Differences among Evapotranspiration Products Affect Water Resources and Ecosystem Management in an Australian Catchment
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Data Sources and Processing
2.3. Comparison among These Five Evapotranspiration (ET) Products
2.4. The Effects of ET Variations on the Runoff and Water Storage Changes
2.5. The Chain Effects of ET Variations on Irrigation
2.6. The Chain Effects of ET Variations on Productivity and Water-Use Efficiency of Ecosystems
3. Results
3.1. ET Comparison among the Five ET Products
3.2. The Effects of ET Variations on Estimation of Runoff and Water Storage Changes
3.2.1. The Water Balance in the Murrumbidgee River Catchment (MRC) Using Australian Water Availability Project (AWAP) Datasets
3.2.2. The Effects of ET Variations on Runoff Estimation
3.2.3. The Effects of ET Variations on Water Storage Estimation
3.3. The Effects of ET Variations on Irrigation Estimation
3.4. The Effects of ET Variations on the Gross Primary Productivity (GPP) and Water-Use Efficiency of the Grassland and Forest
4. Discussion
4.1. The ET Variations among the Five Products
4.2. The Effects of the Variations among the ET Products on Water Resources Management
4.3. The Influences of the Variations among the ET Products on Ecosystem Management
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Liu, S.; Xu, Z.; Chen, Y.; Zhu, M. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res. Atmos. 2012, 117, 1–21. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555. [Google Scholar] [CrossRef]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef] [Green Version]
- Owen, C.R. Water budget and flow patterns in an urban wetland. J. Hydrol. 1995, 169, 171–187. [Google Scholar] [CrossRef]
- Fahle, M.; Dietrich, O. Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data. Water Resour. Res. 2014, 50, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Or, D.; Hanks, R. Spatial and temporal soil water estimation considering soil variability and evapotranspiration uncertainty. Water Resour. Res. 1992, 28, 803–814. [Google Scholar] [CrossRef]
- Fatichi, S.; Ivanov, V.Y. Interannual variability of evapotranspiration and vegetation productivity. Water Resour. Res. 2014, 50, 3275–3294. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Huang, Y.; Wei, Y.; Wang, G. Socio-hydrological water balance for water allocation between human and environmental purposes in catchments. Hydrol. Earth Syst. Sci. 2015, 19, 3715–3726. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw U, K.T. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol. Process. 2004, 18, 2071–2101. [Google Scholar] [CrossRef]
- Rajib, A.; Evenson, G.R.; Golden, H.E.; Lane, C.R. Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. J. Hydrol. 2018, 567, 668–683. [Google Scholar] [CrossRef]
- Rajib, A.; Merwade, V.; Yu, Z. Rationale and efficacy of assimilating remotely sensed potential evapotranspiration for reduced uncertainty of hydrologic models. Water Resour. Res. 2018, 54, 4615–4637. [Google Scholar] [CrossRef]
- Zhong, Y. Analysis of water rights system based on ET. Water Resour. Dev. Res. 2007, 2, 14–16. [Google Scholar]
- Tang, W.; Zhong, Y.; Wu, D.; Deng, L. Analysis of water resource management mode based on ET. China Rural Water Hydropow. 2007, 10, 8–10. [Google Scholar]
- Sörensson, A.A.; Ruscica, R.C. Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resour. Res. 2018, 54, 2891–2908. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Lu, Z.; Zou, S.; Xiao, H.; Zheng, C.; Yin, Z.; Wang, W. Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Phys. Chem. Earth Parts A/B/C 2015, 79, 76–85. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Chang. 2014, 115, 1–15. [Google Scholar] [CrossRef]
- Lymburner, L.; Tan, P.; Mueller, N.; Thackway, R.; Lewis, A.; Thankappan, M.; Randall, L.; Islam, A.; Senarath, U. The Dynamic Land Cover Datset. Geoscience 2011, 1–95. [Google Scholar]
- Kingsford, R.; Thomas, R. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environ. Manag. 2004, 34, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, M.; Savenije, H.H.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Mr, R.; Briggs, P.; Haverd, V.; King, E.; Paget, M.; Trudinger, C. Australian Water Availability Project, Data Release 26 m; CSIRO Oceans and Atmosphere: Canberra, Australia, 2018. [Google Scholar]
- Evans, J.P.; McCabe, M.F. Regional climate simulation over Australia’s Murray-Darling basin: A multitemporal assessment. J. Geophys. Res. Atmos. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Pena Arancibia, J.; McVicar, T.; Chiew, F.; Vaze, J.; Zheng, H.; Wang, Y.P. Monthly Global Observation-Driven Penman-Monteith-Leuning (PML) Evapotranspiration and Components; Data Collection; CSIRO: Canberra, Australia, 2016. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- NASA. Evapotranspiration/Latent Heat Flux Product; Version 6; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2018.
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- NASA. MOD17A3.055: Terra Net Primary Production Product; Version 055; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2018.
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Y.; Xiao, H.; Zou, S.; Ren, J.; Lyle, C. Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century. Agric. Water Manag. 2015, 152, 233–242. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Ciais, P.; Farquhar, G.; Papale, D. Mean annual GPP of Europe derived from its water balance. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Shang, S. Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett. 2013, 40, 3026–3030. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Cowan, I.; Farquhar, G. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424. [Google Scholar] [CrossRef]
- Xie, Z.; Huete, A.; Restrepo-Coupe, N.; Ma, X.; Devadas, R.; Caprarelli, G. Spatial partitioning and temporal evolution of Australia’s total water storage under extreme hydroclimatic impacts. Remote Sens. Environ. 2016, 183, 43–52. [Google Scholar] [CrossRef]
- Du, L.; Rajib, A.; Merwade, V. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. J. Hydrol. 2018, 562, 84–102. [Google Scholar] [CrossRef]
- Rajib, A.; Merwade, V. Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century. Hydrol. Process. 2017, 31, 3645–3661. [Google Scholar] [CrossRef]
- Anderson, M.; Kustas, W.; Norman, J.; Hain, C.; Mecikalski, J.; Schultz, L.; González-Dugo, M.; Cammalleri, C.; d’Urso, G.; Pimstein, A. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao 1998, 300, D05109. [Google Scholar]
- Wei, Y.; Langford, J.; Willett, I.R.; Barlow, S.; Lyle, C. Is irrigated agriculture in the Murray Darling Basin well prepared to deal with reductions in water availability? Glob. Environ. Chang. 2011, 21, 906–916. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600. [Google Scholar] [CrossRef]
- Kocacinar, F.; Sage, R.F. Hydraulic properties of the xylem in plants of different photosynthetic pathways. In Vascular Transport in Plants; Elsevier: Amsterdam, The Netherlands, 2005; pp. 517–533. [Google Scholar]
Data Name | Sources | Spatial Resolution | Spatial Extent | Temporal Resolution | Time Span | Provider |
---|---|---|---|---|---|---|
Precipitation, runoff, and water storage changes | AWAP a | 0.05° | Australian | Monthly | 1900–2017 | CSIRO |
Evapotranspiration (ET) | 1. AWAP | 0.05° | Australian | Monthly | 1900–2017 | CSIRO |
2. CSIRO b | 0.5° | Global | Monthly | 1981–2012 | CSIRO | |
3. GLDAS c | 0.25° | Global | 3 h | 2000–August 2018 | NASA | |
4. MODIS d | 500 m | Global (−60° to 80° Latitude; −180° to 180° Longitude) | 8 days | 2001–September 2018 | NASA LP DAAC at the USGS EROS Center | |
5. TerraClimate | 2.5° | Global | Monthly | 1958–2017 | University of Idaho | |
Irrigation | ABARE e | Catchment and administrative area | Australian | Yearly | 2005–2017 | ABARE |
GPP f | MOD17A3.055 | 1000 m | Global | Yearly | 2000–2014 | NASA LP DAAC at the USGS EROS Center |
Land cover | DLCDv2.1 g | 250 m | Australian | Yearly | 2001–2015 | www.ga.gov.au |
A_ET | C_ET | G_ET | M_ET | T_ET | A_ET | C_ET | G_ET | M_ET | T_ET | |
---|---|---|---|---|---|---|---|---|---|---|
Yearly | Monthly | |||||||||
Mean (mm) | 464.14 | 473.53 | 529.91 | 352.32 | 450.37 | 38.68 | 39.46 | 44.16 | 29.36 | 37.53 |
N | 16 | 12 | 16 | 16 | 16 | 192 | 144 | 192 | 192 | 192 |
NSE h | 1 | 0.84 | 0.07 | −1.42 | 0.61 | 1 | 0.74 | 0.61 | 0.21 | 0.34 |
R2 | 1 | 0.87 | 0.93 | 0.82 | 0.87 | 1 | 0.77 | 0.82 | 0.49 | 0.52 |
RMSE i (mm) | 0 | 33.45 | 71.90 | 116.25 | 46.43 | 0 | 9.31 | 11.21 | 15.84 | 14.50 |
RSR j | 0 | 0.40 | 0.96 | 1.56 | 0.62 | 0 | 0.51 | 0.63 | 0.89 | 0.81 |
PBIAS k | 0 | 0.03 | 0.14 | −0.24 | −0.03 | 0 | 0.03 | 0.14 | −0.24 | −0.03 |
MAE l (mm) | 0 | 27.20 | 65.82 | 111.78 | 38.23 | 0 | 7.15 | 7.91 | 11.33 | 11.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhao, Y.; Wei, Y.; Feng, Q.; Xie, J. Differences among Evapotranspiration Products Affect Water Resources and Ecosystem Management in an Australian Catchment. Remote Sens. 2019, 11, 958. https://doi.org/10.3390/rs11080958
Lu Z, Zhao Y, Wei Y, Feng Q, Xie J. Differences among Evapotranspiration Products Affect Water Resources and Ecosystem Management in an Australian Catchment. Remote Sensing. 2019; 11(8):958. https://doi.org/10.3390/rs11080958
Chicago/Turabian StyleLu, Zhixiang, Yan Zhao, Yongping Wei, Qi Feng, and Jiali Xie. 2019. "Differences among Evapotranspiration Products Affect Water Resources and Ecosystem Management in an Australian Catchment" Remote Sensing 11, no. 8: 958. https://doi.org/10.3390/rs11080958
APA StyleLu, Z., Zhao, Y., Wei, Y., Feng, Q., & Xie, J. (2019). Differences among Evapotranspiration Products Affect Water Resources and Ecosystem Management in an Australian Catchment. Remote Sensing, 11(8), 958. https://doi.org/10.3390/rs11080958