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Abstract: Growing interest in the proximal sensing of sun-induced chlorophyll fluorescence (SIF)
has been boosted by space-based retrievals and up-coming missions such as the FLuorescence
EXplorer (FLEX). The European COST Action ES1309 “Innovative optical tools for proximal sensing of
ecophysiological processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) has produced three
manuscripts addressing the main current challenges in this field. This article provides a framework
to model the impact of different instrument noise and bias on the retrieval of SIF; and to assess
uncertainty requirements for the calibration and characterization of state-of-the-art SIF-oriented
spectroradiometers. We developed a sensor simulator capable of reproducing biases and noises
usually found in field spectroradiometers. First the sensor simulator was calibrated and characterized
using synthetic datasets of known uncertainties defined from laboratory measurements and literature.
Secondly, we used the sensor simulator and the characterized sensor models to simulate the acquisition
of atmospheric and vegetation radiances from a synthetic dataset. Each of the sensor models predicted
biases with propagated uncertainties that modified the simulated measurements as a function of
different factors. Finally, the impact of each sensor model on SIF retrieval was analyzed. Results
show that SIF retrieval can be significantly affected in situations where reflectance factors are barely
modified. SIF errors were found to correlate with drivers of instrumental-induced biases which
are as also drivers of plant physiology. This jeopardizes not only the retrieval of SIF, but also the
understanding of its relationship with vegetation function, the study of diel and seasonal cycles and
the validation of remote sensing SIF products. Further work is needed to determine the optimal
requirements in terms of sensor design, characterization and signal correction for SIF retrieval by
proximal sensing. In addition, evaluation/validation methods to characterize and correct instrumental
responses should be developed and used to test sensors performance in operational conditions.
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1. Introduction

The estimation of passive sun-induced chlorophyll fluorescence (SIF) has interested the remote
sensing community for some decades due to its potential to monitor photosynthesis [1]. SIF is
one of the alternative pathways that absorbed photons can take in photosynthetic machinery, and
therefore, is linked to photosynthetic activity and stress [2]. In the last decade, remote sensing of
SIF has made great progress. On one side, the first SIF retrievals from space were achieved from
meteorological satellites [3–5]. On the other side, a lot of effort has been invested in the preparation of the
FLEXmission [6,7]; which has been selected as the European Space Agency’s (ESA) 8th Earth Explorer
mission and is planned to be launched in 2022. These developments have also boosted the interest of the
near-ground remote sensing (proximal sensing) community in the retrieval of SIF. The contribution of
this community will be of great value since SIF is a challenging signal to retrieve as well as to interpret.
Proximal SIF retrievals can be combined with ancillary measurements at comparable, temporal and
spatial scales, to improve the interpretation and understanding of the SIF signal. This will also aid
down-scaling to understand leaf level processes and the validation of remote SIF products [8–10].
Fifteen years ago, most of the spectroradiometers featured spectral resolutions too coarse for an
absolute proximal quantification of SIF (e.g., full width half maximum (FWHM) ≥ 1 nm); and most of
the retrievals were based on multispectral Fraunhofer Line Depth (FLD) methods [1,11]. Since then,
new portable field spectroradiometers have been developed well as their use has spread in the scientific
community. These spectroradiometers feature higher spectral resolutions (e.g., FWHM ≤ 0.39 nm),
higher signal-to-noise ratios (e.g., SNR ~ 1000:1), and extended dynamic ranges of 200,000 counts,
which enable SIF to be retrieved in different atmospheric dark lines from the same measurement.
Nowadays these spectroradiometers are considered to be state-of-the-art instrumentation for the
proximal sensing of SIF. At a European level, these developments have been partly supported by
scientific collaborative efforts within European cooperation in science and technology (COST) actions
(https://www.cost.eu) (i.e., ES0903 and ES1309). Wider international networks have also contributed
(e.g., SPECNET, https://www.specnet.info). In the last four years, the wider scientific network involved
in the COST Action ES1309 (OPTIMISE) has collaborated specifically to address challenges in the
proximal sensing of SIF. This work has included instrumentation; measurement protocols; and retrieval
techniques. To make the results of these efforts available to a wider audience, the OPTIMISE community
has compiled three papers summarizing their shared experience on instrumental characterization
(this article), measurement setups and protocols [12] and retrieval methods [13]. These review articles
aim to summarize the state-of-the-art, guidelines, current needs, and future directions concerning
spectroradiometric measurements for SIF retrieval. The intention is to provide an update to the
previous review performed a decade ago by Meroni et al. [1].

Since reference [1] was written, two new generations of spectroradiometric systems for the
retrieval of SIF have been developed and their use extended to operate at canopy level. These systems
are characterized by having custom designed spectroradiometers dedicated to the retrieval of SIF;
featuring: (1) narrow spectral ranges (100–200 nm) between the red and the near infrared (NIR)
regions, and (2) very high spectral resolutions (e.g., FWHM ≤ 0.39 nm, and <0.2 nm sampling intervals).
These systems are often complemented by a visible and near-infrared (VNIR) spectrometer, used for
the determination of hemispherical conical reflectance factors as well as spectral indices such as the
Photochemical Reflectance Index (PRI) [14]. Earlier systems featured sub-nanometric FWHM but poor
SNR (e.g., < 1000:1); these systems usually relied on sensors such as the HR or USB series produced by
Ocean Optics (Dunedin, FL, USA) or similar instruments [8,15–24]. A second generation arrived by
the replacement of the sensor dedicated to SIF retrieval by spectrometers with high SNR (~1000:1),
such as the QE series from Ocean Optics or similar. One of the advantages of these instruments is
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the thermal stabilization of the detector. Two systems incorporating these spectrometers result partly
from the exchanges and collaborative efforts carried out under the umbrella of the COST Action
OPTIMISE: the FLuorescence bOX (FloX, JB Hyperspectral, Dusseldorf, Germany) [25] and the Piccolo
Doppio (a collaborative effort lead by GeoSciences, University of Edinburgh) [26]; similar systems
were developed by other teams [27–30].

SIF constitutes a small fraction of the up-welling radiance observed by an optical sensor; in
absolute terms, this signal constitutes only a few (≤5) mW/m2/sr/nm [1,31] to a signal that may exceed
300 mW/m2/sr/nm [17]. This makes SIF retrieval and interpretation very sensitive to uncertainties,
which can lead to spurious results and erroneous conclusions. Sources of error in the proximal sensing
of SIF can be separated into three groups, as they are related to: (1) instrumentation—sensors introduce
biases and noise in the recorded signal; (2) measurement procedure—this can induce significant errors
in observations or assist avoiding them (in addition inadequate measurement procedures can limit or
prevent the integration of SIF estimates with other variables in space and time and through different
scales); (3) retrieval; different retrieval algorithms can lead to different values and each varies in
sensitivity to uncertainties. These topics are addressed in the three related articles arising from the
cooperation run in the context of the COST Action OPTIMISE in this special issue: the current paper,
and references [12] and [13], respectively.

Spectroradiometers are passive sensors spectrally sensitive to electro-magnetic radiation, as well
as other environmental variables, which are radiometric and spectrally calibrated. Therefore, the
pixel spectral response and the magnitude of the signal generated by the sensor can be expressed in
internationally recognized units and traced to known standards. However this relationship, between
the natural phenomena that is required to be measured (the measurand) and the recorded signal, is
always sensitive to uncertainties and the instrument’s responses to other factors (e.g., signal magnitude,
sensor temperature, etc.). Every spectral band is defined by its spectral response function (SRF); which
is commonly approximated by a Gaussian function and therefore described by the center wavelength
(λc) and the FWHM. The radiometric calibration converts spectrometer outputs (raw data, generally
digital numbers or micro volts) into internationally standardized (SI) physical units—most commonly of
spectral radiance [W/m2/sr/nm] or irradiance [W/m2/nm] [32]. Every measurement is accompanied by
an uncertainty, defined as a “parameter, associated with the result of a measurement, that characterizes
the dispersion of the values that could reasonably be attributed to the measurand” [33]. Calibration
parameters, therefore, include some uncertainties. These calibration uncertainties can be estimated in
the laboratory, and, subsequently, propagated through to operational measurements. The metrological
traceability is defined as the “property of a measurement result whereby the result can be related to a
reference through a documented unbroken chain of calibrations, each contributing to the measurement
uncertainty” [33]. Traceability and uncertainty propagation are rarely considered in proximal sensing
applications, both in the laboratory and especially in the field. However, since SIF is a weak signal
sensitive to several sources of error [13,34], in this paper the propagation of uncertainties is necessary
to determine which observations can provide reliable SIF retrievals that can be understood according
to the precision and accuracy requirements of each application or scientific question.

Several phenomena can modify the relationships established between calibration and
measurements made by the sensor. Some of these are related to the unavoidable degradation of detectors
due to age and usage, an issue that imposes the need of periodical recalibration of the instruments.
Some others factors modify sensor response as a function of sensor configuration, radiometric and
environmental variables. Temperature is known to modify the silicon (Si) photo-response [35–37],
the dark noise levels [35,36,38], or the frequency of the clock used to set the integration time [39].
Temperature can be measured in the detector using temperature probes, and therefore used to fit sensor
models that correct their effects [35,36]. However, if only sensor body or ambient temperatures can be
measured, gradients and temporal shifts related to the propagation of heat through, and temperature
gradients across, the instrument and photodetector should be considered [40,41]. Temperature also
induces dimensional modifications of the spectrometer’s optical and mechanical components; which
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implies changes in the spectral features of the system (λc, FWHM). These changes can strongly
affect the radiance values observed inside and outside the dark absorption lines used to retrieve
SIF [34]. Other sources of error are related with non-linear responsivity of the sensor caused by
supra-responsivity [42–44]; saturation or early leakage in antiblooming switches [45]; non-linear
signal transfer and transformation processes taking place in the sensor electronics [46–48]; or charge
leakage during the readout phase [49,50]. Non-linearity can be corrected [50,51], or better prevented
by optimizing the integration time such that signals remain outside of the less linear regions of the
response. Cosine diffusers and calibrated reflectance reference panels used to measure the down-welling
irradiance are expected to provide a cosine directional response (DR). However, some instruments
may deviate from this function and, even if characterization is possible [36,52–54], accurate correction
requires knowledge on the diffuse fraction of the observed down-welling irradiance [36,54] which
varies in the spectral and directional domains.

Only a few works have considered and analyzed the impact of some of these instrumental sources
of error on the retrieval of SIF. These works have mainly focused on the effects of noise, spectral
configuration and spectral shift on different retrieval methods, and did not address propagation of
uncertainties, other than for sensor noise [34,55,56]. This article aims to contribute to the understanding
of some of the instrumental sources of error on the retrieval of SIF, focusing on the latest generation
sensors available and on a single SIF retrieval method. This work does not attempt to be exhaustive,
but rather focuses on some of the best known instrumental responses and on the use of a framework
that could be applied in the future for similar analyses.

2. Materials and Methods

2.1. Data Simulation for Fluorescence Retrieval

In order to test the effect of different uncertainties in the retrieval of SIF under controlled conditions,
we produced a synthetic dataset of radiant fluxes: the Vegetation Dataset. Bottom of the atmosphere
(BOA) down-welling irradiance spectra were generated for unvarying atmospheric conditions at
different solar zenith angles (θs) between 0.00◦ and 83.32◦. Direct (E↓dir) and diffuse (E↓diff) very high
spectral resolution irradiances (FWHM = 0.005 nm) were produced by the radiative transfer code
MOMO [57] between 500 and 800 nm, and combined as a function of θs (Equation (1)).

E↓tot = E↓dir cosθs + E↓diff, (1)

where E↓tot is the total BOA down-welling irradiance. For most of the analyses in the manuscript, we
used the irradiance spectra simulated for θsun = 29.80◦ (angles were taken as available in a look-up-table
generated in the FLUSS project). Irradiances at different θsun were only used for the study of the
diffuser directional response (see Section 2.3.6). A typical vegetation reflectance factor (R) and top
of the canopy SIF radiance in the observation direction (F↑) spectra were generated using the model
SCOPE [58] version 1.7. For simplicity we assumed a Lambertian vegetation canopy, limiting the
analysis of directional effects to those induced by the sensor. R and F↑ smooth spectra were interpolated
using cubic splines to MOMO spectral bands in order to compute at-nadir BOA up-welling apparent
radiance (L↑app)—which combines both reflected and emitted radiances—as in Equation (2):

L↑app =
E↓tot

π
·R + F↑, (2)

From these datasets we simulated spectra observed by a typical field spectroradiometer dedicated
to the retrieval of SIF in both major telluric oxygen absorption bands: O2-B (~687.0 nm) and O2-A
(~760.4 nm) [1]. This spectroradiometer would be very similar to one of the systems most frequently used
for proximal sensing of SIF in the last years, the Ocean Optics QE Pro (Ocean Optics, Dunedin, FL, USA).
However, we would like to emphasize that this study does not aim to exactly replicate the characteristics
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of this specific sensor; and the topics under analysis are common to any spectroradiometric system
(including not only the spectroradiometer, but also fibers, fore optics, multiplexers etc.), each featuring
unique responses to the different factors analyzed. The simulated spectroradiometer featured 1024
channels between 650 and 810 nm, with a spectral sampling interval of ~ 0.1564 nm and FWHM = 0.32 nm.
Constant values were chosen for simplicity, but these actually vary along the detector. The system
operates in a dual-field-of-view configuration; which means that the up-welling and down-welling
fluxes are sampled sequentially by the same detector. In this case, we assumed that the first was
sampled by a bare optical fiber tip and the second through a hemispherical cosine corrected diffuser.
This configuration would be usual for tower-based or drone-borne automated, as well as for manually
operated systems.

2.2. Sensor Simulator

In order to model and reproduce the measurement process and to include instrumental-induced
biases and uncertainties we developed a Sensor Simulator. The Sensor Simulator was capable of
optimizing integration time (tint) according to the radiance observed so that the maximum digital signal
reached 175,000 digital numbers (DN) (87.5% of the saturation level: 200,000 DN). It also produced
dark current (N0,λ)—the inherent electrical noise in all electronic sensors—and added sensor noise
according to the signal level and transformed the digital signal (Nλ) to physical units and vice versa.
For convenience, in this article we assumed Lλ = Eλ/π, and operated the sensor simulator in spectral
radiance units (Lλ). The transformation of the digital signal to radiances was carried out as follows
(Equation (3)):

Lλ =
Nλ −N0,λ

tint
·gλ, (3)

where gλ is the radiometric calibration coefficient and λ denotes the spectral component of the variables.
A set of radiometric calibration coefficients of a FloX (JB Hyperspectral, Dusseldorf, Germany)
spectroradiometric system was used for this simulator. We also generated a model predicting sensor
random noise in digital numbers (Appendix A) as a function of tint and of the ratio (Nλ −N0λ)/tint;
a variable proportional to Lλ (Equation (3)). “Measured” radiances were generated applying spectral
convolution [59] to L↑app and E↓tot, assuming Gaussian SRF [60]. Figure 1 shows the original and the
convolved radiances, as well as the F↑ used to generate these datasets.
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Figure 1. (a) Bottom of the atmosphere (BOA) down-welling simulated radiances; (b) BOA up-welling
simulated radiances and top of the canopy sun-induced chlorophyll fluorescence (SIF) radiance emission.
F↑ is scaled by a factor of 100 in the plot.

From this dataset and the datasets generated in the following analyses (Section 2.3), we retrieved
F↑ in both O2-A and O2-B bands using Spectral Fitting Methods from the FieldSpectroscopyDP R
package. The package is available on the GitHub platform at https://github.com/tommasojulitta under
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GNU v3.0 [61]. These results were compared with simulated F↑ values to assess the impact of the
different uncertainties and instrumental biases on SIF retrieval in both oxygen bands. Notice that this
work does not aim to test the performance of different retrieval algorithms and uses only one of them.
Further analyses on the performance of different retrieval methods can be found in this issue [13]. F↑

in the O2-B and O2-A bands for the spectra simulated with θs = 29.80◦ was 0.411 mW/m2/sr/nm and
1.427 mW/m2/sr/nm, respectively. F↑ retrieved in the O2-B and O2-A bands is labeled with subscripts
687 and 760 through the paper. However, notice that the bands selected for the retrieval depend on the
algorithms used, which often rely on the band with the minimum radiance value within the absorption
feature [13]. The selected band can vary according to the spectral configuration of the sensor and the
spectral shifts induced and simulated in different analyses (Sections 2.3.1 and 2.3.2).

2.3. Characterization of Sensor Models and Instrumental Uncertainties

Figure 2 summarizes the dataflow of the different datasets and models generated as well as the
uncertainty propagation. Uncertainty propagation methods are described in Section 2.4.
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Figure 2. Data flowchart representing the combination of the different datasets (rectangles) and models
(ellipses) used in the different simulations of this article. The radiometric variables contained in each
dataset are indicated between brackets. Models that simulate uncertainty propagation and those
datasets that include uncertainty distributions present the symbol (u) between brackets. A detailed
description of the sensor simulator is shown in Appendix A.

In order to analyze the impact of different instrumental error sources on SIF retrieval, we first
simulated the characterization and calibration of the sensor simulator as follows (Step 1 in Figure 2):

(1) We reproduced the exposure of the sensor simulator to a given radiance source of known
properties (and uncertainties), as well as the operation of different simulated sensor models
ideally reproducing certain instrument responses to environmental and instrumental factors.
Notice that the simulated sensor models biased the radiance measurements but did not add any
random noise in this case since they are supposed to replicate the actual behavior of an instrument.

(2) For each calibration or instrument response characterized, the combination of the three
abovementioned elements led to the generation of a set of radiances (the characterization
dataset) which were similar to the actual laboratory datasets used for instrument calibration
and characterization.
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(3) Each characterization dataset was used to estimate the parameters of a sensor model (the fitted
sensor model) together with their corresponding uncertainties. Fitted sensor models were able to
predict sensor responses with propagated uncertainties.

In the second phase (Step 2 in Figure 2) we simulated the proximal observation of atmospheric
down-welling and vegetation up-welling radiances from which we retrieved SIF.

(1) First, we combined the fitted sensor models and the sensor simulator to reproduce the
“measurement” of the vegetation dataset. In this case, the biases and uncertainties of each
fit model were applied individually, and with no noise contribution from the sensor simulator
itself. This approach allowed us to isolate the effect of each instrumental response under and its
characterization uncertainties. Measurements were simulated at different levels of the drivers
(e.g., ambient temperature, etc.) of the fitted sensor model under study.

(2) The combination of these datasets and models produced set of atmospheric and vegetation
radiances (the retrieval dataset) with noises and biases included, from which we retrieved SIF.

(3) Retrieved and simulated SIF were compared, and errors analyzed as a function of the instrument
response drivers.

Simulated and fitted sensor models allowed us to study different instrumental responses that can be
separated in two groups: (1) those that modify the spectral characteristics of the sensor and; (2) those
that affect the input-output relationship, therefore related to radiometry.

As described above, characterization datasets are essentially synthetic. They do not attempt to
accurately replicate any specific behavior of an actual sensor; rather, they represent realistic models
similar to those that could be characterized for individual spectroradiometers. This approach allowed
us to account for the lack of suitable characterization data, in some cases, and to control the uncertainty
propagation. Characterization datasets were produced from a calibrated radiance source of known
uncertainty that was “observed” by the sensor simulator. This source was closely modelled based
on the high-quality, traceable RAdiance STAndard, (RASTA) [62], or to a Mercury-Argon lamp used
for spectral calibration [60]. Sensor simulator noises and lamp uncertainties were propagated to each
characterization dataset. In each case, a different sensor model operated, and in some cases, the
uncertainty of other variables involved (e.g., temperature, illumination angle), was also propagated.
We fitted different models commonly used in the characterization of field spectroradiometers to those
datasets and computed uncertainties and covariance of the estimated fitted sensor model parameters.
In order to facilitate uncertainty propagation, these fitted sensor models were the assumed to be the
measurand. Thus, we did not evaluate the capability of the different model formulations to mimic the
simulated sensor models, nor did we analyze the consequences of lack of fit between them.

In this work, the effect of each fitted sensor model on SIF retrieval is analyzed separately, and
only the uncertainties of each sensor model are propagated in Step 2 (Figure 2). However, for field
measurements, calibration uncertainties, the combination of different instrumental responses, and the
sensor noises, as well as quick changes in the atmospheric irradiance would jointly modify the signal;
which might increase the uncertainty of the retrieved SIF. However, such analysis is out of the scope of
this article.

2.3.1. Spectral Calibration Uncertainties

Uncertainties related to the spectral characterization of center wavelength (λc) and FWHM were
estimated from the work of Mihai et al. [60], who characterized two spectroradiometers using both
line emission lamps and a double monochromator. Since the former light sources are more commonly
available, we estimated the uncertainties from the fit of a Gaussian function on 30 repeated observations
of a Mercury-Argon (Hg-Ar) emission lamp, as described in [60]. We selected a line close to 750.387 nm
to quantify uncertainties in λc and FWHM.

In addition, the impact of the spectral calibration uncertainties was compared with the effect of
spectral shifts (∆λ). Together with the λc and FWHM uncertainties we applied shifts ranging between
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−1 nm and +1 nm to the down-welling radiance (L↓tot = E↓tot/π) respect to L↑app and to L↑app respect
to L↓tot in the Vegetation Dataset. For comparison, notice that the O2-B and the O2-A main features
present widths of approximately 2 nm when convolved to the spectral features of the Sensor Simulator.
Such spectral shifts may result from the use of different sensors to separately measure the L↓tot and
L↑app; or could be produced by any optical component separating the input of each of the fluxes into
the same sensor (e.g., poorly aligned fore optics or lens focal points, bifurcated fibers, multiplexers,
etc.). Secondly, we applied the same shift to L↑app and L↓tot simultaneously. This could simulate
the spectral shift that a single sensor can experience over time or as a consequence of temperature
variations during the course of the day in an automated system operating outdoors with no thermal
stabilization [36]. From these data we also analyzed the impact of the calibration uncertainties when
there is no shift (∆λ = 0). In all the cases, we propagated λc and FWHM uncertainties to each simulation
via Monte Carlo sampling as described in Section 2.4. The spectral features encompassing spectral
shifts and/or uncertainties were used to convolve radiances in the vegetation dataset, producing this
way the corresponding retrieval dataset.

2.3.2. Temperature-Induced Spectral Changes

Temperature effects on the spectral features of a spectroradiometer QE Pro (Ocean Optics, Dunedin,
FL, USA) integrated into a system developed by the University of Innsbruck (Innscruck, Austria) were
characterized by measuring emission lines of a Neon-Argon (Ne-Ag) lamp source while exposing
the instrument to different temperatures. During the experiment, the spectroradiometric system
was housed in a controlled environment chamber (Percival Scientific Inc., Perry, IA, USA) and the
temperature inside the chamber was adjusted to the following values: 40, 30, 20, 10, 0, 10, 20, 30 ◦C. The
QE Pro body temperature (Tb) was monitored by a set of three temperature sensors (TMP112, Texas
Instruments, Dallas, TX, USA), and the measurements (n = 10) were taken when the spectroradiometer
body temperature reached the steady-state. Since the experiment was to provide information on
the impact of pre-detector optical components temperature on spectral calibration, the detector
temperature (Td) itself was kept constant at 0 ◦C using the Thermo Electric Cooler (TEC) integrated into
the spectroradiometer. The range of temperatures used in this experiment could be easily experienced
by an automated spectroradiometric system operating outdoors capturing daily cycles of F↑ with no
Tb control [36]. This experiment provides information on the impact of temperature on the optical
path and some parts of the instrument, but not on the detector itself.

As in Section 2.3.1, Gaussian functions were fitted to 10 emission lines measured across the
sensor at each temperature step. Variations in λc and FWHM at these pixels were extrapolated to
the entire sensor spectral range and to the observed Tb range using Biharmonic spline interpolation.
This interpolator became the simulated sensor model, to which the uncertainties characterized in
Section 2.3.1 were added to produce the Fitted Sensor Model. Very high spectral resolution radiances of
the vegetation dataset were convolved using the spectral features simulated at different temperatures
producing a retrieval dataset. As in Section 2.3.1, the spectral shift was applied to both radiance
and irradiance fluxes on a separate basis and then simultaneously. For convenience, a Tb of 20 ◦C
was chosen to set the reference spectral features against which SIF retrievals at other temperatures
were compared.

2.3.3. Radiometric Calibration Uncertainties

In this Section, the relative radiometric calibration uncertainty (urad) of the high quality radiance
standard, RASTA [62], was used to produce the characterization datasets. Radiometric calibration
spectra and uncertainties were provided at relatively large spectral intervals (50 nm). Uncertainties
were estimated for the whole sensor spectral range by applying a cubic spline interpolation (Figure 3).
For comparison with uncertainties in Figure 3 notice that in the Vegetation Dataset F↑ represents the
11.13% and the 10.88% of L↑app within the O2-B and the O2-A bands respectively. However, it must be
highlighted that the uncertainty estimated in this exercise corresponds to a “best case” scenario, since
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it is associated with a high-quality standard and does not account for additional uncertainties also
present in the calibration procedure. Realistic cases may present higher values. Thirty radiance spectra
with radiometric noise were generated using Monte Carlo sampling from a normal distribution of
mean 0 and sigma (σλ) scaling with the radiance as σλ = uradλ ·Lλ. The Sensor Simulator optimized
the integration time and added random noise to this signal as described in Section 2.2, producing a
Characterization Dataset. The radiometric calibration coefficients and the related uncertainties ugλ were
obtained for each band solving gλ in Equation (3). Henceforth, these coefficients and their uncertainties
were used in the sensor simulator to convert Nλ to Lλ when generating other characterization datasets.
Uncertainties were propagated via repeated realizations of the conversion including random noise in
gλ produced by Monte Carlo sampling from a normal distribution of mean 0 and σλ = ugλ .
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2.3.4. Temperature-Induced Changes in Photo-Response

The relative radiometric sensitivity to temperature (<T) was defined by the linear model coefficients
from reference [40]. These coefficients predict a given radiance as a function of temperature, which
was assumed to correspond to the detector temperature, Td. <T corresponds to the ratio between the
radiance predicted radiance at a given temperature to the radiance predicted at a reference temperature.
The sensor used in reference [40] was different to the type of sensor simulated in the present study, but
also made of Silicon, thus we assumed that it was a suitable approximation representing changes in
Silicon photo-response with temperature. These coefficients were interpolated via cubic splines to
the spectral bands of the sensor simulator. The characterization dataset was produced by generating
radiances between −10 and 40 ◦C at 10 ◦C steps from the interpolated coefficients. RASTA spectral
radiance was not used in this case, but RASTA uncertainties were added to these radiances as described
in Section 2.3.3. These radiances were then processed by the sensor simulator to propagate sensor
random noise and radiometric calibration uncertainties. We added also a 2% relative uncertainty to the
temperature sensor; which is within the range of uncertainties found in the experiment described in
Section 2.3.2. For each temperature level we simulated 30 radiance and Td observations with random
normal noise via Monte Carlo sampling. Spectroradiometers one of the type simulated in this work
allow setting low detector temperatures (around −10 ◦C) to reduce noise; therefore we selected −10 ◦C
as a reference temperature (Td,ref) and then modeled<T as the relative change in radiance as a function
of Td in respect to the radiance observed at Td,ref (and therefore unitless). For each sensor simulator
spectral band, a linear model was fitted against<T to estimate the fitted sensor model parameters and
their uncertainties.

The Fitted Sensor Model predicted<T between −10 and 40 ◦C at 10 ◦C steps. <T predictions
and propagated uncertainties were used to bias the vegetation dataset therefore producing the
retrieval dataset.
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2.3.5. Non-Linearity

A synthetic simulated sensor model representing grey-level related non-linearity (<N) [50] was
generated using the non-linearity coefficients of a QE Pro spectroradiometer. The characterization
dataset was produced from the RASTA radiance spectra. First, the sensor simulator optimized tint at
the saturation level (scaled value: 200,000 DN). In the next step, the observations of this radiance were
generated as in previous sections, reducing the optimized tint by the following factors: 1.000, 0.975,
0.950, 0.900, 0.850, 0.800, and then up to, 0.100 with 0.100 steps. Thirty realizations with random noise
of different uncertainties were produced for each tint. The sensor simulator converted Lλ to Nλ. We
then used the simulated sensor model to bias Nλ as a function of the digital value in DN, producing in
this way the characterization dataset.

<N was calculated as the rate (Nλ −N0λ)/tint —a variable proportional to Lλ (Equation (3))—
normalized by the maximum value of this rate found in each pixel [51]. In order to reduce the effect of
noise on the calculation of<N, we used the averaged radiance of the 30 samples produced at each tint

to compute the maximum rate (Nλ −N0λ)/tint. Next, a 7th degree polynomial was fitted to predict
<N as a function of Nscaled; where Nscaled is Nλ – N0,λ scaled after subtracting the mean and dividing
by the standard deviation to prevent bad conditioning [63]. Figure 4 shows the simulated and fitted
sensor models.
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Once characterized, the fitted sensor model was applied to the vegetation dataset. First, the sensor
simulator optimized tint according to L↑app and L↓tot spectra of the vegetation dataset. Then radiances
in the vegetation dataset were modified by a factor (f L) of 0.20, 0.40, 0.60, 0.80, 1.00, 1.02, 1.06 and
1.10. Scaled radiances were transferred to the sensor simulator, which, without modifying the value of
the optimized tint, transformed Lλ to Nλ. The digital signal Nλ was biased (and noised) by the fitted
sensor model and converted back to Lλ units to produce the retrieval dataset.

2.3.6. Directional Response Characterization

The characterized DR of an opaline glass cosine diffuser (Ocean Optics, Dunednin, FL, USA) [53]
was used as the base to generate a simulated sensor model. A 4th degree polynomial was fitted for
each illumination angle simulated in the experimental data to smooth the response. Cubic spline
interpolation was used subsequently to predict the DR at the spectral bands of the simulated sensor at
different illumination angles (θs), which became the Simulated Sensor Model (DRsim,λ). A synthetic
dataset for the characterization of DR was generated using RASTA radiance for θs equal 0◦, 10◦, 20◦,
30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 85◦. An absolute uncertainty of 0.25◦ was assumed for these angles. For
each of them, we produced 30 synthetic radiance spectra including random noise corresponding to
lamp, calibration and sensor simulator uncertainties. This was the characterization dataset. Then we
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computed the relative deviation of irradiance (assuming Lλ = Eλ/π) from of the cosine response (βλ)
as follows:

βλ =
L1,λ·DRsim,λ − L2,λ· cosθs

L2,λ· cosθs
, (4)

where L1,λ and L2,λ represent RASTA radiances at θs = 0◦ but with different random uncertainties.
Figure 5a presents the simulated DR function versus θs at different wavelengths, and compares them
with the cosine response. As can be seen, the simulated sensor model overestimates irradiance at
short wavelengths and θs; and underestimates it at large θs and wavelengths. Figure 5b shows the
relative deviation of the cosine response corresponding to the DR curves in the contiguous subplot. βλ
strongly decreases when θs becomes larger than 70◦; which is in part explained by the low values of
cosθs at large angles (Equation (4)). Low cosθs values make βλ also very sensitive at to uncertainties
at large θs. However, no measurements for SIF retrieval are expected to be reliable at such angles and
in the case of the diffuse radiation coming from this angular region, the overall effect is expected to be
low since the contribution of diffuse irradiance to the signal is also weighted by cosθs (Equation (5)).
Fitted sensor model parameters and uncertainties were estimated for each band by fitting a 6th degree
polynomial on the characterization dataset, describing βλ as a function of θs.
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The fitted sensor model was used to bias and noise E↓tot in the vegetation dataset using the
approach in reference [54]. The vegetation dataset was generated from the Matrix-Operator Model
(MOMO) irradiance spectra provided at θs = 0.00◦, 2.56◦, 16.27◦, 29.80◦, 43.21◦, 56.59◦, 69.96◦ and
83.32◦; and L↑app and F↑ were generated as described in Section 2.1. These spectra were convolved with
the sensor SRF. Convolved diffuse and direct irradiances were used to calculate the relative direct and
diffuse fractions (f dir and f diff respectively). The surface reflectance factor was not modified in order to
isolate the instrumental effect from surface anisotropy. However, F↑ was scaled by the cosθs in respect
to the signal generated for θs = 29.80◦ and used in previous analyses: F↑(θs) = F↑ cosθs/ cos(29.80).
This normalization is applied to provide an emission approximately proportional to the simulated
down-welling irradiance. Consequently, F↑ ranged from 0.45 mW/m2/sr/nm to 0.05 mW/m2/sr/nm
in the O2-B band and from 1.61 mW/m2/sr/nm to 0.19 mW/m2/sr/nm in the O2-A band. For each
wavelength and solar angle, the fitted sensor model predicted the relative deviation from the cosine
response βλ -which was the factor biasing E↓dir-, and the related uncertainties. Similarly, the mean
cosine-weighted response error αλ, Equation (5) was computed to bias the diffuse flux, E↓diff, which
was always assumed isotropic.

αλ =

∫ 0

1
βλ(θs)µsdθµs, (5)
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where µs is cosθs. E↓tot in the retrieval dataset (E↓tot,DR) was computed as (Equation (6)):

E↓tot,DR =
E↓tot

1− βλ· fdir − αλ· fdiff
, (6)

2.4. Uncertainty Estimation and Propagation

Uncertainties in the sensor simulator and the radiance sources were assumed to be uncorrelated
and were propagated via a Monte Carlo approach. In order to generate the characterization datasets,
we simulated 30 experimental replicates of each observation, adding normal noise to the different
quantities or parameters involved in their computation: radiances, radiometric calibration coefficients,
dark current, temperature sensors, illumination angle, etc.

Fitted sensor model parameters and related uncertainties were estimated by fitting different
models to the characterization datasets. Uncertainties were summarized by the covariance matrix of
the parameter estimators (Covp), which was linearly approximated as Equation (7):

Covp ≈MSE·

JT


1

σ2
meas,1

. . .
1

σ2
meas,n

J


−1

(7)

where MSE is the Mean Squared Error, J is the Jacobian matrix evaluated at the solution of the model
inversion, and superscript T stands for transposed. J is a matrix of n observations and m parameters.
Covp allowed uncertainty propagation following the approach in reference [64]. To do so, each time the
fitted sensor model was used to predict sensor responses affecting the vegetation dataset, we generated
500 realizations of the model parameters sampling from multivariate normal distributions centered on
the parameters values and constrained by Covp. Therefore, the retrieval datasets presented 500 spectra
per simulated observation from which F↑ was estimated.

3. Results

3.1. Spectral Calibration Uncertainties

Uncertainties in the location of λc and size of FWHM were 0.59·10−3 nm and 1.34·10−3 nm,
respectively. These values describe the incertitude on the determination of these parameters; they
do not represent a difference between the nominal and the characterized features or any variation
induced by external factors. These uncertainties led to very small errors in the retrieved SIF. In
the O2-A band, the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were both
0.003 mW/m2/sr/nm; whereas in the O2-B band MAE and RMSE were 0.008 mW/m2/sr/nm and
0.010 mW/m2/sr/nm, respectively. Absolute errors were always lower than 0.020 mW/m2/sr/nm (95%
confidence interval).

Figure 6 shows the difference between F↑ retrieved from the Retrieval Dataset and simulated in the
Vegetation Dataset (∆F↑ = F↑ret - F↑sim) in the two O2 bands. In this case, ∆F↑ represents the retrieval
error when one of the up-welling or down-welling fluxes was spectrally shifted in respect to the other.
The spectral shifts led to an overestimation of F↑ in the in the O2-B (F687

↑) band (Figure 6a) and to
under and overestimation of F↑ in the O2-A (F760

↑) band (Figure 6b). Errors in F687
↑ (∆F687

↑) were
above 0.50 mW/m2/sr/nm in most of the cases; and were below this value only when |∆λc| ≤ 0.10 nm, or
for large blue shifts in the down-welling flux. Red shifts of the down-welling flux larger than 0.25 nm
led to positive errors out of the scale of the plot. Errors in the O2-A band (∆F760

↑, Figure 6b) show
F760

↑ overestimation for ∆λc ≤ −0.25 nm. Larger red shifts (∆λc ≥ 0.25 nm) led to underestimations of
lower magnitude. The shortest shifts (|∆λc| ≤ 0.25 nm) led also to |∆F760

↑| < 1.5 mW/m2/sr/nm. The
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shift of one channel in respect to the other do not produce symmetric errors since O2 features are not
symmetric, and due to band selection criteria of the retrieval algorithm.Remote Sens. 2019, 11, 960 13 of 29 
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Figure 7 presents ∆F↑ produced by spectral shifts applied simultaneously to both up and
down-welling fluxes. In both cases, deviations from the simulated F↑ were much smaller than in
Figure 6. In the O2-B band (Figure 7a), ∆F687

↑ reached absolute values below 0.05 mW/m2/sr/nm in the
majority of cases. In the O2-A band (Figure 7b), ∆F760

↑ was inversely related to ∆λc, ranging between
−0.20 and 0.07 mW/m2/sr/nm.
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3.2. Temperature-Induced Spectral Changes 

Figure 7. Estimated minus simulated SIF radiance when both up and down-welling fluxes present the
same shift in (a) the O2-B band and (b) the O2-A band.

Table A1 compares the Relative Root Mean Squared Error (RRMSE) induced by spectral shifts
in F↑ in the O2-A and O2-B bands as well as on R in two bands located in the red (680 nm) and the
near infrared (750 nm) region. These bands were selected because they represent two regions with
different R values not affected by changes within the deep and narrow spectral shapes of the O2 features.
However, they still provide information about the effect of instrumental artifacts on “traditional”
R-based proximal sensing. As can be seen in Table A1, uncertainties and shifts in the spectral features
have much stronger effect on F↑ than on R. When the spectral shift was not applied simultaneously to
both fluxes, ∆F↑ presented magnitudes comparable to F↑ even for very small ∆λc, especially in the
O2-B band.
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3.2. Temperature-Induced Spectral Changes

Figure 8 shows the results of the characterization of the Tb-induced changes on the spectral
features of the system. The interpolated surfaces constitute the fitted sensor model. In order to
compute ∆λc a Tb = 20 ◦C was chosen as a reference temperature (Figure 8a). This temperature is close
to environmental temperatures used in calibration laboratories. ∆λc was weakly dependent on the
wavelength, and positively related with Tb. It ranged between −0.078 and 0.120 nm. Therefore, λc

red-shifted as its Tb increased. FWHM (Figure 8b) showed a stronger dependency on wavelength, as
also observed in [60], however these trends were quite varying. FWHM was positively correlated with
Tb at wavelengths below ~670 nm and inversely related with Tb for longer wavelengths.

Remote Sens. 2019, 11, 960 14 of 29 

 

Figure 8 shows the results of the characterization of the Tb-induced changes on the spectral 
features of the system. The interpolated surfaces constitute the fitted sensor model. In order to 
compute Δλc a Tb = 20 °C was chosen as a reference temperature (Figure 8a). This temperature is 
close to environmental temperatures used in calibration laboratories. Δλc was weakly dependent on 
the wavelength, and positively related with Tb. It ranged between −0.078 and 0.120 nm. Therefore, λc 
red-shifted as its Tb increased. FWHM (Figure 8b) showed a stronger dependency on wavelength, as 
also observed in [60], however these trends were quite varying. FWHM was positively correlated 
with Tb at wavelengths below ~670 nm and inversely related with Tb for longer wavelengths.  

 

 

Figure 8. Chamber temperature effects on (a) the central position of the spectral band and (b) Full 
Width at Half Maximum. Blue dots represent observations, whereas biharmonic interpolated values 
are plotted as surfaces. 

Figure 9 compares the F↑ retrievals at different Tb vs. the average value retrieved at the reference 
temperature of 20 °C. Distributions of the errors due to temperature induced changes in the spectral 
response function are shown in boxes. For comparison, also the errors predicted without uncertainty 
propagation are presented in circles. In the O2-B band (Figure 9a) Δλc ranged between –0.048 nm and 
0.075 nm, and FWHM between 0.234 nm and 0.284 nm. When variations in λc and FWHM were 
separately applied to each flux measured by the sensor F687↑ was overestimated (Figure 9a), and 
ΔF687↑ presented wide dispersions with 25th and 75th quartiles between 0.0 and 0.9 mW/m2/sr/nm 
approximately. In the O2-A band (Figure 9b) spectral features varied more widely than in the O2-B 
band: Δλc ranged between –0.062 nm and 0.098 nm, and FWHM between 0.434 nm and 0.359 nm. 
ΔF760↑ presented clear trends with Tb, depending on which flux the spectral changes were applied to. 
Absolute differences ranged between ~−0.50 mW/m2/sr/nm and ~1.90 mW/m2/sr/nm at the extremes 
of the range of temperatures tested. In both bands, errors propagated without uncertainties were 
close to the medians of the distributions. In all cases, ΔF↑ took very low values when variations in the 
spectral features (FWHM and Δλc) were common to both fluxes. 
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are plotted as surfaces.

Figure 9 compares the F↑ retrievals at different Tb vs. the average value retrieved at the reference
temperature of 20 ◦C. Distributions of the errors due to temperature induced changes in the spectral
response function are shown in boxes. For comparison, also the errors predicted without uncertainty
propagation are presented in circles. In the O2-B band (Figure 9a) ∆λc ranged between −0.048 nm
and 0.075 nm, and FWHM between 0.234 nm and 0.284 nm. When variations in λc and FWHM were
separately applied to each flux measured by the sensor F687

↑ was overestimated (Figure 9a), and
∆F687

↑ presented wide dispersions with 25th and 75th quartiles between 0.0 and 0.9 mW/m2/sr/nm
approximately. In the O2-A band (Figure 9b) spectral features varied more widely than in the O2-B
band: ∆λc ranged between −0.062 nm and 0.098 nm, and FWHM between 0.434 nm and 0.359 nm.
∆F760

↑ presented clear trends with Tb, depending on which flux the spectral changes were applied to.
Absolute differences ranged between ~−0.50 mW/m2/sr/nm and ~1.90 mW/m2/sr/nm at the extremes of
the range of temperatures tested. In both bands, errors propagated without uncertainties were close to
the medians of the distributions. In all cases, ∆F↑ took very low values when variations in the spectral
features (FWHM and ∆λc) were common to both fluxes.
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Figure 9. Chamber temperature effects on spectral features. Estimated fluorescence at different chamber
temperatures minus the average SIF radiance at a reference temperature of 20 ◦C is presented in (a) the
O2-B band and (b) the O2-A band. Variations in spectral features are applied to the up-welling, the
down-welling or both fluxes. Circles represent the errors in the absence of uncertainties.

Table A2 compares F↑ and the R RRMSE with and without uncertainty propagation. RRMSE
are lower and most similar between F↑ and R when the spectral variations equally affect both fluxes.
Otherwise there are much larger relative errors in the retrieved F↑. In most of the cases, model
uncertainties increased RRMSE.

3.3. Radiometric Calibration Uncertainties

Radiometric calibration uncertainties (only) were propagated to L↑app and L↓tot. In the O2-B band,
MAE and RMSE were 0.002 mW/m2/sr/nm and 0.003 mW/m2/sr/nm respectively; the 95% confidence
interval (CI) of the errors was [−0.005, 0.007] mW/m2/sr/nm. Analogously, in the O2-A band, MAE and
RMSE were 0.001 mW/m2/sr/nm and 0.002 mW/m2/sr/nm respectively; and the 95% CI of the errors
was [−0.007, 0.003] mW/m2/sr/nm. In relative terms, these uncertainties translated to a RRMSE of
0.83% and 0.14% for F687

↑ and F760
↑ respectively, and a RRMSE < 0.01% nearby both O2 bands for R.

3.4. Temperature-Induced Changes in Photo-Response

Figure 10 shows the predicted<T used to modify L↑app and L↓tot in the Vegetation Dataset As can
be seen,<T ~ 0 around 764.4 nm, decreased with increasing Td for shorter wavelengths and increased
at higher wavelengths. In the simulated Td range of explored temperatures, average predicted<T

ranged between 0.996 and 1.000 in the O2-A band, and between 0.954 and 1.000 O2-B band.
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Figure 11 shows ∆F↑ induced by temperature dependence of detector responsivity, the impact
of <T was low in both O2 bands. Dispersion induced by propagated uncertainties is presented
in boxes. For comparison, the errors induced by the Fitted Sensor Model with no propagation of
uncertainties are shown in circles. Median ∆F687

↑ (Figure 11a) was inversely related to Td, ranging
between 0.00 mW/m2/sr/nm and −0.04 mW/m2/sr/nm, and presented relatively large dispersions.
∆F760

↑ was close to 0 in all the cases, but dispersions were larger than in ∆F687
↑ (Figure 11b). Errors

simulated with no uncertainty propagation were close to median values of the distributions. However,
especially in the O2-B band some clear differences could be observed; therefore uncertainties slightly
biased the errors in respect to the noiseless predictions of<T.
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Figure 11. Detector temperature effects on photo-response. Estimated minus simulated fluorescence
radiance in (a) the O2-B band and (b) the O2-A band.

Table A3 presents F↑ and the R RRMSE. For comparison, instrumental-induced errors with and
without uncertainty propagation are shown. RRMSE is larger in the O2-B band; and differences
between errors in F↑ estimates and the R are lower in the near infrared. Errors induced by noiseless
predictions of<T suggest that propagated uncertainties seem to be responsible of a large part of the
simulated errors.

3.5. Non-Linearity

Figure 12a,b shows ∆F↑ for different radiance scaling factors (fL) applied to the vegetation dataset
and biased by fitted sensor model predictions of<N in both O2 bands. Distributions generated by
the uncertainty propagation are represented in boxes, and errors generated by noiseless predictions
of<N by circles. Figure 12c,d presents the average predicted<N applied inside and outside each of
the O2 absorption features. In the O2-B band (Figure 12a,c), the effect of non-linearity was low, and
comparable for both the up and the down-welling fluxes inside the band for fL < 0.80. However, for
larger fL values, predicted<N outside the O2-B band started to decrease for both fluxes, especially
after the optimization point (fL = 1.0). The result is an underestimation of F687

↑ with ∆F687
↑ linearly

related with fL for fL ≥ 0.60; saturation level (200,000 DN) was never reached. In the O2-A band
(Figure 12b,d)<N increased with fL at a similar rate inside and outside the O2 feature up to fL = 0.60.
Above this level <N saturated close to 1.0 inside the band and decreased up to 0.995 outside the
absorption feature. This behavior led to an underestimation of F760

↑ with an absolute magnitude
ranging between 0.14 mW/m2/sr/nm and 0.31 mW/m2/sr/nm in the fL range [1.00, 1.10]. Errors induced
by the noiseless<N predictions are in general close to the medians of the distributions generated by
uncertainty propagation.
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Figure 12. Non-linearity effects on photo-response. Estimated minus simulated SIF radiance in (a) the
O2-B band and (b) the O2-A band. Photo-responsivity applied to the down and the up-welling fluxes
inside (x) and outside (o) the (c) O2-B band and (d) the O2-A band.

Table A4 shows the RRMSE in F↑ and R at different fL levels. For comparison, instrument-induced
errors with and without uncertainty propagation are presented. Errors in F↑ estimates are large, while
they are very low for R in both the red and the near infrared regions. The impact of the propagated
uncertainties seems to be low compared with the errors induced by the model. The lowest RRMSE for
F↑ seems to be placed close to the optimization point. Relatively larger errors were found for low fL
than for fL above optimization. This is in part explained by the reduced magnitude of F↑ (scaled by
fL). R in the red spectral region seems to be more affected by<N at the bottom of the dynamic range
whereas RRMSE is larger at the top of the dynamic range in the near infrared. This is governed by the
convolution of spectral radiance and the quantum efficiency of the detector.

3.6. Directional Response of the Cosine Diffuser

Figure 13a,b show the ∆F↑ induced by DR in the O2-B and O2-A bands respectively. For comparison,
the F↑ simulated at each band is also presented (stars), as well as the errors induced by the noiseless
model (circles). Large differences can be observed between the ∆F↑ generated DR predicted with and
without uncertainty propagation. Propagated uncertainties led to much higher errors. In the O2-B
band errors are comparable to F687

↑ magnitude; whereas in the O2-A band errors are the half the value
of F760

↑ or less. However, errors induced by the noiseless model are close to 0. The largest errors both
in relative and absolute terms are found at the lowest θs.
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the diffuse and the direct components of the down-welling flux inside (dark blue/green) and outside 
(light blue/green) (c) the O2-B band and (d) the O2-A band. 
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outside (bright blue/green) of both O2 features. In both cases the direct component of the 
down-welling flux (direct radiation coming from θs) was more strongly affected by the sensor DR 
than the diffuse component (assumed isotropic) for θs ≤ 56.6°. Above this angle, the effect of the 
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Figure 13. Cosine diffuser directional response effects. Simulated SIF radiance (stars) at different sun
zenith angles and the corresponding error estimated distributions generated by uncertainty propagation
(boxes); as well as errors generated by a noiseless the DR model (circles) in (a) the O2-B band and (b)
the O2-A band. Variations in radiance induced respect to the ideal cosine response in the diffuse and
the direct components of the down-welling flux inside (dark blue/green) and outside (light blue/green)
(c) the O2-B band and (d) the O2-A band.

Figure 13c,d show the predictions of the relative variation in L↓tot (∆L↓,%) induced by the
deviations in the measurement of direct (βλ· fdir, blue) and the diffuse components (αλ· fdiff, green) of
the down-welling flux in the O2-B and the O2-A bands respectively. For comparison, the distributions
generated by the propagation of uncertainties (boxes) as well as those of the noiseless predictions of
βλ and αλ (dots) are shown. As can be seen, in this case, medians of the distributions and noiseless
values coincide. Variations are presented for radiances inside (dark blue/green) and outside (bright
blue/green) of both O2 features. In both cases the direct component of the down-welling flux (direct
radiation coming from θs) was more strongly affected by the sensor DR than the diffuse component
(assumed isotropic) for θs ≤ 56.6◦. Above this angle, the effect of the diffuse component became also
relevant since the diffuse fraction increased. However, in most of the cases, ∆L↓ of the direct component
presented wider dispersions. ∆L↓ remained below 5% for most of the simulations; ∆L↓ differences
between inside and outside the O2 bands were mild, and only noticeable at large θs. However, for
θs ≤ 56.6◦ the median of the distributions and noiseless |∆L↓| were lower than 1.5% and 0.6% in the
O2-B and O2-A bands, respectively.

Predicted DR appears to have a reduced effect on F↑ retrieval; however, the uncertainties associated
to the model largely biased F↑ estimates. In this simulation, uncertainty is only propagated to the
down-welling radiances involved in the estimation of F↑. Even in absence of DR bias, uncertainties led
to F↑ overestimation as shown in Appendix C (Figure A3).
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Table A5 compares the RRMSE in F↑ and R for different θs. Instrument-induced errors with and
without uncertainty propagation are presented. Errors in F↑ estimates are larger than those found
in the reflectance factors, and largely related to the propagated uncertainty. Relative errors in the
O2-B and the O2-A band were maximal at the lowest θs tested (~235% and ~65% respectively). In the
case of R, RRMSE stay below ~3% for θs <69.96◦, most of the error is also induced by the propagated
uncertainties. RRMSE achieve also large values at the highest θs, which is expected due to the relatively
low signal level.

4. Discussion

This article explores the sensitivity of the retrieval of SIF in the O2-B and O2-A bands to
different instrumental biases and noises simulating a state-of-the-art spectroradiometer; and provides a
framework to carry out similar analyses that could be relevant for the interpretation and the validation
of remote sensing SIF products.

The uncertainties propagated during the simulation of the radiometric and the spectral calibration
experiments led to low uncertainties in the respective calibration coefficients; as well as reduced
errors in the retrieval of SIF. These results limit to the magnitudes involved in the calibrations, and
do not include the analysis of spectral shifts. On the contrary, systematic biases induced by some
of the simulated—but realistic—instrumental responses significantly affected SIF retrieval. In this
work, the effect of different instrumental responses is analyzed separately. However, in an actual
measurement, the total effect on SIF retrieval would depend on several factors including spectral
properties of the vegetation target, illumination conditions, sensor characteristics and configuration;
the joint effect of different instrumental responses and uncertainties, as well as additional sources
of uncertainty that were not analyzed (e.g., solar irradiance stability in the natural environment).
Some of the analyses conducted revealed systematic biases and errors related to the factors driving
the instrumental responses. This is relevant because some of these factors are also drivers of plant
photosynthesis (e.g., solar angle, temperature, radiance level, etc.); and therefore, covariation with
errors might spuriously mask or enhance physiologically induced variations of SIF. This might lead to
confounding instrumental with vegetation responses to such drivers, and in consequence, to erroneous
conclusions and non-repeatable results. The modeling work in this article suggests that instrument
characterization is a necessary step in the interpretation of spectroradiometric signals related to plant
photosynthesis. The relative errors propagated from the same instrumental responses to red and
NIR R were much smaller than those found in SIF. This implies that uncertainty levels that might
be acceptable for the calculation of reflectance factors might strongly limit and even invalidate the
retrieval of SIF; as well as its use for the study of plant function. Considering the growing interest
of the scientific community on SIF, more research is needed to understand the performance of field
spectroradiometers and their limitations to provide reliable retrievals of SIF.

Results also indicate that the suitability of current methods and models used to characterize field
SIF-oriented spectroradiometers should also be evaluated. As with the spectroradiometric systems, it
is also necessary to understand if the characterization methods are good enough; in this case, to predict
sensor behaviors and to correct the measurements according to the requirements of the application.
For this reason, we propagated sensor model uncertainties to radiances the characterization methods
as a way of evaluating if a characterized model could be used to improve SIF retrieval. In some cases,
errors were driven by uncertainties propagated from the characterization of the sensor models; which
suggests that correction of instrumental biases might be counter-productive if (random) uncertainties
were too high to precisely characterize and predict the sensor behavior.

Consequently, more efforts are needed to develop methods and systems that allow the validation
or evaluation of SIF retrievals in the field. Some works of this kind have made use of calibrated
emission sources, mimicking the F↑ spectrum shape using spherical [65], and panel diffusers (“F-ref”
panel, JB Hyperspectral devices); to allow comparing SIF estimates at different radiance emission
levels. However, validation of absolute SIF emissions is a complex problem which also depends on the
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retrieval method [13]. The results presented on this work are limited to a single retrieval algorithm,
and may vary for other methods.

4.1. Impact of Spectral Features

These results demonstrate how even very small spectral differences between the measurement
of the up and the down-welling fluxes involved in the retrieval of SIF signal can lead to large errors;
which can achieve magnitudes comparable or even larger than the actual signal (Figures 6 and 7,
Table A1). This makes system design critical. The use of different spectroradiometers to separately
measure up-welling and down-welling radiances would be strongly discouraged since: (1) different
sensors would never present the same spectral features (e.g., λc, FWHM); and (2) correction would be
complex and might involve the use of high spectral resolution atmospheric radiative transfer codes and
sensor models that, even then achieving extreme accuracies and precisions, might not be enough to
correct SIF retrieval. The final result would strongly depend on the accuracy achieved in the prediction
of E↓tot and the stability of the spectral features in each of the sensors.

Thermal stabilization, not only of the detector, but of spectrometer internal and external
components of the optical path (spectrometer body, including diffraction grating and mirrors,
multiplexers, etc.) is also recommended. Results of Section 3.2 show that if the spectral features equally
vary for both the up-welling and the down-welling fluxes, the impact on the retrieval might be very
small (Figure 9, Table A2). However, temperature could differently affect the optical path followed
by each of the fluxes, which in the worst case scenario would produce spectral shifts in opposite
directions, magnifying the errors. The effect of temperature on individual components of the optical
path has not been analyzed, and variations observed in Section 3.2 cannot be related or partitioned into
any of them. Optical fibers are expected to remain stable at operational temperature ranges of field
spectroradiometry [66]. However, to the best of our knowledge, the effect of temperature on different
elements of the optical path exposed to environment/not stabilized has not yet been reported in regard
to SIF retrieval. This information would be relevant for automated systems operating outdoors to follow
daily cycles of SIF, as well as for drones which to date have only afforded the thermal stabilization of
the detector, but not of the whole system. The stability of spectral features of sensors operating under
dynamic environmental conditions should be quantified through characterization and/or validation.
Temperature control and related stability of the spectral features should be coherent both during
operation and during the characterization of the systems. Therefore, same temperatures should be
used for both types of measurements if possible. In this regard, further analyses are also needed to
quantify the uncertainties induced by the different systems that separate the up and down-welling
fluxes in their way to the detector.

Mihai et al. [60] compared the performance of line emission lamps and a monochromator to
characterize a Piccolo Doppio system featuring a bifurcated optical fiber [26]. After evaluation, they
proposed optimizing the spectral characterization in the regions of the O2 spectral bands, where SIF
is retrieved. In this sense, the monochromator was preferred to emission line lamps since it could
minutely characterize the sensor response in these specific regions; although monochromators also
need to be accurately characterized. However, the access to such instrumentation with the spectral
resolution reported in that work is not usual in most of the remote sensing laboratories. Nonetheless,
the use of different spectral calibration files optimized in each of the bands can be a good alternative
to minimize systematic spectral mismatches that might be induced by different system components,
if identified.

4.2. Impact of Photo-Response

Instrumental-induced changes in the radiometric response of the sensor also led to lower but still
significant errors in the retrieval of SIF. Producers of field spectroradiometers used for the quantification
of reflectance factors usually report non-linarites below 1% within the 95% of the radiometric range
of the instrument. Though, in some cases, characterization experiments found sensor non-linarites
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being slightly higher than these 1% [50,53]. In theory, if non-linearity is low for most of the radiometric
range of the sensor the most non-linear region can be prevented with an adequate optimization. Still, a
correction can be applied based on a polynomial model representing sensor responsivity as a function of
the recorded digital signal [51]. Therefore, as long as the correction is accurate, this non-linearity should
not pose a critical problem for SIF retrieval. We simulated observations of a sensor not optimizing
integration time under varying radiation levels, and SIF relative errors ranged between 10–15% still at
the optimization level (Figure 12, Table A4). During the simulation of the non-linearity characterization,
we found a misfit between the simulated and the fitted sensor model, which overestimated non-linearity
in the extremes of the radiometric range of the sensor (Figure 4). Inaccuracy of the polynomial fit
might be in part induced by noise present in the characterization dataset and by the inherent sensitivity
of the method to random noise. This is because the highest photo-response used to normalize the
rate of DN/ms can often be found in the noisiest measurements [50,51]. A second reason could be
the heterogeneous distribution of the data, which prioritizes the fitting in the central region of the
radiometric range, but not in the extremes. This should require more careful statistical analysis that the
current standard method does not follow. Fitting biases in the extremes of the radiometric range of the
detector would be unnoticed provided the actual responsivity is not known, and might increase the
errors during SIF retrieval. However, relying only on an adequate optimization of the integration time
might not be enough to prevent errors in SIF. In the simulated case, lowest RRMSE, but not the absolute
errors, were achieved close to the optimization point (Figure 12, Table A4). This is also a consequence
of the varying magnitude of SIF in the simulation. Uncertainties propagated in this exercise had a low
impact on SIF, suggesting that in this case, a correction based on the sensor model might increase the
accuracy of the retrieval. Further work should be carried out on the characterization of non-linearity in
order to improve the methods as well as to test other types of non-linearity not analyzed in this work
(e.g., supra-responsivity).

Predicted cosine diffuser DR led to small errors in SIF estimation. However, uncertainties
propagated from the fitted sensor model induced much larger errors. The DR of calibrated reference
panels was not assessed, but results might be similar to the ones presented in Section 3.6. Uncertainties
simulated in the fitted sensor model parameters propagated to outdoors irradiance levels led to
noisy spectra, especially at low θs where the irradiance magnitude was large; and consequently
large biases on SIF were found in the retrieval. These results are supported by the analysis carried
out without propagation of uncertainties (Figure 13c,d), and by the unbiased but noisy simulation
presented in Appendix C. These analyses are incomplete since the SIF error will depend on the joint
effect of different sensor responses and uncertainties, and the propagation of uncertainties to only
one of the fluxes might have inflated the errors in SIF. However, results show that the approach
presented can contribute to determining the suitability of a characterized sensor model to correct the
measurements. If the uncertainties in the characterized model were too high, the conclusion would
be that the characterized DR model could not be applied to correct the down-welling irradiance.
Nonetheless, even if possible, the correction of DR is especially challenging due to unknown directional
distribution of the diffuse irradiance. The measurement of such distribution would be complex [67]
and maybe not accurate enough for the application. Alternatively, diffuse irradiance could be assumed
isotropic and estimated inverting atmospheric radiative transfer codes from the observed down-welling
irradiance [68]. Furthermore, the consequences of such an assumption on the retrieval of SIF are still
not well understood. In practice, diffusers and panels featuring DR close enough to the cosine response
would be preferable if this allowed avoiding any correction; however this point remains to be validated.
DR characterization and the framework of uncertainty propagation provided in this article might also
help to stablish θs and diffuse fraction thresholds above which SIF retrievals cannot be trusted. The
fraction of diffuse irradiance is usually low in remote sensing applications (cloudy data are discarded),
but can be large in the case of automated proximal sensing [36]. Another challenge related with the DR
is the adequate leveling of diffusers and panels, which is especially relevant for drones, but also for
tower-based systems and hand held operations.
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In this article, we also analyzed the thermal-induced changes in detector responsivity. Since the
system we simulated used the same sensor to measure both the up-welling and the down-welling
fluxes, the impact on SIF retrieval was low and led to noise rather than biases (Figure 10 or Table A3).
In fact, in the O2-B band these biases resulted in average reduced by the noise. In a situation of
detector temperature variation, most of the error induced on SIF could be due to changes in the spectral
response functions. However, temperature responsivity would be a factor to consider if two different
sensors were employed to sample each of the fluxes involved in the computation of SIF, which is
already discouraged. Still, in such a situation the spectral differences between detectors would be far
more important.

5. Conclusions

This work analyzed the effect of different instrumental responses on the retrieval of sun-induced
chlorophyll fluorescence. The analysis is limited to some specific cases, but provides a framework
that can be used in the future to carry out similar assessments, which are needed to understand the
reliability of proximal sensing-based SIF retrievals. Results show that certain instrumental responses
can have a minor or negligible effect on reflectance factors, while strongly affecting the retrieval of SIF.
In other cases, sensor responses had little effect on SIF, but large errors were induced by sensor model
propagated uncertainties. This suggests that field spectroradiometry dedicated to the observation of
passive SIF could require new and higher quality standards than those in use for the quantification
of reflectance factors; as well as more accurate characterization of the sensors, and propagation of
uncertainties. The growing interest in proximal sensing of SIF contrasts with the seemingly minimal
work carried out in this regard. The main risk is the existence of common drivers of the instrumental
responses and vegetation physiology, the ultimate target of SIF retrieval from remotely sensed data.
Adequate calibration, characterization and understanding of sensor responses are crucial to prevent
spurious results and erroneous conclusions, as well as to ensure the quality of ground measurements
dedicated to the validation and scaling of SIF. Also, comparisons of calibration standards used or
standardization of calibration procedures and facilities should be evaluated. These activities are key
factors to support, evaluate and validate retrievals carried out from airborne and satellite-borne sensors,
such as the up-coming mission FLEX; as well as to understand the relationships between SIF and
plant physiology. Some of the instrumental responses analyzed here can be partially controlled by
spectroradiometer and system design; however, we still need to define how good is good enough. The
range of conditions within which the retrieval of SIF is viable is not well understood, and depends in
parts on the system as well as on the retrieval methods. In addition, the suitability of characterization
and correction methods as well as the effect of other instrumental responses not considered in this
work, such as etaloning [26], should be evaluated.
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Appendix A. Sensor Simulator

The Sensor Simulator operation is summarized in Figure A1. In this appendix, we use σ to
symbolize the standard deviation of any of the distributions represented.
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An “observed” radiance is characterized by a distribution of radiances (Lin) representing with
a given mean (L), and some random noise of standard deviation σ. Lin can be produced either by
spectral convolution of the very high spectral resolution radiances (Lin,hi−res) generated as described in
Section 2.1 or by interpolation of the RASTA radiance LR

(
LR, σ

)
with some associated uncertainties to

the spectral features of the sensor simulator. Spectral convolution is done using distributions of the
sensor central wavelength λc

(
λc, σ

)
and full-width at half maximum FWHM

(
FWHM, σ

)
.

L is used to optimize the integration time (tint) according to L and the radiometric calibration
coefficients (gλ) and the associated uncertainties (εgλ). tint is optimized so that the signal reaches
175,000 digital numbers (DN), which represents the 85% of the sensor simulator saturation value. tint

and L are then transferred to the noise generator, which produces random noise ε(0, σ) as a function
of both. The radiometric calibration coefficients are used to digitize the radiances to digital number
units a certain distribution of dark currentN0

(
N0, σ

)
. Dark current is supposed to be known since can

be measured after optimization. At this stage,N0 is added to the digital signal distributionN
(
N, σ

)
.
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Finally, ε(0,σ) is added to the digital signal, N0 removed from it, and the outgoing distribution of
radiances Lout

(
Lout, σ

)
generated using in this case both gλ and the associated uncertainties (εgλ ).

For the noise generator, we used data from the signal-to-noise ratio (SNR) characterization of a QE
Pro spectroradiometer and fit a predictive model as a function of tint and of the rate (Nλ −N0λ)/tint -a
variable proportional to Lλ. Figure A2 represents this dataset and the fitted plane which is used by the
sensor simulator to estimate the level of noise ε(0,σ).
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Appendix B. F↑ and R Relative Root Mean Squared Errors Comparison

Table A1. Relative Root Mean Squared Error (%) induced by spectral uncertainties on F↑ and R.

∆λc (nm) −1.00 −0.75 −0.50 −0.25 −0.10 −0.05 0.0 0.05 0.10 0.25 0.50 0.75 1.00

Spectral shift in Both Fluxes
F687

↑ 224.1 225.2 65.5 4.5 3.2 2.8 2.3 2.1 1.7 1.3 4.5 8.8 2.2
F760

↑ 3.5 2.6 1.6 0.8 0.4 0.2 0.2 0.3 0.5 1.1 2.5 5.1 11.8
R680 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.1 0.2 0.3 0.5 0.7
R750 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.8

Spectral shift in the up-welling flux
F687

↑ 347.9 379.7 275.4 252.5 66.5 17.8 2.3 200.9 234.8 175.5 212.1 158.0 209.0
F760

↑ 4.1 5.8 641.8 341.3 75.9 46.0 0.2 12.2 28.4 162.6 32.4 44.1 33.0
R680 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.3 0.5 0.7
R750 0.8 0.6 0.4 0.2 0.1 0.1 0.0 0.0 0.1 0.2 0.3 0.5 0.8

Spectral Shift in the down-welling flux
F687

↑ 61.2 46.4 175.9 203.1 161.4 137.8 2.3 41.6 62.8 282.1 661.0 955.3 973.6
F760

↑ 639.5 631.3 519.5 159.2 19.2 20.2 0.2 30.9 60.5 17.2 25.5 15.9 27.7
R680 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R750 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table A2. Relative Root Mean Squared Error (%) induced by spectral variations induced by chamber
temperature on F↑ and R accounting for uncertainty propagation (U) and ignoring it (Ø).

Tb (◦C) 2.9 12.9 20.0 23.1 33.4 44.4

Spectral shift in Both Fluxes

F687
↑ (U) 1.88 1.33 1.27 1.20 1.22 1.28

F760
↑ (U) 0.26 0.21 0.23 0.22 0.29 0.44

F687
↑ (Ø) 1.62 0.26 0.00 0.30 0.90 0.80

F760
↑ (Ø) 0.37 0.09 0.00 0.03 0.08 0.41

R680 (U) 0.03 0.02 0.01 0.01 0.02 0.05
R750 (U) 0.05 0.03 0.01 0.01 0.04 0.08
R680 (Ø) 0.03 0.01 0.00 0.00 0.02 0.05
R750 (Ø) 0.05 0.02 0.00 0.01 0.04 0.08

Spectral shift in the up-welling flux
F687

↑ (U) 139.30 121.39 1.27 119.50 106.25 150.48
F760

↑ (U) 76.35 38.86 0.23 19.17 29.11 22.86
F687

↑ (Ø) 93.26 15.72 0.01 0.99 25.83 114.23
F760

↑ (Ø) 65.06 31.06 0.14 8.79 28.85 5.56
R680 (U) 0.04 0.02 0.01 0.01 0.02 0.05
R750 (U) 0.06 0.03 0.01 0.01 0.04 0.08
R680 (Ø) 0.03 0.01 0.00 0.00 0.02 0.05
R750 (Ø) 0.05 0.02 0.00 0.01 0.04 0.08

Spectral Shift in the down-welling flux
F687

↑ (U) 157.90 131.67 1.27 135.40 139.61 138.17
F760

↑ (U) 31.32 23.25 0.23 24.62 62.39 128.10
F687

↑ (Ø) 208.34 7.61 0.00 0.53 5.18 35.95
F760

↑ (Ø) 35.92 17.24 0.00 9.63 51.45 116.05
R680 (U) 0.01 0.01 0.01 0.01 0.00 0.00
R750 (U) 0.00 0.00 0.00 0.00 0.00 0.00
R680 (Ø) 0.03 0.01 0.00 0.00 0.02 0.05
R750 (Ø) 0.05 0.02 0.00 0.01 0.04 0.08

Table A3. Relative Root Mean Squared Error (%) induced by photo-response variations induced by
sensor temperature on F↑ and R accounting for uncertainty propagation (U) and ignoring it (Ø).

Td (◦C) −10.0 0.0 10.0 20.0 30.0 40.0

F687
↑ (U) 65.34 48.72 50.10 35.36 57.88 70.80

F760
↑ (U) 4.54 3.66 3.61 3.71 3.78 4.22

F687
↑ (Ø) 0.00 1.60 2.26 3.28 4.11 9.20

F760
↑ (Ø) 0.00 0.19 0.06 0.20 0.23 0.24

R680 (U) 0.52 0.46 0.44 0.42 0.47 0.56
R750 (U) 0.57 0.51 0.46 0.43 0.52 0.55
R680 (Ø) 0.00 0.00 0.00 0.00 0.00 0.00
R750 (Ø) 0.00 0.00 0.00 0.00 0.00 0.00

Table A4. Relative Root Mean Squared Error (%) induced by non-linearity on F↑ and R accounting for
uncertainty propagation (U) and ignoring it (Ø).

fL (-) 0.20 0.40 0.60 0.80 1.00 1.02 1.06 1.10

F687
↑ (U) 82.59 62.52 43.18 29.00 15.66 14.59 13.11 12.36

F760
↑ (U) 80.14 60.33 41.24 22.27 10.20 10.02 10.27 11.53

F687
↑ (Ø) 82.79 62.96 44.63 28.40 14.74 15.93 11.42 11.20

F760
↑ (Ø) 80.25 60.89 42.88 22.34 10.11 9.99 10.28 11.56

R680 (U) 1.65 1.22 0.98 0.71 0.38 0.34 0.25 0.15
R750 (U) 0.07 0.04 0.08 0.19 0.80 0.93 1.23 1.57
R680 (Ø) 1.62 1.19 0.97 0.69 0.38 0.34 0.25 0.15
R750 (Ø) 0.06 0.03 0.08 0.19 0.80 0.93 1.23 1.58
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Table A5. Relative Root Mean Squared Error (%) induced by the diffuser directional response on F↑

and R for uncertainty propagation (U) and ignoring it (Ø).

θs (◦) 0.00 2.56 16.27 29.80 43.21 56.59 69.96 83.32

F687
↑ (U) 234.75 214.63 186.95 174.51 152.60 132.46 140.06 185.68

F760
↑ (U) 64.91 58.13 40.55 29.87 22.30 13.78 8.40 2.79

F687
↑ (Ø) 3.25 4.83 2.87 1.32 1.07 1.06 2.32 214.71

F760
↑ (Ø) 0.64 0.61 0.72 0.56 0.20 0.01 0.51 2.86

R680 (U) 2.31 2.11 2.52 1.88 1.67 1.97 8.46 10.20
R750 (U) 2.38 2.20 2.21 1.73 2.30 2.54 8.21 9.62
R680 (Ø) 0.69 0.25 1.77 1.04 0.12 1.28 8.27 10.15
R750 (Ø) 0.35 0.55 1.07 0.08 1.42 1.97 8.01 9.60

Appendix C. Effect of Propagated Uncertainties on F Retrieval in the DR Model

Result suggested that uncertainties in the parameters of the fitted sensor model representing the
cosine diffuser DR had a strong impact on SIF retrieval, leading mainly to overestimation. To test this
effect, we simulated uncertainties of similar range than the ones propagated to the L↓tot at θs = 0◦.
This was achieved sampling noise from a normal distribution of mean 0 and 3.5 times the standard
deviation of the simulated L↓tot. This standard deviation was calculated at each band and had to be
scaled by a factor of 3.5 since the final uncertainties did not follow aF normal distribution. Then noise
samples of size n = 50 were add to L↓tot (not affected by cosine DR) multiplied by a scaling factor fσ
ranging between 0.0 and 1.0 with 0.1 steps. Figure A3a,b shows the error in the estimation of F↑ in the
O2-B and O2-A bands respectively. As can be seen, errors increase with fσ reaching levels similar to
those shown in Figure 13a,b for θs = 0◦ when fσ ~ 1.0.
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8. Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.;
Drusch, M.; et al. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis.
Geophys. Res. Lett. 2015, 42, 1632–1639. [CrossRef]
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