard Knudsen, S.; Sjöholm, M.; Angelou, N.; Pedersen, A.T. WindScanner.eu—A new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy. In Proceedings of the International Conference on Wind Energy: Materials, Engineering and Policies (WEMEP-2012), Hyderabad, India, 22 December 2012. [Google Scholar]
- Jørgensen, H.E.; Mikkelsen, T.; Mann, J.; Bryce, D.; Coffey, A.; Harris, M.; Smith, D. Site wind field determination using a CW Doppler lidar - comparison with cup anemometers at Risø. In Proceedings of the Special Topic Conference: The Science of Making Torque from Wind, Delft, The Netherlands, 19 April 2004; Delft University of Technology: Delft, The Netherlands, 2004; pp. 261–266. [Google Scholar]
- Peña, A.; Hasager, C.B.; Badger, M.; Barthelmie, R.J.; Bingöl, F.; Cariou, J.-P.; Emeis, S.; Frandsen, S.T.; Harris, M.; Karagali, I. Remote Sensing for Wind Energy. DTU Wind Energy. Available online: http://orbit.dtu.dk/files/111814239/DTU_Wind_Energy_Report_E_0084.pdf (accessed on 22 March 2019).
- Gryning, S.-E.; Mikkelsen, T.K.; Baehr, C.; Dabas, A.; Gómez Arranz, P.; O’Connor, E.; Rottner, L.; Sjöholm, M.; Suomi, I.; Vasiljević, N. Measurement methodologies for wind energy based on ground-level remote sensing. In Renewable Energy Forecasting: From Models to Applications; Kariniotakis, G., Ed.; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Special Issue “Remote Sensing for Wind Energy” 2016 A special issue of Remote Sensing (ISSN 2072-4292). Available online: https://www.mdpi.com/journal/remotesensing/special_issues/wind_energy_sensing (accessed on 22 March 2019).
- Kumer, V.-M.; Reuder, J.; Oftedal Eikill, R. Characterization of Turbulence in Wind Turbine Wakes under Different Stability Conditions from Static Doppler LiDAR Measurements. Remote Sens. 2017, 9, 242. [Google Scholar] [CrossRef]
- Doubrawa, P.; Barthelmie, R.J.; Wang, H.; Pryor, S.C.; Churchfield, M.J. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements. Remote Sens. 2016, 8, 939. [Google Scholar] [CrossRef]
- Van Dooren, M.F.; Trabucchi, D.; Kühn, M. A Methodology for the Reconstruction of 2D Horizontal Wind Fields of Wind Turbine Wakes Based on Dual-Doppler Lidar Measurements. Remote Sens. 2016, 8, 809. [Google Scholar] [CrossRef]
- Borraccino, A.; Courtney, M.; Wagner, R. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars. Remote Sens. 2016, 8, 907. [Google Scholar] [CrossRef]
- Pauscher, L.; Vasiljević, N.; Callies, D.; Lea, G.; Mann, J.; Klaas, T.; Hieronimus, J.; Gottschall, J.; Schwesig, A.; Kühn, M.; et al. An Inter-Comparison Study of Multi- and DBS Lidar Measurements in Complex Terrain. Remote Sens. 2016, 8, 782. [Google Scholar] [CrossRef]
- Pauscher, L.; Vasiljevic, N.; Callies, D.; Lea, G.; Mann, J.; Klaas, T.; Hieronimus, J.; Gottschall, J.; Schwesig, A.; Kühn, M.; et al. Erratum: Pauscher, L., et al. An Inter-Comparison Study of Multi- and DBS Lidar Measurements in Complex Terrain. Remote Sens. 2016, 8, 782 . Remote Sens. 2017, 9, 667. [Google Scholar] [CrossRef]
- Floors, R.; Peña, A.; Lea, G.; Vasiljević, N.; Simon, E.; Courtney, M. The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds. Remote Sens. 2016, 8, 884. [Google Scholar] [CrossRef]
- Kim, H.-G.; Jeon, W.-H.; Kim, D.-H. Wind Resource Assessment for High-Rise BIWT Using RS-NWP-CFD. Remote Sens. 2016, 8, 1019. [Google Scholar] [CrossRef]
- Bos, R.; Giyanani, A.; Bierbooms, W. Assessing the Severity of Wind Gusts with Lidar. Remote Sens. 2016, 8, 758. [Google Scholar] [CrossRef]
- Vasiljević, N.; Lea, G.; Courtney, M.; Cariou, J.-P.; Mann, J.; Mikkelsen, T. Long-Range WindScanner System. Remote Sens. 2016, 8, 896. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Guo, P. A Case Study of Land-Surface-Temperature Impact from Large-Scale Deployment of Wind Farms in China from Guazhou. Remote Sens. 2016, 8, 790. [Google Scholar] [CrossRef]
- Hasager, C.B.; Astrup, P.; Zhu, R.; Chang, R.; Badger, M.; Hahmann, A.N. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea. Remote Sens. 2016, 8, 769. [Google Scholar] [CrossRef]
- Clifton, A.; Clive, P.; Gottschall, J.; Schlipf, D.; Simley, E.; Simmons, L.; Stein, D.; Trabucchi, D.; Vasiljević, N.; Würth, I. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sens. 2018, 10, 406. [Google Scholar] [CrossRef]
- Hill, C. Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind. Remote Sens. 2018, 10, 466. [Google Scholar] [CrossRef]
- Simley, E.; Fürst, H.; Haizmann, F.; Schlipf, D. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop. Remote Sens. 2018, 10, 863. [Google Scholar] [CrossRef]
- Carbajo Fuertes, F.; Markfort, C.D.; Porté-Agel, F. Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation. Remote Sens. 2018, 10, 668. [Google Scholar] [CrossRef]
- Carbajo Fuertes, F.; Porté-Agel, F. Using a Virtual Lidar Approach to Assess the Accuracy of the Volumetric Reconstruction of a Wind Turbine Wake. Remote Sens. 2018, 10, 721. [Google Scholar] [CrossRef]
- Zhou, K.; Cherukuru, N.; Sun, X.; Calhoun, R. Wind Gust Detection and Impact Prediction for Wind Turbines. Remote Sens. 2018, 10, 514. [Google Scholar] [CrossRef]
- Mayor, S.D.; Dérian, P. Comments on “Wind Gust Detection and Impact Prediction for Wind Turbines”. Remote Sens. 2018, 10, 1625. [Google Scholar] [CrossRef]
- Hofsäß, M.; Clifton, A.; Cheng, P.W. Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach. Remote Sens. 2018, 10, 1465. [Google Scholar] [CrossRef]
- Risan, A.; Lund, J.A.; Chang, C.-Y.; Sætran, L. Wind in Complex Terrain—Lidar Measurements for Evaluation of CFD Simulations. Remote Sens. 2018, 10, 59. [Google Scholar] [CrossRef]
- Zhang, J.A.; Atlas, R.; Emmitt, G.D.; Bucci, L.; Ryan, K. Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer. Remote Sens. 2018, 10, 825. [Google Scholar] [CrossRef]
- Valldecabres, L.; Nygaard, N.G.; Vera-Tudela, L.; Von Bremen, L.; Kühn, M. On the Use of Dual-Doppler Radar Measurements for Very Short-Term Wind Power Forecasts. Remote Sens. 2018, 10, 1701. [Google Scholar] [CrossRef]
- Shimada, S.; Takeyama, Y.; Kogaki, T.; Ohsawa, T.; Nakamura, S. Investigation of the Fetch Effect Using Onshore and Offshore Vertical LiDAR Devices. Remote Sens. 2018, 10, 1408. [Google Scholar] [CrossRef]
- Gottschall, J.; Catalano, E.; Dörenkämper, M.; Witha, B. The NEWA Ferry Lidar Experiment: Measuring Mesoscale Winds in the Southern Baltic Sea. Remote Sens. 2018, 10, 1620. [Google Scholar] [CrossRef]
- Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J.; Salcedo, A.; Rocadenbosch, F. Estimation of the Motion-Induced Horizontal-Wind-Speed Standard Deviation in an Offshore Doppler Lidar. Remote Sens. 2018, 10, 2037. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, X.; Zhang, K.; Li, Z.; Huang, W.; Mansaray, L.R.; Liu, W.; Wang, X.; Gao, J.; Huang, J. Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sens. 2018, 10, 100. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasager, C.B.; Sjöholm, M. Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”. Remote Sens. 2019, 11, 781. https://doi.org/10.3390/rs11070781
Hasager CB, Sjöholm M. Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”. Remote Sensing. 2019; 11(7):781. https://doi.org/10.3390/rs11070781
Chicago/Turabian StyleHasager, Charlotte Bay, and Mikael Sjöholm. 2019. "Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”" Remote Sensing 11, no. 7: 781. https://doi.org/10.3390/rs11070781
APA StyleHasager, C. B., & Sjöholm, M. (2019). Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”. Remote Sensing, 11(7), 781. https://doi.org/10.3390/rs11070781