Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban Form
- NTL intensity (NTLI): The NTLI is a reliable proxy for estimating and monitoring socioeconomic dynamics and human activities intensity. Herein, we used the composite NPP-VIIRS nighttime light data of the year 2015, which were obtained from the website of NOAA/NGDC (https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html).
- Building density (BD): The BD is the total area of building footprints within the regular observation grids. It is an important controlling index in urban planning and land management. Higher building density means higher intensity of land use and development.
- Floor area ratio (FAR): The FAR refers to the ratio of total floor area of building to the area of regular observation grids. Higher FAR may result in poor ventilation conditions in an urban center.
- Road density (RD): The RD is the length of the total road network within the regular observation grids. High road densities usually indicate high levels of accessibility.
- POI density (POID): The POID is the total POI counts within the regular observation grids. The POI features are generally used in representing the vitality and convenience of the urban form. In this study, we extracted 9 categories of POI data, including hotels, restaurants, supermarkets, bus stations, schools, drugstores, hospitals, banks, government agencies.
- NDVI: The NDVI is a simple remote sensing indicator that has been extensively used to measure vegetation cover or greenness (relative biomass). High NDVI values reflect a higher vegetation cover and potentially a higher availability of parks or open green space in urban centers, whereas lower NDVI values point to water and impervious materials. It is computed as a ratio involving different image bands reflecting the percentage of vegetative ground cover.
- Water surface ratio (WSR): The WSR refers to the ratio of the total area of water bodies to the area of regular observation grids. Higher WSR may mean a comfortable environment and beautiful landscape.
2.3. Land Surface Temperature (LST)
2.4. Model Estimation
2.5. Model Validation
3. Results
3.1. Spatial Distribution Patterns and Seasonal Characteristics of LST
3.2. Model Estimation and Validation
3.3. Impact of Urban Form Metrics on the LST
4. Discussion
4.1. Urban Form and LST
4.2. Seasonal and Scale Effects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Quart. J. Royal Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddel, B.L.; Myint, S.W.; Kaplan, S.; Li, X.X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Li, H.D.; Meier, F.; Lee, X.H.; Chakraborty, T.; Liu, J.F.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, H.; Jiang, D.; Huang, L. Impact of climate-related changes to the timing of autumn foliage colouration on tourism in Japan. Tour. Manage. 2019, 70, 262–272. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Wang, S.H.; Wang, J.F.; Deng, G.P. Analysis and simulation of the spatiotemporal evolution pattern of tourism lands at the Natural World Heritage Site Jiuzhaigou, China. Habitat Int. 2018, 79, 74–88. [Google Scholar] [CrossRef]
- Burke, M.; González, F.; Baylis, P.; Heft-Neal, S.; Baysan, C.; Basu, S.; Hsiang, S. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 2018, 8, 723–729. [Google Scholar] [CrossRef]
- Zhou, X.F.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentz, E.A.; York, A.M.; Alberti, M.; Conrow, L.; Fischer, H.; Inostroza, L.; Jantz, C.; Pickett, S.T.A.; Seto, K.C.; Taubenböck, H. Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landsc. Urban Plan. 2018, 179, 55–62. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.F.; Chen, M.C. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Yin, C.H.; Yuan, M.; Lu, Y.P.; Huang, Y.P.; Liu, Y.F. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Alobaydi, D.; Bakarman, M.A.; Obeidat, B. The Impact of Urban Form Configuration on the Urban Heat Island: The Case Study of Baghdad, Iraq. Procedia Eng. 2016, 145, 820–827. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Ge, Q.S.; Li, X.M. Assessing the Impacts of Urbanization-Associated Green Space on Urban Land Surface Temperature: A Case Study of Dalian, China. Urban For. Urban Gree. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Guan, Y.Y.; Xia, J.H. (Cecilia); Jin, C.; Li, X.M. Spatiotemporal variations in greenspace ecosystem service value at urban fringes: A case study on Ganjingzi District in Dalian, China. Sci. Total Environ. 2018, 639, 1453–1461. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.D.; Li, Y.H.; Zhang, Y.Q.; Li, X.M. Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District. Gisci. Remote Sens. 2019, 56, 388–405. [Google Scholar] [CrossRef]
- Sun, Y.W.; Gao, C.; Li, J.L.; Li, W.F.; Ma, R.F. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socio-economic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 2018, 40, 284–295. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Padmanaban, R.; Bhowmik, A.K.; Cabra, P.l. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e0208949. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D.F. Interactions between urbanization, heat stress, and climate change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S. Nocturnal heat island effect in urban residential developments of Hong Kong. Energ. Buildings 2005, 37, 964–971. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Comput. Environ. Urban 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.H.; Xiao, X.M.; Jin, C.; Xia, J.H. (Cecilia); Li, X.M.; Wang, S.J. Local Climate Zone Ventilation and Urban Land Surface Temperatures: Towards a Performance-based and Wind-sensitive Planning Proposal in Megacities. Sustain. Cities Soc. 2019, 47, 1–11. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.R.; Xia, J.H. (Cecilia); Jin, C.; Li, X.M.; Ge, Q.S. The Impact of Spatial Form of Urban Architecture on the Urban Thermal Environment: A Case Study of the Zhongshan District, Dalian, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2709–2716. [Google Scholar] [CrossRef]
- Tang, Y.T.; Chan, F.K.S.; Griffiths, J. City profile: Ningbo. Cities 2015, 42, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.C.; Zhao, X.F.; Da, K. Multi-index Analysis of Heat Island Dynamics with the Process of Urbanisation in Ningbo City. Ecol. Environ. Sci. 2014, 23, 1628–1635. [Google Scholar]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Huang, Y.P.; Sun, Y.M. Judgment Characteristics and Quantitative Index of Suitable Block Scale. J. South China Univ. Technol. 2012, 40, 131–138. [Google Scholar]
- Huang, W.F.; Ding, J.Y.; Dan, M. The historical evolution of urban block scale—taking Ningbo as an example. In Proceeding of Annual meeting of China’s urban planning, Shenyang, China, 24 September 2016. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Ehrlinger, J. ggRandomForests: Random Forests for Regression. arXiv, 2014; arXiv:1501.07196. [Google Scholar]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.L.; Liu, Y.X.; Li, H.L.; Wu, J.S. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Lin, P.; Siu, S.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Qi, W.; Li, Y.; Liu, S.H.; Gao, X.L.; Zhao, M.F. Estimation of urban population at daytime and nighttime and analyses of their spatial pattern: A case study of Haidian District, Beijing. Acta Geograph. Sin. 2013, 68, 1344–1356. [Google Scholar]
- Yang, J.; Wang, Y.C.; Xiao, X.M.; Jin, C.; Xia, J.H. (Cecilia); Li, X.M. Spatial Differentiation of Frontal Area Index and Land Surface Temperature in Different Grid Sizes. Urb. Clim. 2019, 28, 1–13. [Google Scholar] [CrossRef]
- Dai, Z.X.; Guldmann, J.; Hu, Y.F. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar]
Seasons | Mean | Min. | Max. | Std. dev. | CV (%) |
---|---|---|---|---|---|
Summer (23/07/2017) | 45.88 | 35.20 | 62.34 | 3.22 | 7.02 |
Winter (03/02/2017) | 13.9 | 9.42 | 26.29 | 1.71 | 12.32 |
Categories | Summer | Winter | ||||
---|---|---|---|---|---|---|
Scale 100 m | Scale 200 m | Scale 400 m | Scale 100 m | Scale 200 m | Scale 400 m | |
Ecological infrastructure | 42.31(67.59) | 47.95(73.01) | 48.56(74.35) | 20.87(39.86) | 21.68(38.47) | 24.11(44.35) |
Building morphology | 8.75(13.98) | 10.03(15.27) | 10.37(15.88) | 20.38(38.92) | 26.51(47.05) | 24.59(45.24) |
Transportation system | 4.05(6.47) | 2.86(4.35) | 0.15(0.23) | 6.23(11.90) | 5.09(9.03) | 0.52(0.96) |
Human activity | 7.41(11.84) | 4.35(6.62) | 5.67(8.68) | 4.83(9.22) | 2.00(3.55) | 4.14(7.62) |
Public infrastructure | 0.08(0.13) | 0.49(0.75) | 0.56(0.86) | 0.05(0.1) | 1.07(1.9) | 1.00(1.84) |
Combination of % Var explained | 62.6(100) | 65.68(100) | 65.31(100) | 52.36(100) | 56.35(100) | 54.36(100) |
Categories | Variables | Summer | Winter | ||||
---|---|---|---|---|---|---|---|
Scale 100 m | Scale 200 m | Scale 400 m | Scale 100 m | Scale 200 m | Scale 400 m | ||
Ecological infrastructure | NDVI | 0.9866(-) *** | 0.3777(-) *** | 0.1205(-) *** | 0.4445(-) *** | 0.1736(-) *** | 0.0607(-) *** |
WSR | 0.7963(-) *** | 0.2358(-) *** | 0.0655(-) *** | 0.3239(-) *** | 0.0978(-) *** | 0.0289(-) *** | |
Building morphology | BD | 0.0009(+) *** | 0.0003(+) *** | 0.0001(+) *** | 0.0005(+) *** | 0.0002(+) *** | <0.0001(+) *** |
FAR | 0.7701(-) *** | 1.0350(-) *** | 1.3960(-) *** | 0.8214(-) *** | 1.1810(-) *** | 1.5680(-) *** | |
Transportation system | RD | 0.0044(+) *** | 0.0017(+) *** | 0.0006(+) *** | 0.0004(+) *** | 0.0002(+) *** | <0.0001(+) |
Human activity | NTLI | 0.0056(+) | 0.0004(-) | 0.0003(-) | 0.0253(-) ** | 0.0228(-) ** | 0.0165(-) ** |
Public infrastructure | POID | 0.0456(-) *** | 0.0371(-) *** | 0.0178(-) *** | 0.0445(-) *** | 0.0256(-) *** | 0.0094(-) *** |
R2 | 0.5335 | 0.6242 | 0.6705 | 0.3605 | 0.4699 | 0.5652 | |
Adj R2 | 0.5329 | 0.6225 | 0.6646 | 0.3598 | 0.4676 | 0.5574 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sens. 2019, 11, 959. https://doi.org/10.3390/rs11080959
Sun Y, Gao C, Li J, Wang R, Liu J. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sensing. 2019; 11(8):959. https://doi.org/10.3390/rs11080959
Chicago/Turabian StyleSun, Yanwei, Chao Gao, Jialin Li, Run Wang, and Jian Liu. 2019. "Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning" Remote Sensing 11, no. 8: 959. https://doi.org/10.3390/rs11080959
APA StyleSun, Y., Gao, C., Li, J., Wang, R., & Liu, J. (2019). Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sensing, 11(8), 959. https://doi.org/10.3390/rs11080959