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Abstract: An early assessment of biological invasions is important for initiating conservation strategies.
Instrumental progress in high spatial resolution (HSR) multispectral satellite sensors greatly facilitates
ecosystems’ monitoring capability at an increasingly smaller scale. However, species detection is
still challenging in environments characterized by a high variability of vegetation mixing along with
other elements, such as water, sediment, and biofilm. In this study, we explore the potential of
Pléiades HSR multispectral images to detect and monitor changes in the salt marshes of the Bay of
Arcachon (SW France), after the invasion of Spartina anglica. Due to the small size of Spartina patches,
the spatial and temporal monitoring of Spartina species focuses on the analysis of five multispectral
images at a spatial resolution of 2 m, acquired at the study site between 2013 and 2017. To distinguish
between the different types of vegetation, various techniques for land use classification were evaluated.
A description and interpretation of the results are based on a set of ground truth data, including
field reflectance, a drone flight, historical aerial photographs, GNSS and photographic surveys.
A preliminary qualitative analysis of NDVI maps showed that a multi-temporal approach, taking into
account a delayed development of species, could be successfully used to discriminate Spartina species
(sp.). Then, supervised and unsupervised classifications, used for the identification of Spartina sp.,
were evaluated. The performance of the species identification was highly dependent on the degree of
environmental noise present in the image, which is season-dependent. The accurate identification
of the native Spartina was higher than 75%, a result strongly affected by intra-patch variability and,
specifically, by the presence of areas with a low vegetation density. Further, for the invasive Spartina
anglica, when using a supervised classifier, rather than an unsupervised one, the accuracy of the
classification increases from 10% to 90%. However, both algorithms highly overestimate the areas
assigned to this species. Finally, the results highlight that the identification of the invasive species
is highly dependent both on the seasonal presence of itinerant biological features and the size of
vegetation patches. Further, we believe that the results could be strongly improved by a coupled
approach, which combines spectral and spatial information, i.e., pattern-recognition techniques.
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1. Introduction

Biological invasions often represent an important source of change in a system. They are mostly
perceived as a possible threat to local biodiversity [1–4]. Occasionally, the arrival of a new species can
also carry significant benefits to ecosystem services [3,5–7]. The consequences of biological invasions
are usually difficult to predict. Their impact on ecosystems may significantly change in space and
time [8] because of a variable adaptive response of the host communities. This response can induce
a slowdown of the invasive species (IS) proliferation or, conversely, a sudden rapid expansion. The
detection and mapping of the earliest stage of IS development and expansion often turns out to be the
best strategy for anticipating and controlling their impact [9,10].

Due to the frequency of physical disturbance, tidal flats and salt marshes present a high
susceptibility to biological invasions [11]. This vulnerability particularly increases with human
pressure [12]. These systems are characterized by complex interactions between geomorphological
patterns and ecological structures [13] and present a highly dynamic and extensive character, which,
being associated with access difficulties, make remote sensing an appealing monitoring tool [14–16].

Several studies have already demonstrated the strong potential of using optical satellite imagery
in mapping intertidal vegetation [10,13,17–19], and particularly, for the monitoring of biological
invasions [20–22]. Intertidal vegetation follows a natural spatial zonation, according to its tolerance to
the different tidal levels [23,24]. This natural zonation represents an advantage for remote sensing
assessment, because it provides a clear physical separation between different species. Vegetation tends
to grow in patches of clearly demarcated borders, presenting a relative homogeneity from a radiometric
point of view, and the meadows of each species tend to be constant in time [14]. However, despite the
relative intra-patch homogeneity, different degrees of vegetation cover and mixing can occur when the
pixel size increases [14,25]. The environmental background noise, due to the soil characteristics, water
and biofilm, then generates a significant per-pixel variability of the upwelling radiative signal [26].
Further, there is also a significant time dependency on plant phenology that can largely influence
species differentiation in spaceborne imagery [22,26–28].

For these reasons, it is essential to select the most suitable satellite on the basis of instrumental
characteristics. Especially, remotely sensed multispectral satellite missions can provide data with
significantly different temporal, spatial and spectral resolutions [25,29]. The selection of one resolution
over the other needs to be weighted according to the objectives, as current orbiting sensors
cannot yet provide simultaneous high temporal, spectral and spatial resolutions [30]. For instance,
Belluco et al. [15] compared multispectral and hyperspectral remote sensing data efficiency in mapping
salt marsh vegetation in the Venice lagoon (Italy). They showed that spatial resolution affected the pixel
classification accuracy in a much more important way than spectral resolution and that hyperspectral
data can contain largely redundant information. Consequently, they suggested that, for such studies,
preference should be given to spatial, rather than spectral, resolution. However, a possible way to
overcome these limitations is through the combination of images from sensors, providing different
spatial and spectral products by the application of pan-sharpening techniques [31,32]. The application
of such techniques enables one to simultaneously take advantage of panchromatic (higher spatial
resolution) and multispectral (higher spectral resolution) images. The identification and differentiation
of vegetation species is commonly based on a similarity in pixel clustering, using supervised or
unsupervised methods [10,15,21,28,33]. Better results are most frequently obtained using supervised
classification techniques [34]. However, in the case of muddy coastal zones, to achieve good results,
these methods may require extensive and impracticable ground truth verifications.

Even with the current advances in remote sensing products and techniques, the differentiation of
individual intertidal species, an important aspect in the assessment of biological invasions, is still a
difficult task [10] and usually comprises large errors and confusion with other features. In this study,
we aim to assess the potential of multispectral images, acquired by the Pléiades-1 satellite constellation,
in order to discriminate the invasive cordgrass, Spartina anglica, from the remaining marsh vegetation
in the Bay of Arcachon (SW Atlantic coast of France). The evaluation exercise is based on NDVI
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maps and the use of pixel classification methods—either supervised (Random Forests) or optimized
unsupervised (simulated annealing) approaches—applied to Pléiades images, which were acquired in
different seasons. Any advances in the accurate identification of the different salt marsh structures will
enable a better understanding of the mechanisms and extent of colonization by invasive species and
allow for the monitoring of its evolution, facilitating an early intervention if needed.

2. Study Site

The Bay of Arcachon is located in the South-western French Atlantic coast (Figure 1). This coastal
lagoon is separated from the open ocean by the Cap Ferret sand spit. Its main flow entrance is divided
into two channels, with sandy banks and shoals between them [35]. The presence of a mouth bar and
inter-channel banks limits the internal propagation of external ocean waves. Therefore, inside the
lagoon, waves are mainly wind generated and fetch limited, especially by the presence of the “Ile aux
Oiseaux”. Wind speed and wind direction vary seasonally; they are variable and weak during summer
and mostly westerly or northerly in winter, reaching speeds > 10 m/s. Tides are semidiurnal, ranging
from 0.8 m during neap tides to 4.5 m during spring tides [36], and the high tide surface can reach an
area of 174 km2, mainly composed of a network of narrow channels, which is reduced to 40–50 km2 at
low tide [37]. The main source of freshwater is the Leyre river in the South-east, and the Porge Canal
in the North. The total freshwater input represents less than 1% of the tidal prism [37].
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SW France).

For this study, we chose to consider a study area located on the intertidal zone at Andernos
(Figure 1), on the north-eastern side of the Bay. The particularity of the marsh in this zone is that,
even though it presents a stable niche of native vegetation, there is a significant presence of the exotic
Spartina in small random patches. This is representative of an initial stage of the invasion and is an
ideal scenario for our objective of identifying this species from its early stage of territory occupation.
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Vegetation in the Bay of Arcachon

In the Bay of Arcachon, low elevations of the tidal flat (slikke) are mainly colonized by the seagrass,
Zostera noltei, whereas the margins of the lagoon (schorre) are occupied by typical salt marsh vegetation
(Figure 2a), principally Spartina sp. (Spartina maritima—Figure 2b–e and Spartina anglica—Figure 2f–j).
The arrival of the invasive species, Spartina anglica, in the 1980s [38] provoked concern regarding threats
to local species diversity and, especially, the eventual replacement of the native Spartina (Spartina
maritima) by its exotic congener. Even though Spartinas constitute the dominant vegetation type in
the marsh zone, there are many other species, such as Salicornia spp., Juncus gerardii, Limonium vulgare,
Halimione portucaloides, and Puccinellia maritima [39,40] (Figure 2k–m). Usually, there is a well-defined
separation between different vegetation species, but different degrees of mixture, as well as different
degrees of density within the same type of vegetation, can also occur.

More than other marsh species, the invasive Spartina anglica has the particular ability to spread to
offshore positions within the tidal flat, at the inner side of the lagoon. For this reason, the vegetated
inner tidal flat zone was included, with the intention of identifying the isolated Spartina anglica patches
that might occur in this zone.

Seasonal differences in the intertidal vegetation’s development and phenology can help to
determine their identification and discrimination using remotely sensed images [22,27]. Notably,
Spartina maritima is a species known for its continuous growth and absence of significant seasonal
die-back [41]. In the Bay of Arcachon, this was verified by Proença et al. [42], who estimated a very
low productivity for this species at different intertidal levels. On the contrary, the congener Spartina
anglica presented a strong aerial productivity of aerial biomass, which means that it suffers from a
strong die-back during winter, and it completely recovers during the growing season, particularly
during summer, due to its exploitative growth strategy, which is better than that of the native. An
important difference concerning the phenology of growth is also observable, with a maximum of
growth during spring for the native and during summer for the exotics (Appendix A). Additionally,
the cordgrasses seem to present some sensitivity both to continuously high and continuously low
temperatures, expressed as a color change to yellow/brownish shades during summer and winter
seasons, respectively. The seagrass, Zostera noltei, was also found to present a pronounced seasonality.
Auby and Labourg [43] found a minimum aboveground biomass for this species between November
and February and minimum shoot lengths in springtime. The maximum aboveground biomass
was measured between June and August, but high values of shoot length were found during Fall.
Concerning algae, several species can be found in the Bay at different times of the year [44]. According
to these authors, in the inner parts of the Bay, there is a strong presence of the green alga, Monostroma
obscurum, that tends to decline during the period between March and September. However, they found
that a clear seasonal trend is difficult to predict.
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Figure 2. Characterization of vegetation in the Bay of Arcachon. (a) Schematic representation of the
typical distribution of intertidal vegetation along the tidal gradient; (b) dense green meadow of Spartina
maritima; (c) transition from a dense to a sparse Spartina maritima meadow; (d) Spartina maritima with
homogenous seaweed (Ulva) coverage; e) brownish dense meadow of Spartina maritima; (f) sparse
green meadow of Spartina anglica; (g) sparse withered meadow of Spartina anglica; (h,i) Spartina anglica
with thick algae coverage; (j) dense green meadow of Spartina anglica; (k) Halimione; (l) Salicornia; (m)
mix of diverse vegetation; and (n) dense Spartina maritima meadow with vegetated tidal flat, both due
to well-developed Zostera noltei meadows and a strong presence of algae deposits in the background.
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3. Datasets and Methods

In this study, we used five high-resolution multispectral (MS) images, acquired by the Pléiades-1
satellite constellation, aerial and drone photographs, centered on the study area, Global Navigation
Satellite Systems (GNSS) data, collected as ground truth validation, radiometric measurements of the
features likely to appear in the classifications and georeferenced photographs.

3.1. Aerial Photographs

The aerial photograph dataset was obtained from French National Institute for Geographic and
Forestry Information (IGN) database, and it comprised 41 orthorectified images, taken between 1934
and 2004, with a spatial resolution ranging from 0.10 to 0.85 m. From this dataset, 31 photographs were
selected, based on visual evaluation, for their quality and potential for exploitation. They were then
georeferenced. A subsection of the study zone was then extracted, and polygons of the identifiable
Spartina meadows were obtained, distinguishing between the two species based on the GNSS data and
georeferenced ground photographs. The number of identified Spartina patches (polygons) is variable,
depending on the year and quality of the photograph. In order to consider the error associated with
the visual determination of the Spartina meadows’ limits, three replicates of polygons were drawn for
each patch. We then used the polygon surface of the three replicates to estimate the mean surface and
standard deviation error of each patch.

The most recent aerial photograph was taken during a drone flight that was performed on 21
June 2016 over the study zone. We used a DJI Phantom 2 drone, equipped with a GoPro Hero 4 Black
Edition, mounted on a DJI Zenmuse H3-3D gimbal to counterbalance unwanted camera rotations
and absorb vibrations. The flight was performed at a very low altitude, 30 m, in order to obtain
high-resolution images. Ground control points were taken over the study area and georeferenced using
a GNSS system. The image dataset was aligned by a structure-from-motion algorithm through Agisoft
Photoscan software, from which we obtained a 3D model that was optimized and georeferenced using
the ground control points. Finally, a high-resolution (5 cm) orthophotography was extracted from the
3D-model. This high-resolution orthophotography was used both as a reference image and ground
truth for the validation of feature identification in the satellite images.

3.2. GNSS Data

A field campaign was carried out on 26 October 2016 to determine the extent of the difference
between plant species present in the study site using a differential Global Navigation Satellite Systems
(DGNSS) technique. Two GNSS stations, composed of Leica GR25 receivers and AR10 antennae, were
installed, one on the shore, as a base station, and a second one, mobile, carried in a backpack. The
maximum distance between the two stations never exceeded 300 m during the field campaign. The
GNSS station operated at multi-frequencies (L1, L2, L5) on multi-constellation signals. They were
acquiring GNSS (GPS and GLONASS) data at a sampling rate of 1 Hz.

The RTK open-source program package (version 2.4.2) [45,46] was used to process the GNSS
raw data. This freeware is available at: http://www.rtklib.com/. The satellite coordinate product
provided the GNSS orbit and clock offset data used in this study, which were made available by
the International GNSS Service (IGS) at ftp://cddis.gsfc.nasa.gov/gps/products/. We also used the
Antenna Exchange Format (ANTEX) file (igs08_wwww.atx), made available by the International GNSS
Service (IGS—https://igscb.jpl.nasa.gov/igscb/station/general/igs08.atx), which provides a precise and
consistent set of phase center offset (PCO) and variation (PCV) values for both satellites and receivers’
antennae, taking into account these corrections. As the two stations were continuously acquiring data
at both the L1 and L2 frequency bands, GNSS data were processed in ionosphere-free mode, with
tropospheric corrections from the Saastamoinen model, and solid Earth and pole tides, followed by
ocean tide loading, were applied [47].

http://www.rtklib.com/
ftp://cddis.gsfc.nasa.gov/gps/products/
https://igscb.jpl.nasa.gov/igscb/station/general/igs08.atx
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3.3. Radiometric Measurements

On 21 July 2016, a field campaign was conducted in the study area to collect radiometric
measurements, associated with the different types of substrate. Hyperspectral measurements were
performed in the 400–900 nm spectral range (every 3 nanometres) from two radiometrically-calibrated
TriOS-RAMSES sensors. The radiance sensor pointed downward to measure the upward signal of
the substrate (Lu(λ), W·m−2

·sr−1
·nm−1), while the irradiance sensor pointed upward to measure the

downward irradiance (Ed(λ), W·m−2
·nm−1). Radiance and irradiance measurements were performed

simultaneously, as recommended in Reference [48]. The remote sensing reflectance (Rrs(λ), sr−1) was
then calculated as the ratio of Lu(λ) to Ed(λ). Note that, for brevity, we do not include the reference
to the spectral dependency in the following text. Several features were chosen according to the
different aspects of the vegetation of interest found within the study zone. For each feature, a run of 10
radiometric measurements was performed for three different targets in order to compute the average
spectrum of Rrs.

Finally, in order to compare the field data with the Pléiades data, the in situ Rrs spectra were
spectrally transformed using the spectral response function (SRF) of the Pléiades-1A and -1B bands in
order to make them compatible with the spectral characteristics of the sensors. The SRF-corrected Rrs

spectra (Rrs_SRF) were computed as follows:

Rrs_SRF(λ0) =

∫
Rrs(λ)SRF(λ)dλ∫

SRF(λ)dλ
(1)

where λ0 represents the central wavelength of the different MS bands of Pléiades.

3.4. High Resolution Pléiades Images

Standard orthorectified Pléiades images, acquired on five dates (25 April 2013, 3 August 2016,
6 October 2016, 24 Mai 2017 and 7 October 2017—Table 1), were used to determine the vegetation
type in the study area. The Pléiades satellite constellation (Pléiades-1A was launched on 17/12/2011
and Pléiades-1B on 02/12/2012) acquired PAN (wavelength in the 470–830 nm range) images, with a
ground sampling distance of 0.7 m in the nadir direction, which were resampled at 0.5 m and in four
MS bands—blue (B: 430–550 nm), green (G: 500–620 nm), red (R: 590–710 nm), and Near-Infrared (NIR:
790–940 nm)—at a spatial resolution of 2 m and over a swath width of 20 km at nadir.

Table 1. Pléiades satellite data set information.

Satellite Acquisition Date Season Acquisition Time
(UTC)

Time of Low Tide
(UTC)

Pléiades-1A 25/04/2013 Spring 11h15 12h04
Pléiades-1A 03/08/2016 Summer 11h15 12h45
Pléiades-1A 06/10/2016 Autumn 11h23 14h59
Pléiades-1B 24/05/2017 Spring 11h04 11h06
Pléiades-1A 07/10/2017 Autumn 11h08 13h27

3.5. Pre-processing of the Pléiades Images

All images were not provided in the same coordinate system. Therefore, all images were first
re-projected in the Universal Transverse Mercator (UTM), Zone 30 North—World Geodetic System 1984
(WGS84). Radiometric calibration and atmospheric correction were then applied to each image in order
to convert the Level 1 (L-1) images, provided in digital counts (DC), to images in the surface reflectance
values. Then, the surface reflectance was divided by π to obtain Rrs. Atmospheric corrections were
performed using the optical calibration module from OTB—Monteverdi software [49], converting all
images to the top of the canopy reflectance. Both sun and viewing angles (elevation and azimuth),
as well as the calibration coefficients (gain/biases and solar illuminations), were obtained from the
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images’ metadata files. The applied aerosol model was chosen, depending on the corresponding season
of each image, following the methods in Reference [50]. The atmospheric pressure, aerosol optical
thickness and ozone and water content values were obtained from NASA’s Aerosol Robotic Network
(AERONET) for the Arcachon station at the corresponding acquisition time of the satellite image. The
atmospheric corrections in the blue band (B) present the highest residual errors. For this reason, and
because the B-band does not provide useful additional information in the identification of vegetation,
this band was removed from all images.

For each image, we computed the Normalized Vegetation Index (NDVI, [51]) as:

NDVI =
Rrs(λNIR) −Rrs(λR)

Rrs(λNIR) + Rrs(λR)
(2)

Other indexes proposed in the literature for assessment of vegetation cover were tested, but they
did not present significant differences relative to the NDVI. The NDVIs were also estimated for the
field reflectance data, and the values obtained for each species were compared to the ones estimated
from the satellite images. Based on the analysis of the NDVI maps, for each image, we performed
a prior assessment of their capability of identifying the different types of habitats and species using
classification methods.

3.6. Pixel-based Classification

To attempt to identify the two types of Spartina and differentiate them from each other, we tested
pixel classification algorithms, using both unsupervised and supervised approaches.

Unsupervised methods provide the advantage of being more flexible [52], and this approach
was considered with a view to extending the vegetation mapping to the entire Bay. Unsupervised
approaches recognize patterns of spectral response using cluster analysis techniques. The resulting
classification must be analyzed to regroup and label the classes using ground truth information. Even
if there is a perspective of the long-term monitoring of salt marshes of the entire Bay, in this work, we
will only focus on the results for the study zone.

Pixel-based unsupervised classification was performed using the Simulated Annealing
Algorithm [53], a probabilistic method to find the class centers, which minimizes the cumulated
distance from every pixel to their center of class in the spectral space. This is a non-linear algorithm
that, with the appropriate parameters, provides a converged solution to the global optimized minimum.
To improve the search for the best solution, a start temperature (a control parameter that determines
the range of the initial search for the solution) is given, and its decrease, with the number of
iterations, corresponds to a decrease in the probability of the acceptance of a worse solution than that
previously found.

For the supervised classification approach, we considered different supervised classifiers, where
preliminary tests showed that all techniques provided similar results. For this reason, we further
proceeded with the Random Forests (RF) classifier [54], which is indicated in the literature as a suitable
algorithm, when using a high number of variables and small training sets [4,10]. When applying the
RF classifier, the classification map is accompanied by an accuracy map, which contains the indicator
of the confidence degree of the classification. More precisely, the RF classifier is composed of a set
of different individual base classifiers (decision trees). Each tree makes a decision, and the final
decision corresponds to the majority vote. The degree of confidence is obtained as the percentage of
the individual classifiers that provide a decision equivalent to the final one.

Pixel classification was performed on the three-band MS images. Supervised classification was
performed using MATLAB® on a standard personal computer, an Intel® Core™ i5-4690 processor
at 3.50 GHz, with 8 Go memory. For images with dimensions of 281 × 300 at a 2 m resolution,
the algorithm’s computation time was under 5 minutes. As for the unsupervised classification, the
simulated annealing algorithm was written in Fortran. It ran on a bi-socket server using AMD Opteron



Remote Sens. 2019, 11, 968 9 of 24

processors at 2.30 GHz, and it was parallelized on 24 cores using the OpenMP library. The longest
computation was approximately 10 minutes.

All image processing steps are summarized in Figure 3.
Remote Sens. 2019, 10, x FOR PEER REVIEW  9 of 23 

 

 

Figure 3. Flow chart of the image processing steps. 

4. Results and Discussion 

4.1. Spectral Signature of Vegetated Structures 

Figure 4 shows the mean Rrs spectra of different characteristic substrate types, collected at the 
study site on July 21, 2016. The spectral signature of the two Spartina species is very clearly 
distinguishable from other benthic habitat types. This difference is particularly obvious for dense and 
green Spartina meadows, without biofilm or sediment. Their Rrs spectra display a narrow peak center 
at around 550 nm and a sharp increase in the signal between the red and NIR bands, which is 
associated with high Rrs values over 780 nm. Further, Spartina anglica and Spartina maritima are also 
spectrally distinguishable. In green wavelengths, Spartina anglica shows a more pronounced peak 
than Spartina maritima, while in the red and NIR bands, Spartina anglica shows higher Rrs values than 
Spartina maritima. For instance, the Rrs value is 0.013 sr−1 and 0.004 sr−1 at 650 nm, and 0.071 sr−1, and 
0.042 sr−1 at 840 nm, respectively (Table 2). The NDVI, obtained from in situ Rrs, also indicates a 
significant difference between Spartina anglica and Spartina maritima, with a value of 0.69 ± 0.02 and 
0.83 ± 0.03, respectively. 

Table 2. Mean (standard deviation) values of field hyperspectral, field SRF-corrected Pléiades, and 
Pléiades remote sensing reflectance (sr−1) in the Green, Red, and NIR bands, and in the NDVI pseudo-
band for the same dense and green Spartina anglica and Spartina maritima patches (see Figure 6). Field 
data were acquired on 21 July 2016, and the Pléiades image was acquired on 3 August 2016. 

Figure 3. Flow chart of the image processing steps.

4. Results and Discussion

4.1. Spectral Signature of Vegetated Structures

Figure 4 shows the mean Rrs spectra of different characteristic substrate types, collected at
the study site on 21 July 2016. The spectral signature of the two Spartina species is very clearly
distinguishable from other benthic habitat types. This difference is particularly obvious for dense
and green Spartina meadows, without biofilm or sediment. Their Rrs spectra display a narrow peak
center at around 550 nm and a sharp increase in the signal between the red and NIR bands, which is
associated with high Rrs values over 780 nm. Further, Spartina anglica and Spartina maritima are also
spectrally distinguishable. In green wavelengths, Spartina anglica shows a more pronounced peak
than Spartina maritima, while in the red and NIR bands, Spartina anglica shows higher Rrs values than
Spartina maritima. For instance, the Rrs value is 0.013 sr−1 and 0.004 sr−1 at 650 nm, and 0.071 sr−1,
and 0.042 sr−1 at 840 nm, respectively (Table 2). The NDVI, obtained from in situ Rrs, also indicates a
significant difference between Spartina anglica and Spartina maritima, with a value of 0.69 ± 0.02 and
0.83 ± 0.03, respectively.



Remote Sens. 2019, 11, 968 10 of 24

Remote Sens. 2019, 10, x FOR PEER REVIEW  10 of 23 

 

Spectral Band (nm) Field Rrs (sr−1) Field Rrs_SRF (sr−1) Pléiades Rrs (sr−1) 
S. Maritima. S. Anglica  S. Maritima S. Anglica  S. Maritima. S. Anglica  

Green 
560 

500–620 
0.007 ± 0.002 

- 
0.019 ± 0.003 

- 
- 

0.006 ± 0.004 
- 

0.017 ± 0.004 
- 

0.015 ± 0.001 
- 

0.018 ± 0.001 

Red 
650 

590–710 
0.004 ± 0.002 

- 
0.013 ± 0.004 

- 
- 

0.005 ± 0.006 
- 

0.014 ± 0.005 
- 

0.007 ± 0.001 
- 

0.009 ± 0.001 

NIR 
840 

740–940 
0.042 ± 0.008 

- 
0.071 ± 0.007 

- 
- 

0.039 ± 0.009 
- 

0.064 ± 0.010 
- 

0.029 ± 0.003 
- 

0.034 ± 0.003 

NDVI 
𝑵𝑰𝑹 − 𝑹𝒆𝒅𝑵𝑰𝑹 + 𝑹𝒆𝒅 0.83 ± 0.03 0.69 ± 0.02 0.77 ± 0.05 0.64 ± 0.04 0.60 ± 0.074 0.57 ± 0.061 

However, field measurements show a high variability of the spectral signatures of both Spartina 
species, depending on phenology, vegetation cover, biofilm and sediment deposition. For instance, 
the algae deposition on Spartina maritima causes a significant decrease in NDVI (0.54 instead of 0.83) 
due to an increased signal in the red and a decreased signal in the NIR. On the other hand, the 
sediment deposition on Spartina anglica shows a negligible impact on the radiometric signal in the 
red, but a strong impact in the NIR, which is responsible for a moderate decrease in NDVI (from 0.69 
to 0.61).  

 
Figure 4. Mean field remote sensing reflectance (sr−1) spectra of different characteristic substrate types, 
collected in the study site on July 21, 2016. Colored spectral bands are associated with the blue (B), 
green (G), red (R), and near-infrared (NIR) channels of the Pléiades-1 satellite images. 

Figure 5 provides the Rrs values in the green, red and NIR channels for the MS Pléiades images, 
acquired on 3 August 2016. The images zoom in on the Spartina anglica and maritima meadows, 
sampled during the field campaign conducted on 21 July 2016. MS images exhibit a high intra-patch 
variability of their spectral signatures, as previously observed using field observations. This 
variability is directly related to the spatial heterogeneity of the ground cover percentage in the 
meadows of Spartina species. In order to compare field and satellite remote sensing reflectances, we 
computed the field SRF-corrected Rrs from Eq.1 (Table 2). A general smoothing effect on Rrs_SRF due to 
the wide Pléiades spectral bands can be noted. However, small differences were recorded between 
Rrs_SRF and Rrs. The lowest and highest relative differences were found in the red band for Spartina 
anglica (7%) and Spartina maritima (22%), respectively.  

A comparison of the satellite and field SRF-corrected Rrs shows that they exhibit a similar general 
spectral behavior, but with significant differences in the magnitude and spectral shape. For instance, 
the NDVI values associated with Spartina maritima were 0.77 and 0.60 for Rrs_SRF and Pleiades Rrs, 
respectively. Further, it is worth noting that the difference between the Spartina maritima and Spartina 
anglica NDVI values is significantly lower in the satellite data (0.03) than in the field data (0.13). This 
reduced capability of discriminating Spartina maritima from Spartina anglica using satellite 

Figure 4. Mean field remote sensing reflectance (sr−1) spectra of different characteristic substrate types,
collected in the study site on 21 July 2016. Colored spectral bands are associated with the blue (B),
green (G), red (R), and near-infrared (NIR) channels of the Pléiades-1 satellite images.

Table 2. Mean (standard deviation) values of field hyperspectral, field SRF-corrected Pléiades, and
Pléiades remote sensing reflectance (sr−1) in the Green, Red, and NIR bands, and in the NDVI
pseudo-band for the same dense and green Spartina anglica and Spartina maritima patches (see Figure 6).
Field data were acquired on 21 July 2016, and the Pléiades image was acquired on 3 August 2016.

Spectral Band (nm) Field Rrs (sr−1) Field Rrs_SRF (sr−1) Pléiades Rrs (sr−1)
S. Maritima. S. Anglica S. Maritima S. Anglica S. Maritima. S. Anglica

Green 560
500–620

0.007 ± 0.002
-

0.019 ± 0.003
-

-
0.006 ± 0.004

-
0.017 ± 0.004

-
0.015 ± 0.001

-
0.018 ± 0.001

Red 650
590–710

0.004 ± 0.002
-

0.013 ± 0.004
-

-
0.005 ± 0.006

-
0.014 ± 0.005

-
0.007 ± 0.001

-
0.009 ± 0.001

NIR 840
740–940

0.042 ± 0.008
-

0.071 ± 0.007
-

-
0.039 ± 0.009

-
0.064 ± 0.010

-
0.029 ± 0.003

-
0.034 ± 0.003

NDVI NIR−Red
NIR+Red 0.83 ± 0.03 0.69 ± 0.02 0.77 ± 0.05 0.64 ± 0.04 0.60 ± 0.074 0.57 ± 0.061

However, field measurements show a high variability of the spectral signatures of both Spartina
species, depending on phenology, vegetation cover, biofilm and sediment deposition. For instance, the
algae deposition on Spartina maritima causes a significant decrease in NDVI (0.54 instead of 0.83) due
to an increased signal in the red and a decreased signal in the NIR. On the other hand, the sediment
deposition on Spartina anglica shows a negligible impact on the radiometric signal in the red, but a
strong impact in the NIR, which is responsible for a moderate decrease in NDVI (from 0.69 to 0.61).

Figure 5 provides the Rrs values in the green, red and NIR channels for the MS Pléiades images,
acquired on 3 August 2016. The images zoom in on the Spartina anglica and maritima meadows, sampled
during the field campaign conducted on 21 July 2016. MS images exhibit a high intra-patch variability
of their spectral signatures, as previously observed using field observations. This variability is directly
related to the spatial heterogeneity of the ground cover percentage in the meadows of Spartina species.
In order to compare field and satellite remote sensing reflectances, we computed the field SRF-corrected
Rrs from Eq.1 (Table 2). A general smoothing effect on Rrs_SRF due to the wide Pléiades spectral bands
can be noted. However, small differences were recorded between Rrs_SRF and Rrs. The lowest and
highest relative differences were found in the red band for Spartina anglica (7%) and Spartina maritima
(22%), respectively.
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Figure 5. Remote sensing reflectance (sr−1) values in the green (500–620 nm), red (590–710 nm) and
NIR (740–940 nm) bands for the multi-spectral Pléiades images, acquired on 3 August 2016. The images
zoom in on the well-identified Spartina anglica and maritima meadows (see red and blue boxes on the
image of 2016, Figure 4).

A comparison of the satellite and field SRF-corrected Rrs shows that they exhibit a similar general
spectral behavior, but with significant differences in the magnitude and spectral shape. For instance,
the NDVI values associated with Spartina maritima were 0.77 and 0.60 for Rrs_SRF and Pleiades Rrs,
respectively. Further, it is worth noting that the difference between the Spartina maritima and Spartina
anglica NDVI values is significantly lower in the satellite data (0.03) than in the field data (0.13). This
reduced capability of discriminating Spartina maritima from Spartina anglica using satellite observations
may be related to the scaling factor [26]. Due to the small scale of the Spartina meadow and high
spatial heterogeneity of the vegetation cover, the lower the spatial resolution, the lower the radiative
contribution of Spartina to the per-pixel Rrs and the higher the contribution of the soil background signal.

Maps of the NDVI were generated for the five different dates of the Pléiades images (Figure 6). This
index highlights strong seasonal changes, which appear to be primarily related to species phenology
and the ephemeral presence of itinerant biological structures (e.g., the presence of biofilm and algae).
The global high marsh zone can be clearly identified from the other types of habitat, particularly during
spring (April and May), when the NDVIs of Spartina sp. vegetation show particularly higher values than
sand and sediment. The results also highlight both seasonal and inter-annual variations of the NDVI
signal for the Spartina vegetation. The NDVI does not, by itself, seem to be sufficient to differentiate the
two Spartina species, as they present values of the same order of magnitude (Table 2). However, due to
a small phase shift in their respective seasonal development, which generates considerable differences
in aerial biomass density and color (Figure 2b–j), autumn appears as the best period to discriminate
the two species, where average NDVI values for Spartina anglica and Spartina maritima are 0.8 and 0.9,
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respectively. Previous studies have already shown the advantages of a temporal assessment of marsh
species identification using this index [55,56]. For instance, Sun et al. [55], considering the monthly
NDVI of multiple marsh species in the middle coast of Jiangsu, found important temporal windows
that made the species distinguishable.Remote Sens. 2019, 10, x FOR PEER REVIEW  13 of 23 
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2017. For each date, the image zooms in on the well-identified, small and invasive Spartina anglica and 
large native maritima meadows (right panel—see legend in Figure 5). Black contours on the image 
acquired on 6 October 2016 correspond to the field ground truth GNSS vegetation contours. 

Figure 6. Comparison of the NDVI computed from the Pléiades images for the five considered dates,
(a,b) 25 April 2013, (c,d) 3 August 2016, (e,f) 6 October 2016, (g,h) 24 May 2017, and (I,j) 7 October 2017.
For each date, the image zooms in on the well-identified, small and invasive Spartina anglica and large
native maritima meadows (right panel—see legend in Figure 5). Black contours on the image acquired
on 6 October 2016 correspond to the field ground truth GNSS vegetation contours.
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Further, relevant information regarding the general intertidal vegetation presence during the
growing season can be withdrawn from this parameter. In particular, remarkable differences appear
between both spring images (April 2013 and May 2017). The NDVI values for both intertidal and
supratidal vegetation are above 0.8 for the first date and much lower for the second one, ranging from
0.3 to 0.6. This indicates that potentially significant meteorological differences might have occurred
within the four years, affecting the vegetation development, namely, in terms of temperatures and
sunlight availability. However, such analysis goes beyond the scope of the present study, and further
correlations with meteorological data would need to be conducted. For the image corresponding to the
beginning of August 2016, at the peak of summer, NDVI values are no longer at their maximum, which
could possibly be related to a particularly hot summer, during which high temperatures were reached.
A relative senescence of the vegetation during this period was observed during field verifications,
which is probably the reason for the marsh vegetation NDVI values being under 0.8 during this period
of the year. Finally, for both fall images (2016 and 2017), not only the marsh vegetation structure shows
particularly high NDVI values, but there is also the presence of a large vegetated cover over the tidal
flat. This is probably related to the fact that, by this time of the year (October), temperatures have not
yet significantly decreased, and vegetation growth is still occurring, for the seagrass in particular [43].
Indeed, it seems that this corresponds to an optimum period for Zostera noltei meadows to colonize the
intertidal flat. Additionally, field inspections on this date allowed us to verify that this corresponds to
a particularly favorable period for algae that considerably cover a large part of the tidal flat surface.
Several deposits of such algae were also found to be hooked on to the stiff marsh vegetation, which
might also affect its spectral signal (Figure 2d,h,i). It is then important to note that the presence of
biological deposits can significantly affect the NDVI of the target marsh vegetation, and eventually,
alter the typical values presented by the Spartina species.

4.2. Long-Term Evolution of the High Marsh Zone and Ground Truth Data Validation

The long-term temporal evolution of the study area, as viewed through aerial photographs
(Figure 7), shows that its marsh surface has been relatively stable, especially since the 1980s, the period
from which the high marsh zone presents a configuration similar to what can be observed on the present
date. Indeed, the most significant changes occurred between 1949 and 1979, the period of remarkable
expansion of the high marsh vegetation, dominated by the European native, Spartina maritima.

The main marsh structure (identified by the red square in the 2016 image in Figure 7) presented
a growth of 5700 m2 (±85 m2) between 1949 and 2016. The expansion of this patch seems to have
progressively increased over time. For instance, its surface was enlarged by 563 ± 124 m2 between
1985 and 1993, which is more than twice its growth between 1949 and 1958 (236 ± 67 m2). Between
2004 and 2016, the patch surface increased by 1613.4 (±80 m2).

Considering the exotic Spartina anglica, although its presence in the Bay of Arcachon dates from
the 1980s, within our dataset, the most identifiable S. anglica patch in the study area (blue rectangle in
2016 image—Figure 7) has only been visible since 1993. This is the only patch that can be monitored,
and it presented a growth of 100 ± 2 m2 between 1993 and 2016.
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patches are indicated by the blue box in the drone image. The bigger red box corresponds to the patch 
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Hence, in this area of the Bay of Arcachon, the most significant changes in marsh evolution are 
associated with vegetation patch growth (occasionally followed by the merging with neighbor 
patches). This patch growth and subsequent merging is most remarkable for the native Spartina. For 
the exotic Spartina anglica, we notice the appearance of new patches that seem to mostly occupy empty 
niches within the higher marsh zone or over the tidal flat (Figure A1). Therefore, apart from growth, 
there are no major inter-annual (or even inter-seasonal) changes in patch vegetation dominance. Our 
ground truth data (drone flight, GNSS data, georeferenced photographs and a regular monitoring of 
this site from 2015 up to 2018 within the scope of the complementary studies) for patch species 
identification showed that this is a relatively stable site, and no major changes have recently occurred. 
This provides a correct validation for the images from 2016 (Figure 8). Comparing these field data 
with the oldest image from our dataset (2013), a good match is observed with the knowledge of 

Figure 7. Salt marsh evolution at the study site of Andernos between 1949 and 2016. Dates up to 2004
correspond to airborne aerial photographs, and the image from 2016 was acquired by drone. Two zones
of Spartina maritima dominance are indicated by red boxes, and Spartina anglica dominance patches are
indicated by the blue box in the drone image. The bigger red box corresponds to the patch considered
in the text as the main marsh structure. The appearance of the invasive Spartina is indicated in the 1993
image by the blue arrow.

Hence, in this area of the Bay of Arcachon, the most significant changes in marsh evolution are
associated with vegetation patch growth (occasionally followed by the merging with neighbor patches).
This patch growth and subsequent merging is most remarkable for the native Spartina. For the exotic
Spartina anglica, we notice the appearance of new patches that seem to mostly occupy empty niches
within the higher marsh zone or over the tidal flat (Figure A1). Therefore, apart from growth, there are
no major inter-annual (or even inter-seasonal) changes in patch vegetation dominance. Our ground
truth data (drone flight, GNSS data, georeferenced photographs and a regular monitoring of this site
from 2015 up to 2018 within the scope of the complementary studies) for patch species identification
showed that this is a relatively stable site, and no major changes have recently occurred. This provides
a correct validation for the images from 2016 (Figure 8). Comparing these field data with the oldest
image from our dataset (2013), a good match is observed with the knowledge of species composition
and patch positions from the most recent data. For this reason, we consider that our ground truth data
are also valid for the image of April 2013.
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4.3. Pixel Classification Using Unsupervised and Supervised Methods 

Figure 8. Overlay of field GNSS marsh vegetation contours (26 October 2016) over (a) the drone image
(21 June 2016); (b) the Pléiades image from 25 April 2013; and (c) the Pléiades image from 10 October
2016. Yellow contours correspond to patches dominated by the native Spartina maritima, red contours
correspond to patches of the invasive Spartina anglica, and the orange contour delineates an intrusion
zone of other types of vegetation. Image a is displayed in true color, while images b and c correspond
to a RGB composite, with independent contrast enhancements to highlight the vegetated features
of interest.
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4.3. Pixel Classification Using Unsupervised and Supervised Methods

Several pixel classification algorithms were applied for each of the five dates of MS Pléiades
images, with the aim of identifying the dominant marsh species in the Bay of Arcachon, Spartina
maritima and Spartina anglica, and monitor the changes resulting from the invasion of the latter.

Concerning the supervised classification, as previously mentioned, after preliminary tests with
several classifiers, we proceeded with Random Forests, both because it is a commonly used classifier,
and it provided slightly better results than the other tested classifiers. For all classes, we considered
the same number of training zones, maintaining, as much as possible, a balanced number of pixels
per training zone, depending on the size of the feature representative of the class. For the image of
April 2013, this balance was relatively difficult to achieve, as the presence of the invasive Spartina was
particularly reduced in the study zone at this date. For the simulated annealing algorithm, since it
is an unsupervised method, it is important to note that the algorithm class color attribution is done
randomly, and class colors need to be re-assigned by the user in order to achieve an agreement between
different season images and a match with the previously considered supervised classification results.
Different tests were performed for each image, considering the influence of the algorithm’s parameters,
number of iterations, start temperature (a parameter associated with the initial range of search for pixel
clustering), number of classes and transformation coefficient in order to estimate the position of the class
center. Very similar results were obtained for the classifications, with differences under 5% for each class
from one run to the other. Field surveys have shown that the meadow vegetation dominance did not
change at the considered timescale. Therefore, the alteration of the spectral signatures and consecutive
class attribution by the algorithm was mostly influenced by the seasonal appearance of transient
biological features or the vegetation’s phenology. It is then necessary to perform a post-classification
analysis to provide the best color match between images of different seasons.

Both the unsupervised and supervised pixel classifications of the overall images allowed for an
accurate identification of the global high marsh zone, including all species. However, single-feature
identification (species differentiation) remained difficult, and the degree of accuracy was strongly
dependent on the presence of noise induced by episodic events or short-term perturbations that can
alter the species spectral signal (Figure 9; Table 3). Such difficulties in the isolation of spectral features
due to the presence of water and a high humidity at low marsh levels were also found, in [21], in the
realization of supervised classifications of Landsat images. Given the variability of field reflectance for
one matching feature (Figure 6), such a result was not completely unexpected, and this was shown by
the significant differences between classifications for all dates. We observed that the larger the noise
induced by seasonal perturbations, the larger the variability of the classification within the patches,
particularly considering the results obtained using the unsupervised classification algorithm.
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the supervised method, Random Forests (central panel), and classification accuracy maps for the 
supervised classification (right panel). (a–c) 25 April 2013, (d–f) 3 August 2016, (g–i) 6 October 2016, 
(j–l) 24 May 2017, and (m–o) 7 October 2017. Black contours on the image acquired on 6 October 2016 

Figure 9. Pixel classification using the unsupervised method, Simulated annealing (left panel), with
the supervised method, Random Forests (central panel), and classification accuracy maps for the
supervised classification (right panel). (a–c) 25 April 2013, (d–f) 3 August 2016, (g–i) 6 October 2016,
(j–l) 24 May 2017, and (m–o) 7 October 2017. Black contours on the image acquired on 6 October 2016
correspond to the field ground truth GNSS vegetation contours. Color bar indicates the confidence
level of class attribution in the accuracy maps.
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Table 3. Accuracy metrics from the supervised Random Forests classification on the five dates
of 3-band (G, R and NIR) multi-spectral Pléiades images. Class assignment: C1—Spartina anglica,
C2—Spartina maritima, C3—slikke vegetation dominated by Zostera, C4—mudflat, and C5—biological
deposits (algae/microphytobenthos).

April 2013 August 2016 October 2016 May 2016 October 2017

Overall accuracy 0.87 0.66 0.79 0.85 0.56
Kappa index 0.81 0.56 0.72 0.80 0.46

Average
accuracy 0.69 0.72 0.79 0.83 0.60

Class accuracy

C1: 0.64
C2: 0.93
C3: 0.97
C4: 0.88

C5: 0.037

C1: 0.9
C2: 0.96

C3: 0
C4: 1

C5: 0.76

C1: 0.72
C2: 0.88
C3: 0.96
C4: 0.39
C5: 0.98

C1: 0.85
C2: 0.74
C3: 0.98
C4: 0.96
C5: 0.64

C1: 0.53
C2: 0.78
C3: 0.39
C4: 0.35
C5: 0.92

Confusion
matrix
(in %)

64 0 36 0 0 90 0 0 3 7 72 8 0 0 20 85 2.5 10 2.5 0 53 0 47 0 0
2 93 0 0 5 0 96 0.4 0 3.6 10 88 0 0 1 14 74 11 0 1 6 78 15 0 1
1 0 97 0 2 0 26 0 0 74 0.2 3.8 96 0 0 0.4 0 98 0 1.6 60 0 39 0 1
0 0 0 88 12 0 0 0 100 0 0 0 0 39 61 0.4 0 2.4 96 1.2 5 0 0 36 59
0 0 18 78 4 0 22 2 0 76 1 0 0 1 98 0.5 7 28 0.5 64 0 0 0 8 92

Globally, the Spartina maritima-dominated patches were identified well with the supervised
classifier but comprised a high variability in class assignment, depending on the density of the meadow
and the presence of biological debris with the unsupervised one. Small, scattered patches of the
invasive Spartina anglica extending over the tidal flat were difficult to identify because of both the
variety of interference signals and the small dimensions of the meadows towards the interior of the
bay. A comparison of the ground truth of the dominant vegetation, identified through the GNSS
contours, acquired on October 2016, and the corresponding classified vegetated features in the Pléiades
images provided the rate of correctly classified pixels for the two Spartina species, obtained with an
unsupervised classifier. Overall, patches of Spartina maritima dominance were identified well with the
supervised classifier, with a percentage of correctly identified pixels of 74% for the image of May 2017,
which increased to 96% for that of August 2016. With the supervised classifier, the strong presence of
ephemeral biological perturbation on some dates (August and October) did not significantly affect the
accuracy of the identification of the native species, and it was always over 74%. Using the unsupervised
classification method, the correct classification of the native Spartina species attained 93% and 80% for
the images of April 2013 and October 2017, respectively. The identification of the invasive Spartina
anglica proved to be much more difficult, using both the supervised and unsupervised classifiers.
Considering the results obtained using the supervised classifier, the identification of the ground truth
patches was fairly successful, with accuracies ranging from 53% to 90% for the images acquired in
October 2017 and August 2016, respectively. However, this class was frequently mistaken for the
extensive zones of the vegetated mudflat (Zostera), particularly within the image from October 2017,
and we obtained an overestimation of the areas assigned to the invasive Spartina. Belluco et al. [15]
also found similar uncertainties in the identification of Spartinas that would be confused with the
typical spectral signature of soil containing microphytobenthos, which contains significant quantities
of chlorophyll. Indeed, the mudflat zone can either be vegetated in different density degrees by
seagrasses or present deposits of itinerant features, like algae and microphytobentos, of several sorts.
The combined presence of all these features provides complex spectral signatures that can be difficult
to characterize. Thus, in this case, the only assurance we have that they do not correspond to the same
species is field knowledge. We are confident that such a strong extrapolation could be reduced by
increasing the number of ground truth samples of this species. Additionally, the accuracy maps of the
classifications obtained for all dates (Figure 9–right panel) shows that regions classified by a higher
uncertainty degree (accuracy uncertainty under 60 %) correspond to channels and zones in the tidal flat,
where the mixing of features is high (vegetated and un-vegetated mud, water with microphytobenthos,
sediment with different degrees of humidity, etc.). Considering the accuracy metrics provided in
Table 3, only images corresponding to Springtime (April 2013 and May 2017) provide a Kappa index
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of 0.8, reinforcing that the lower level of biological noise within these images positively affects the
performance of the classifier.

With the unsupervised algorithm (Figure 9), on the other hand, the correct classification of meadows
dominated by the Spartina anglica species was between 10% and 25%. Such a low performance in the
identification of the invasive species is probably primarily due to the fact that we consider several
patches of small dimensions (2–4 m diameter). Secondarily, pixels within meadows of this species
were often mistaken for pixels classified as vegetated mudflat and water with microphytobenthos,
which is most likely due to the fact that Spartina anglica vegetation cover tends to be reduced outside
of the growing season. Thus, there is a high ground exposure within zones colonized by this type of
vegetation, which significantly affects its radiometric signal. However, when considering only patches
of larger dimensions (5–10 m diameter), the identification increases to 69.5% for the unsupervised
classification of the image acquired on May 2017.

The comparison of field species reflectance is measured in the NIR and Green bands (Figure 6;
Table 2), and the classification results reveal an overall satisfactory class distinction, especially
concerning the distinction of the native Spartina maritima from the remaining vegetation. Since, in the
considered area, the presence of Spartina anglica was mostly reduced to isolated patches towards the
inner bay or to zones of mixed vegetation in the higher marsh, the identification of the invasive species
was not evident, particularly in images with a higher noise level. Considering the image of April 2013,
where the vegetation did not yet present a strong seasonal development, several individual Spartina
anglica patches presented a spectral signal under 0.01 sr−1, which is much lower than the radiometric
measurements. Indeed, the phenology of this species is rather late, and at this time of the year, the
plants were still withered, and the meadows presented a very low density. Other studies [14,15] have
also shown the interference of visible soil within vegetation in its reflectance, significantly lowering it.
The classification of the native Spartina, on the contrary, provides center class values in the range of
the radiometric field measurements, between 0.02 and 0.04 sr−1 (NIR band), mostly depending on the
meadow density. The better accuracy of the classification for the native Spartina was not so unexpected,
considering that this species presents a much earlier development than that of the invasive congener.

The pixel-based classification allowed for the estimation of a surface of the main Spartina maritima
patch of 5685.5 m2, whereas with the manual identification of the patch, a surface of 5378.17 (±87) m2

was obtained for the year of 2013. Considering the monitored patch of Spartina anglica, followed in the
long-term aerial photographs, we obtained a surface of 67.25 m2, using the supervised classification,
and 74.31 (±1) m2 using manual identification for the same date.

5. Conclusions

Technological evolutions of HSR multispectral satellite sensors greatly facilitates ecosystems’
monitoring capability at an increasingly smaller scale. In order to make progress in the knowledge of
biological invasion dynamics in salt marsh environments, we evaluated the potential of Pléiades images
to assess salt marsh evolution, after a biological invasion, and discriminate the native species Spartina
maritima from the invasive species Spartina anglica for the study site of the Arcachon Bay (South-west
France). Different techniques for land use classification were investigated, and their performance was
evaluated using a large set of ground truth data. As expected, the supervised methods exhibit, on
average, better results than the unsupervised algorithms. Moreover, in this study, we demonstrated
that classification accuracy is highly dependent on two main factors, which are the size of vegetation
patches and the species phenology.

Pléiades images provided a robust and consistent identification of the global marsh zone. We
showed that, in the Bay of Arcachon, the arrival of the exotic species was relatively controlled and did
not lead to significant changes in the marsh composition, which remained dominated by the native
Spartina species. On the other hand, distinguishing between species remains challenging, particularly
when considering small features, such as the invasive species at an early stage of the invasion, which
represents relevant information concerning invasion control issues. Our results showed that the
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current pixel classification methods applied to Pléiades images provide a poor performance, when
the order of magnitude of the Spartina sp. meadow size is lower than 10 m. However, lags in plant
phenology provide temporal windows, making species distinction possible. The results highlight that
a high-performance classification requires good knowledge of the field conditions and the vegetation’s
development. The biggest challenge is revealed to be the dissociation of established vegetation from
ephemeral biological features. In periods of low biological productivity, the level of biological noise
can be significantly reduced, and hence the success in species differentiation increases. Thus, the
seasonal interference of other biological features and stages of development of the target vegetation
can alter its spectral signature or influence the exposure of the colonized environment (bare ground).

In the Bay of Arcachon, the two congener Spartina species present a phenology lag, where their
spectral signature is considerably different between Autumn and early Spring. The strong presence of
algae between late Spring and Autumn shortens this temporal window of remotely sensed assessment.
We found that a suitable time frame for the remote sensing exploitation of the Spartina species distinction
should be between late winter and early spring, when Spartina anglica is still withered enough to be
differentiated from Spartina maritima, and algae blooms have not yet occurred.

The current pixel classification methods are highly sensitive to environmental noise. We highlight
here that the consideration of particular temporal windows might be crucial for an improved assessment
of the different types of marsh vegetation. Additionally, 2-meter spatial resolution data still generate
significant uncertainties in the identification of vegetation patches characterized by a decametric scale.
In order to better perform the identification of the invasive species, it will be necessary to evaluate
the pan-sharpened products of HSR sensors, provided by Pléiades or WorldView 3 and 4, as well as
coupled approaches based on pixel classification and pattern-recognition techniques.
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