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Abstract: Ocean salinity has an important impact on marine environment simulations. The Soil
Moisture and Ocean Salinity (SMOS) mission is the first satellite in the world to provide large-scale
global salinity observations of the oceans. Salinity remote sensing observations in the open ocean have
been successfully applied in data assimilations, while SMOS salinity observations contain large errors
in the coastal ocean (including the South China Sea (SCS)) and high latitudes and cannot be effectively
applied in ocean data assimilations. In this paper, the SMOS salinity observation data are corrected
with the Generalized Regression Neural Network (GRNN) in data assimilation preprocessing, which
shows that after correction, the bias and root mean square error (RMSE) of the SMOS sea surface
salinity (SSS) compared with the Argo observations can be reduced from 0.155 PSU and 0.415 PSU to
−0.003 PSU and 0.112 PSU, respectively, in the South China Sea. The effect is equally significant in
the northwestern Pacific region. The preprocessed salinity data were applied to an assimilation in a
coastal region for the first time. The six groups of assimilation experiments set in the South China
Sea showed that the assimilation of corrected SMOS SSS can effectively improve the upper ocean
salinity simulation.

Keywords: SMOS; SSS preprocessing; Generalized Regression Neural Network (GRNN); data
assimilation; subsurface salinity

1. Introduction

Ocean data assimilation can provide better initial and boundary conditions for ocean numerical
simulations, thus improving the forecasts of ocean numerical models. Early ocean data assimilation
mainly involves univariate assimilation, i.e., only temperature profiles are assimilated and
improved [1–4]. The adjustment of other variables depends entirely on model dynamics which
may deteriorate the density field [5]. Considering the importance of salinity on the density field [6,7],
methods of simultaneously assimilating the temperature and salinity fields have been gradually
proposed. In regions lacking salinity observations, the salinity field is adjusted based on the
temperature/salinity(T/S) relationship [8,9]. Before 2009, only in situ salinity profile data were
available [10]. Despite the high accuracy and vertical resolution, the spatial distribution of salinity
observation data was sparse due to the difficulty and expense of obtaining in situ observations [11].
Satellite remote sensing of salinity enables the acquirement of global scale observations on the sea
surface, making up for the sparseness of in situ observations, and providing a new observational
method for salinity data assimilation.
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In a study of sea surface salinity (SSS) assimilation, Hackert et al. [12] simultaneously assimilated
the gridded SSS and subsurface temperature from in situ observations using optimal interpolation in a
coupled model. The results showed that the assimilation of the SSS and subsurface temperature can
improve the El Nino Southern Oscillation (ENSO)’s forecasting ability better than only assimilating
the subsurface temperature. Hackert et al. [13] compared the effects of assimilating Aquarius SSS
and in situ SSS and found that satellite observations had a better effect due to the higher observation
density. Chakraborty et al. [14] used Singular Evolutive Extended Kalman (SEEK) to assimilate the
Aquarius SSS into a global ocean model and showed that the SSS assimilation could improve the sea
surface current field and assimilation of the sea surface temperature (SST) combined with the SSS, and
a better result was yielded. In terms of the salinity field simulation effect, the assimilation of satellite
SSS observations not only improves the sea surface salinity simulation but also improves simulation of
the salinity field in the upper layers of the open ocean [15,16]. However, the SSS assimilation effect
depends significantly on SSS data quality. Assimilation of SSS data with a lower accuracy may lead to
worse salinity fields [17].

The Soil Moisture and Ocean Salinity (SMOS) [18] satellite was launched in 2009 and remains
ongoing. Although satellites can provide abundant SSS data, the observations contain large errors
and cannot be directly applied to the assimilation system used in coastal areas (such as the China
Sea and Japan Sea) or at high latitudes [16,17,19–21]. Among the previous studies, Kohl et al. [17]
compared the SMOS dataset produced by the University of Hamburg based on the reprocessed ESA’s
L2 product (Version 5.50) with EN3 v2a data and they found that the root mean square error (RMSE) is
typically approximately 1 g/kg but can reach 3 g/kg in a few locations in the coastal regions and at high
latitudes. Lu et al. [16] compared five SMOS L3/L4 products produced by different retrieval algorithms
with Argo salinity measurements at 6 m; the large RMSE of five products compared with Argo data
in coastal regions can be partially explained by Ratio Frequency Interference (RFI) and the land–sea
contamination (LSC), and only a few observations were assimilated in the model after quality control
(see Figure 2 in [16]).Therefore, it is worthwhile to study the assimilation of satellite SSS into a model
for these regions.

The SMOS L3 SSS product released by the Barcelona Expert Center (BEC) is retrieved using a
debiased non-Bayesian method to remove the systematic part of RFI-induced and LSC-induced errors
of the retrieved salinities [22]. The advantage of this product over other SSS products is that the dataset
contains observations from both coastal regions and high latitudes. However, notably, the SSS data in
these areas still contain large errors, which is similar to that for the previous products [16] used in
the coastal region. Previous studies have shown that the employment of Neural Networks (NNs) is a
good method for retrieving and correcting remote sensing data. Vernieres et al. [15] proposed using a
Feed Forward Artificial Neural Network (FFANN) to correct the Aquarius SSS prior to assimilation.
The bias and RMSE of the assimilation experiment results are significantly reduced compared with the
in situ observations. Ammar et al. [23] proposed a series of NNs based on different incidence angles
to retrieve the SSS through SMOS temperature brightness. NNs have been applied widely in remote
sensing field so that the Generalized Regression Neural Network (GRNN) is proposed in this study to
correct the SMOS SSS in the preprocessing process.

To assimilate SMOS SSS into the ocean model and improve the SSS simulation, the Generalized
Regression Neural Network is proposed to correct the SSS of the BEC L3 objective analysis data set
based on the characteristic that GRNN can work with a dataset with low accuracy. Then, the corrected
SSS data are assimilated into a regional ocean model with a four-dimensional variational assimilation
(4DVAR) method. The differences between the model simulation of SSS before and after assimilation
are compared, and the SSS data assimilation impacts on the subsurface salinity are studied.

The structure of this paper is as follows: In the second section, the SSS data assimilation
preprocessing based on GRNN is introduced. In Section 3, the model, the 4DVAR method, data used
in the assimilation and the setting of the assimilation experiments are outlined. The analysis of the
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assimilation results is described in Section 4. Finally, the discussion and conclusions are presented in
Sections 5 and 6, respectively.

2. SMOS Salinity Observations Preprocessing Based on GRNN

2.1. The Theory and Structure of GRNN

The GRNN, with a posterior condition defined by the sample dataset, estimates the joint probability
density function between variables based on nonparametric regression. The GRNN output is based
on the maximum probability principle. GRNN has an advantage in nonlinear approximation [24,25]
and performs well under conditions of low data accuracy, therefore being suitable for the correction
of satellite SSS. Suppose X and Y are two sets of random variables with a joint probability density of
f(X, Y), if the value of X is known as X0, the regression of Y versus X0 is as follows:

E(Y|X0) = Y(X0) =

∫
∞

−∞
Y f (X0, Y)dY∫
∞

−∞
f (X0, Y)dY

(1)

Y(X0) is the predicted value of Y when the input is X0. The focus of generalized regression is the
estimation of the joint probability density function f(X0, Y). Parzen nonparametric estimation is the
method commonly used to estimate f(X0, Y). Given the sample dataset {Xi, Yi}

n
i=1, according to the

Parzen nonparametric estimation method, f(X0, Y) can be estimated with the following formula:

f(X0, Y) =
1

n(2π)
p+1

2 σp+1

n∑
i=1

e−d(X0,Xi)e−d(Y(X0),Yi) (2)

d(X0, Xi) =
(X0 −Xi)

T(X0 −Xi)

2σ2 ; d(X0, Yi) =
(Y(X0) −Yi)

2

2σ2 (3)

where d(X0, Xi) is the square of Euclidean distance between the input vector X0 and the sample Xi.
According to the joint probability density and combining the formulas (1)–(3) the regression of Y

versus X0 can be expressed as follows:

Y(X0) =

∑n
i=1 Ye−d(X0,Xi)∑n
i=1 e−d(X0,Xi)

(4)

where n is the sample dataset size and p is the dimension of X. The only parameter in GRNN is the
smoothing factor σ. When σ is too large, Y(X0) approximates the mean value of Y in the sample
set, indicating that the model is underfitting. When σ is too small, Y(X0) is close to the training set,
indicating that the model is overfitting. Therefore, the smoothing factor and the selection of the training
set are very important. In this paper, the cross-validation method is used to choose the optimal σ and
the optimal training set. The algorithm is shown in Figure 1.
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2.2. Data Description

The following datasets were used in the GRNN correction and results verification. (1) The Argo
data were obtained from the France Coriolis Argo global data assembly center (ftp://ftp.ifremer.fr/
ifremer/argo/). The salinities used in this study are the salinities corrected by delayed-mode in the Argo
products and we only use the data with a quality flag equal to 1 [26]. (2) SMOS SSS is the latest 9-day
average level3 global product released by the BEC (www.smos-bec.icm.csic.es), and the horizontal
resolution is 0.25◦ × 0.25◦. The product is derived from the SMOS L1B TBs v620 dataset considering
the SSS inversion of regions with high-level land-sea pollution or sparse observations [22]. (3) SST is
obtained from NOAA’s optimal interpolated SST (National Ocean and Atmospheric Administration’s
(NOAA’s) National Climate Data Center (NCDC). Its spatial resolution is 0.25◦ × 0.25◦ and the temporal
resolution is 1 day [27] (ftp://eclipse.ncdc.noaa.gov). (4) The altimeter sea level anomaly (SLA) data
are provided by Ssalto/Duacs and distributed by Archiving, Validation, and Interpretation of Satellite
Oceanographic (Aviso) with support from CNES (http://www.aviso.oceanobs.com/duacs/). (5) The In
Situ Analysis System (ISAS, version ISAS-15) gridded data were used to examine the results. The data
set is published by SEA scieNtific Open data Edition (SEANOE) [28,29], with a horizontal resolution of
0.5◦ × 0.5◦ and 152 layers in the vertical direction (https://www.seanoe.org/).

2.3. Neural Network Construction and Model Training

The GRNN input can be expressed as follows:

XT = (Longitude, Latitude, Time, SST, SLA, SMOS_SSS) (5)

where SST and SLA are two important properties of the ocean [30], and SST is an important variable in
the SSS retrieval process [31]. (Longitude, Latitude, Time) represent the spatial and temporal variabilities.
The surface observations (~5 m) of Argo floats are taken as the truth due to the high level of accuracy.
The latitude, longitude, and time in the GRNN input layer are the latitude, longitude, and observation
month for the Argo floats, respectively. The temporal resolution is 1 day and the spatial resolution is
0.25◦ × 0.25◦. The satellite data (SSS, SST, and SLA) are interpolated to the locations of Argo floats to
ensure consistency between the satellite data and Argo data. The GRNN structure is shown in Figure 2.
(x1, x2, . . . , xp) and (y1, . . . , yT) are the GRNN input and output, respectively. In this study, (y1, . . . , yT)
is the corrected SSS with T = 1. The input layer neurons number is the dimension number of the
input vector, which here is 6. Each input neuron is responsible for passing variables to the model layer.
The number of model layer neurons is equal to the number of samples; each neuron corresponds to a
different sample. The model layer neuron transfer function is the exponential form of d(X0, Xi):

Pi = exp (−
(X0 −Xi)

T(X0 −Xi)

2σ2 ) (6)

There are two types of neurons in the summation layer, one of which has only one neuron, and it
arithmetically sums the output of all model layer neurons; its transfer function is:

SD =
n∑

i=1

Pi (7)

The number of the other type of neurons (called weight neurons) is the dimension number of
output vector Y and its transfer function can be expressed as:

SN j =
n∑

i=1

yi jPi j = 1, 2, . . .T (8)

ftp://ftp.ifremer.fr/ifremer/argo/
ftp://ftp.ifremer.fr/ifremer/argo/
www.smos-bec.icm.csic.es
ftp://eclipse.ncdc.noaa.gov
http://www.aviso.oceanobs.com/duacs/
https://www.seanoe.org/
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where yi j is the jth component of sample Yi. Each neuron in the output layer corresponds to an element
of Y(X0):

y j =
SN j

SD
j = 1, 2, . . .T (9)

In this study, there are only one weight summation layer neuron and one output layer neuron.
The model region (105◦E–135◦E, 12◦N–30◦N) has been divided into the South China Sea (SCS)

and western Pacific due to the differences in the hydrographic features and water masses. In each
region, the GRNN model is constructed based on the structure of the bias and RMSE compared with
the ISAS-15 monthly average data. The data during 2011 and 2014 are set as the sample set and the
implement of GRNN is based on MATLAB through the built-in function newgrnn.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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2.4. Analysis of the GRNN Correction Results

The corrected SSS are shown in Figure 3. In the figure, the corrected SSS are more consistent
with the Argo float data both in SCS and northwestern Pacific. The bias and RMSE are significantly
decreased. In the SCS (3582 observation points), the bias is reduced from 0.155 PSU (before correction)
to −0.003 PSU (after correction), and the RMSE is reduced from 0.415 PSU (before correction) to
0.112 PSU (after correction). In the northwestern Pacific (10,962 observation points), the bias and RMSE
are reduced from −0.047 PSU and 0.313 PSU to 0.01 PSU and 0.111 PSU, respectively. The corrected
SMOS daily SSS are also compared with the ISAS-15 dataset (Figure 4). The topmost layer of ISAS-15
salinity locates at 1 m depth and the vertical salinity gradients in the top few meters are small [32],
and the mean errors of ISAS SSS are approximately 0.1 PSU in SCS and 0.05 PSU in western Pacific
according to the parameter of the ISAS-15 dataset; therefore, SMOS SSS and the ISAS-15 topmost layer
salinity are comparable and the comparison is meaningful. Except in coastal regions where the depth
is less than 200 m and there are no Argo floats observations, the bias and RMSE of the corrected SSS
are significantly reduced in the SCS and the northwestern Pacific and the variability of the corrected
SSS maintains the same order as SSS of the ISAS dataset (see Appendix A). Notably, the error in
the Luzon Strait is very large even after the correction due to the lack of Argo float data (shown in
Figure 5). Therefore, the subsequent assimilation experiments and analysis exclude the Luzon Strait
and shallow water area where depth is less than 200 m). In general, the SSS error has been significantly
reduced using the GRNN method; thus the corrected SSS can be used in the data assimilation system.
The GRNN correction results are also better than FFANN correction results of Vernieres et al. [15] for
these two areas (see Appendix B).
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3. Assimilation of Corrected SSS in the Regional Ocean Modeling System (ROMS)
4DVAR System

3.1. The Regional Ocean Modeling System (ROMS) Ocean Model and 4DVAR

In this study, the dynamic model is the Regional Ocean Modeling System (ROMS). ROMS solves the
hydrostatic primitive equations in horizontal curvilinear coordinates and vertical σ coordinates [33,34].
The model domain covers the northern SCS and northwestern Pacific (105◦E-128◦E, 15.5◦N-24◦N)
with a horizontal resolution of 1/12◦ × 1/12◦ and 32 vertical σ levels. The assimilation time window
is 7 days, and the total experimental duration is 2 years (01/01/2012 to 30/12/2013), containing105
assimilation windows.

The model was driven by the climatological forcing (COADS) for 20 years from the initial state
extracted from the climatological Simple Ocean Data Assimilation (SODA) dataset, which is considered
to be the model spin-up process. Then the model is integrated for the 2001–2015 period with the
real forcing conditions (heat flux, freshwater flux, and wind stresses) and open boundary conditions
(except the western boundary). The data used for the real simulation are summarized in Table 1.

Table 1. Information of the forcing fields and boundary conditions datasets.

Variable Horizontal Resolution Temporal
Resolution Source

Heat flux 0.75◦ × 0.75◦ 6 h ERA-interim [35]
Freshwater flux 0.75◦ × 0.75◦ 6 h ERA-interim
Wind stresses 0.25◦ × 0.25◦ 6 h CCMP 1 [36]

Boundary conditions – – SODA 2 [37]
1 The wind stresses are derived from CCMP version2.0 by a bulk formula; 2 the SODA dataset used in this study is
version3.3.1.

The 4-dimensional variational (4DVAR) assimilation system is based on incremental 4-dimensional
variational assimilation (I4DVAR) [38,39]. I4DVAR seeks the optimal state of the ocean by adjusting
the initial field, forcing field, and boundary conditions. The detailed theory is described in [40,41].
The observational measurements error is set with the standard deviation as follows [38]: 2cm for SSH,
0.4◦C for SST, 0.1◦C for in situ temperature(T), and 0.01 PSU for in situ salinity (S). The standard
deviations of the raw SMOS SSS and corrected SSS are set to 0.4 PSU and 0.1 PSU, according to the
RMSE in comparison with the Argo data (Figure 3).
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3.2. Data Used for the Assimilation

The following data sets are used in the assimilation: (1) SMOS BEC L3 objective analysis data set;
(2) NOAA optimal interpolation SST; (3) Aviso’s SLA data; and (4) the Met Office Hadley Centre EN4
data set of global quality-controlled ocean temperature and salinity profiles from the European Union
ENSEMBLES project (EN4) [42]. Before assimilation into the model, the temperature and salinity
profile data were interpolated to the standard 23 z-levels: (−5 m, −10 m, −15 m, −20 m, −25 m, −30
m, −35 m, −40 m, −50 m, −60 m, −75 m, −100 m, −125 m, −150 m, −200 m, −250 m, −300 m, −400 m,
−500 m, −600 m, −800 m, −1000 m, and −1200 m) with the cubic spline interpolation method.

Data for verification include the following: (1) ISAS-15 gridded salinity data; (2) northern SCS
sailing ship T/S data published by the National Earth System Science Data Sharing Infrastructure,
National Science & Technology Infrastructure of China (http://www.geodata.cn); the dataset comprises
CTD observations along 18◦N from 111.5◦E to 118◦E during the period of 12/08/2012 to 21/08/2012 in
SCS; and (3) the interpolated EN4 profile data are also used for verification.

3.3. Experimental Setup

Six experiments were designed to evaluate the impact of GRNN preprocessing on SSS assimilation
and the impact of SSS assimilation on surface and subsurface salinity simulations. Experiment 1 (EX1)
did not assimilate any data and is referred to as the control experiment (BASE). EX2 (RAW) and EX3
(NN) assimilated the raw and corrected SSS, respectively. EX4 (OTH) assimilated other observations
(SST, SLA, and T/S profile) except the SSS. EX5 (RAWALL) and EX6 (NNALL) add the raw and corrected
SSS, respectively to the EX4 dataset. The experimental summary is shown in Table 2.

Table 2. Summary of the experiments.

Experiments Experiments Name Data Assimilated

EX1 BASE None
EX2 RAW Raw SMOS SSS
EX3 NN Corrected SMOS SSS
EX4 OTH SSH, SST, T/S profile
EX5 RAWALL Raw SMOS SSS, SSH, SST, T/S profile
EX6 NNALL Corrected SMOS SSS, SSH, SST, T/S profile

4. Assimilation Results

In this paper, to evaluate the impact of SSS assimilation on surface and subsurface salinity,
the experimental results were compared with the surface and subsurface salinity of ISAS-15, the salinity
profiles of the EN4 dataset, and the SCS shipboard data. The 18◦N section is the trans-sea basin section
in the northernmost part of the SCS. The section is adjacent to the Luzon Strait. The water masses
were being exchanged between the North Pacific and SCS or the circulation inside the SCS both pass
through this section [43,44]; therefore, we wanted to know how the assimilation of satellite SSS affected
the salinity profile in this section.

4.1. SSS analysis

We evaluated the assimilation effect by comparing the model SSS residual with the ISAS-15
SSS for the period of 2012–2013, the results are shown in Figure 6. There were large SSS errors in
the BASE experiment (~0.3 PSU in the research region), which were expected because no data were
assimilated in the BASE experiment. The raw SSS assimilation led to a slight improvement over the
BASE experiment due to the large error in raw SSS (EX2). However, the SSS errors are less than 0.1 PSU
in the northwestern Pacific and 0.15 PSU in the northern SCS after the SSS is corrected and assimilated
into the model, (EX3, Figure 6, NN), which is also verified in the NNALL experiment (EX6), indicating
that the assimilation of the corrected SSS can improve the model SSS simulation.

http://www.geodata.cn
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of 2012–2013.

Although the EX4 did not directly assimilate the SSS observations, there are still some
improvements in the northwestern Pacific, which is consistent with the previous study [16], but large
errors exist in the northern SCS, which changed slightly compared with the control experiment.
Comparing EX4 and EX5, the raw SSS assimilation would also slightly reduce the performance of
traditional observations (SSH, SST, and T/S profile), while the corrected SSS can further improve the SSS
simulation based on EX4 (see Figure 6, NNALL). Generally, the GRNN method significantly reduced
the error in the raw SSS and yielded a positive impact on the SSS assimilation.

4.2. Subsurface salinity analysis

4.2.1. Salinity profile

The SSS corrections are likely to propagate vertically through the background error covariance
and model dynamics, and SSS assimilation can impact subsurface salinity simulations, which has been
demonstrated on a global scale by Lu et al. and G. Vernieres et al. [15,16]. Whether the SSS preprocessed
through GRNN yields a positive impact on the subsurface layer in northern SCS needs to be verified,
and the question of SSS influence depth is also of concern. The subsurface SSS are compared with
the EN4 dataset, as shown in Figure 7 (the locations of observation are shown in Figure 8). The raw
SSS data assimilation deteriorated the subsurface salinity field to a depth of 100 m. The corrected SSS
assimilation improved the subsurface salinity field compared with the BASE experiment, except in
the thermocline [45]. However, the thermocline errors can be reduced by assimilation of T/S profiles,
such as in OTH and NNALL experiments. The influence depths of the corrected SSS are different
in the northern SCS and northwestern Pacific. Compared with the BASE experiment, the corrected
SSS yields a positive impact at the 150 m depth in the northwestern Pacific but is only positive at
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40 m in the northern SCS. One reason is the difference in seawater properties between the SCS and the
northwestern Pacific [46].
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4.2.2. Salinity section

To be more objective, the impact of SSS assimilation on the subsurface salinity is verified with the
CTD observations from the northern SCS sailing data that have not been used in the GRNN and the
assimilation. Additional experiments were carried out during the 12/08/2012–21/08-2013 period for
consistency with the CTD observational period. The observational map is shown in Figure 9.
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The results of the first three experiments’ differences from the sailing data are shown in Figure 10.
The biases are calculated by subtracting observations from model results. The simulation results of
the model background SSS field are saltier than the SSS of CTD observations in areas A and B, and
is fresher overall below 50 m. The raw SSS assimilation reduces the error in area A but introduces
larger errors in area B, that is because the raw SSS is saltier than the sailing data. The corrected SSS
assimilation significantly reduces the error in areas A and B. However, a new error is introduced at
depths of 50–120 m compared with the BASE result. This finding shows that the assimilation of SSS
corrected by GRNN has a positive impact on the salinity in the mixed layer, but a negative impact in
the thermocline, which is consistent with the results shown in Figure 7.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 20 
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with the sailing data for the three experiments.

Figure 11 shows the salinity section of the assimilation results for EX4, EX5, and EX6, and their
biases compared with the observations. The assimilation of traditional observations in the OTH
experiment improves the subsurface salinity field, reducing the deviation to less than 0.5 PSU in
areas A and B. The assimilation of the traditional observations and raw SSS (EX5) yields a slight
improvement in area B compared with the RAW experiment, but the bias in area B is still larger than the
control run BASE due to high differences between the raw SSS and sailing data. Raw SSS assimilation
dominates on this section and the effect of traditional observations assimilation does not show up
clearly. Assimilating traditional observations and corrected SSS significantly improves the simulation
of areas A and B compared with BASE and RAWALL results, and the salinity adjustment on this section
mainly depends on traditional observations assimilation by comparing NN, OTH, and NNALL results.
However, the impact of SSS assimilation on this salinity section simulation changes from negative one
to positive one after GRNN correction.

Notably, there are actually no T/S profiles data assimilated along 18◦N during 12/08/2012–21/08/2013.
The improvements in EX4 (Figure 11, OTH) are mainly contributed by the SST and SLA. To further
demonstrate the SSS assimilation influence on the subsurface salinity field, the experimental results were
compared with the ISAS-15 dataset along 18◦N for the period of 2012–2013, as shown in Figures 12–14.
The mean biases are obtained by calculating the mean difference (subtracting ISAS-15 section salinity
values from monthly mean model simulations). The salinity section of BASE in the mixed layer is
saltier (+0.3 PSU), while the salinity in and below the thermocline is fresher (−0.2 PSU) and the area
with the highest error is the eastern section above −50 m according to the RMSE of BASE simulations
compared with the ISAS-15 dataset. The raw SSS assimilation slightly improves the western mixed
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layer salinity field on the section, but introduces large errors in the eastern part of the mixed layer.
The corrected SSS can significantly improve the salinity simulation effect of the mixed layer compared
with BASE and RAW experiments. However, the salinity simulation effect is slightly reduced below
60 m and the RMSE is still approximately 0.3 PSU in the eastern mixed layer. The EX6 results show
that the long-term assimilation of traditional observations can help reduce the RMSE and improve
the salinity fields simulation based on the corrected SSS assimilation. A comparison of EX3, EX4, and
EX6 shows that the improvement in the mixed layer salinity simulation effect mainly originates from
the SSS assimilation. Assimilation of traditional observations can obtain a similar effect, and the NN
simulation results are even better in most areas of the mixed layer.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 

 

 

Figure 11. (Top) The salinity profile map of OTH (left), RAWALL (middle), and NNALL (right). 
(Bottom) Bias of salinity profile maps of OTH, NN, and NNALL compared with the sailing data. 

 

Figure 12. The 2-year average salinity profile map along 18°N from 111.5°E to 118°E of ISAS-15 for 
the period of 2012 and 2013. 

Figure 11. (Top) The salinity profile map of OTH (left), RAWALL (middle), and NNALL (right).
(Bottom) Bias of salinity profile maps of OTH, NN, and NNALL compared with the sailing data.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 

 

 

Figure 11. (Top) The salinity profile map of OTH (left), RAWALL (middle), and NNALL (right). 
(Bottom) Bias of salinity profile maps of OTH, NN, and NNALL compared with the sailing data. 

 

Figure 12. The 2-year average salinity profile map along 18°N from 111.5°E to 118°E of ISAS-15 for 
the period of 2012 and 2013. 

Figure 12. The 2-year average salinity profile map along 18◦N from 111.5◦E to 118◦E of ISAS-15 for the
period of 2012 and 2013.



Remote Sens. 2019, 11, 919 13 of 19
Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 

 

 

Figure 13. (Top) The two-year average salinity profile maps of BASE, RAW, and NN of 2012 and 2013. 
(Mid) Mean bias of the salinity profile map compared with ISAS-15. (Bottom) RMSE of the salinity 
profile map compared with ISAS-15. 

Figure 13. (Top) The two-year average salinity profile maps of BASE, RAW, and NN of 2012 and 2013.
(Mid) Mean bias of the salinity profile map compared with ISAS-15. (Bottom) RMSE of the salinity
profile map compared with ISAS-15.
Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 20 

 

 

Figure 14. Same as Figure 13 but for experiments OTH, RAWALL, and NNALL. 

5. Discussion 

The SMOS satellite has provided long-term, high-resolution, large-scale SSS data since operation 
of the satellite began, which has played a significant role in simulation of the ocean state; however, 
SSS retrieval is difficult in the coastal ocean, high latitudes, and other regions affected by RFI, 
especially in Asia, where the data accuracy is too low to be used in assimilations. Therefore, it is 
necessary to implement preprocessing when using satellite salinity data in these regions (such as the 
SCS). In this paper, we introduce the GRNN to correct satellite salinity and significantly improve the 
accuracy to assimilate SSS and provide a better estimate of the state of the ocean. The main 
components of the GRNN input vector are longitude, latitude, observation time, SST, SLA, and SMOS 
SSS in this study. If necessary, new variables can be added into the input vector after taking into 
account other factors that may induce errors in the SSS retrieval process, but which may also induce 
new errors if the new variables deteriorate the previous joint distribution. 

Thus far, our work has made progress on SMOS SSS assimilations in the coastal ocean, but there 
are still some problems to be solved and work that must be continued in the future. (1) Taking the 
topmost Argo observations as truth may introduce new errors in the regions where vertical 
stratification is strong [15,47]. The satellites measure the SSS in the ocean skin layer, approximately 1 
cm, whereas the Argo measurements locate at approximately 5–10 m depth. The evaporation-
induced and precipitation-induced salinity anomalies are neglected in this study, but heavy 
precipitation would cause the SSS to change for several hours and introduce strong stratification in 
the top few meters [18,48] and there would be large biases between Argo measurements and true SSS 
(~1 cm); the Argo data cannot be used as “truth” anymore. Except that, the Argo measurements are 
single point observations and SSS of satellite product is an average of a pixel. Although the spatial 
variability of SSS in a pixel is low, there are still differences between satellite observations and Argo 
measurements. The GRNN has poor performance on SSS correction in the Luzon Strait has two 

Figure 14. Same as Figure 13 but for experiments OTH, RAWALL, and NNALL.



Remote Sens. 2019, 11, 919 14 of 19

5. Discussion

The SMOS satellite has provided long-term, high-resolution, large-scale SSS data since operation
of the satellite began, which has played a significant role in simulation of the ocean state; however,
SSS retrieval is difficult in the coastal ocean, high latitudes, and other regions affected by RFI, especially
in Asia, where the data accuracy is too low to be used in assimilations. Therefore, it is necessary to
implement preprocessing when using satellite salinity data in these regions (such as the SCS). In this
paper, we introduce the GRNN to correct satellite salinity and significantly improve the accuracy to
assimilate SSS and provide a better estimate of the state of the ocean. The main components of the
GRNN input vector are longitude, latitude, observation time, SST, SLA, and SMOS SSS in this study.
If necessary, new variables can be added into the input vector after taking into account other factors
that may induce errors in the SSS retrieval process, but which may also induce new errors if the new
variables deteriorate the previous joint distribution.

Thus far, our work has made progress on SMOS SSS assimilations in the coastal ocean, but
there are still some problems to be solved and work that must be continued in the future. (1) Taking
the topmost Argo observations as truth may introduce new errors in the regions where vertical
stratification is strong [15,47]. The satellites measure the SSS in the ocean skin layer, approximately
1 cm, whereas the Argo measurements locate at approximately 5–10 m depth. The evaporation-induced
and precipitation-induced salinity anomalies are neglected in this study, but heavy precipitation would
cause the SSS to change for several hours and introduce strong stratification in the top few meters [18,48]
and there would be large biases between Argo measurements and true SSS (~1 cm); the Argo data
cannot be used as “truth” anymore. Except that, the Argo measurements are single point observations
and SSS of satellite product is an average of a pixel. Although the spatial variability of SSS in a pixel is
low, there are still differences between satellite observations and Argo measurements. The GRNN
has poor performance on SSS correction in the Luzon Strait has two reasons, one is the GRNN model
problem: (i) SSS have high variability in the Luzon Strait because of Kuroshio invasion and the Argo
measurements are sparse in this region and cannot capture the feature. (ii) The information of SSS
spatial and temporal variability is not transferred into the model, supporting with the consistency
between the patterns of RMSE of corrected SSS compared with ISAS15 and the locations of Argo
observations. (iii) There are large errors in the areas with less Argo measurements and smaller errors
in the areas with more Argo observations (Figures 4d and 5). The other is the validation dataset
problem—the errors of the validation set ISAS15 are large in Luzon Strait (as shown in Figure 15),
leading to the large RMSE between corrected SSS and ISAS surface salinity. (2) SMOS SSS corrections
should be obtained at a global scale, especially in high latitude regions. The satellite SSS measurements
have lower accuracy at high latitudes due to the reduced signal-to-noise ratio in colder waters [20].
These low temperature-induced errors may can also be corrected by NNs, and this topic deserves
future study. (3) Corrected SSS should be obtained in areas with depth shallower than 200 m and where
there are few Argo floats (the Luzon Strait) by utilizing the analysis field obtained by assimilating
corrected SSS to correct satellite SSS. By assimilating the corrected SSS in the region where depths are
greater than 200 m, the SSS in the shallow region can also be adjusted. Sampling from the assimilation
analysis field and taking the sample dataset as “truth,” SSS in the shallow regions may have a higher
accuracy after correction. Therefore, future work will focus on the above three aspects to obtain more
accurate satellite salinity data and better estimates of the ocean state.
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6. Conclusions

In this paper, the objective analysis data set of SMOS SSS has been corrected by GRNN in SCS and
northwestern Pacific and applied to the assimilation system. To verify the effect of SSS assimilation in
coastal regions, six experiments were designed and the assimilation results were compared with the
ISAS15 dataset and the sailing dataset. The conclusions are as follows:

(a) Compared with Argo floats data, in addition to the northwestern Pacific, the errors in SSS product
have also been reduced significantly in the northern SCS after being corrected by GRNN. The bias
and RMSE are reduced to the order of 0.01 PSU and 0.1 PSU. The mean bias and RMSE compared
with ISAS-15 SSS for the period of 2012–2014 are reduced and the variability of the corrected SSS
maintains the same order as SSS of the ISAS dataset.

(b) T/S profiles assimilation can yield a positive impact on northwestern Pacific SSS simulations,
but only slightly influences northern SCS SSS, while the assimilation of both raw SSS and GRNN
corrected SSS yields improvements on model SSS. The largest improvements are shown in
experiments with GRNN corrected SSS assimilation (EX3 and EX6), proving the importance of
GRNN for SSS correction.

(c) Comparing the experimental results with EN4 profiles shows that the assimilation of corrected
SSS also improved the salinity fields simulation in the mixed layer, except for horizontal
improvements on sea surface. Below the mixed layer, T/S profiles data are more important than
SSS data. The influence depths of SSS assimilation are shallower in the northern SCS than in
the northwestern Pacific, which indicates that the corrected SSS should be assimilated with T/S
profiles data to obtain a better estimation of ocean states in coastal regions. However, after
long-term assimilation, the improvements generated by corrected SSS assimilation are better than
those from traditional observations’ assimilations in most areas of the 18◦N section in the SCS.
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Appendix A

To obtain the impact of Generalized Regression Neural Network (GRNN) correction on sea surface
salinity (SSS) variability, the raw SSS and corrected SSS were compared with ISAS dataset surface
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salinity. The results are shown in Figure A1. The standard deviation (STD) of Soil Moisture and Ocean
Salinity (SMOS) SSS declines slightly after GRNN correction in the research region. STD of ISAS SSS is
smaller than STD of raw SSS and slightly larger than that of corrected SSS, but it still has the same
order of corrected SSS STD. Generally, the variability of SMOS SSS is slightly reduced after correction
but it is comparable to the variability of ISAS SSS.
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Figure A1. Standard deviation (STD) of raw Soil Moisture and Ocean Salinity (SMOS) sea surface
salinity (SSS), corrected SMOS SSS, and In Situ Analysis System (ISAS) SSS for the period of 2011–2014.

Appendix B

FFANN [15] have been used to correct SMOS SSS in the coastal ocean, and the results are shown in
Figure A2. The sample dataset construction and model region division are consistent with the GRNN
correction. The training set comprises Argo data from 2011 to 2014, and the testing set are data from
2015 to 2016. After FFANN correction, the bias and RMSE declined slightly to those of the training set,
and the correction result worsened when the FFANN model trained by the training set was applied to
the testing set.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 20 
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