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Abstract: Real-time quality-controlled surface current data derived from X-Band marine radar (MR)
measurements were evaluated to estimate their operational reliability. The presented data were
acquired by the standard commercial off-the-shelf MR-based sigma s6 WaMoS® II (WaMoS® II)
deployed onboard the German Research vessel Polarstern. The measurement reliability is specified
by an IQ value obtained by the WaMoS® II real-time quality control (rtQC). Data which pass the
rtQC without objection are assumed to be reliable. For these data sets accuracy and correlation
with corresponding vessel-mounted acoustic Doppler current profiler (ADCP) measurements are
determined. To reduce potential misinterpretation due to short-term oceanic variability/turbulences,
the evaluation of the WaMoS® II accuracy was carried out based on sliding means over 20 min of
the reliable data only. The associated standard deviation σWaMoS = 0.02 m/s of the mean WaMoS® II
measurements reflect a high precision of the measurement and the successful rtQC during different
wave, current and weather conditions. The direct comparison of 7272 WaMoS® II/ADCP northward
and eastward velocity data pairs yield a correlation of r ≥ 0.94, with |bias∆| ≤ 0.06 m/s and
σS = 0.05 m/s. This confirms that the MR-based surface current measurements are accurate
and reliable.

Keywords: X-Band radar; marine radar current measurement; quality control; measurement reliability;
accuracies; precision; WaMoS® II; vessel mounted acoustic Doppler current profiler

1. Introduction

Marine radars (MR) are designed for navigation and vessel traffic control. Depending on the
physical environmental conditions given by precipitation, wind and waves, signatures of the sea
surface commonly referred to as sea clutter become visible in the near range (<5 km) of the MR radar
images. Regarded as a disruptive noise for navigational purposes, sea clutter is normally suppressed.
Even though sea clutter signatures are well known, they are still not completely resolved, and are still
under investigation both experimentally and theoretically. Nevertheless, it turns out that sea clutter
includes valuable information on surface waves [1]. Following Bragg theory, sea clutter is caused by the
backscatter of the transmitted electromagnetic waves from the short sea surface ripples in the range
of half the electromagnetic wavelength (i.e., ~1.5 cm). Longer waves, such as wind sea (~10 m) and
swell (~100 m), become visible as they modulate the sea clutter signal. Both surface currents and water
depth affect the wave propagation [2,3]. As MRs image sea clutter simultaneously in time and space,
this allows the derivation of multi-directional unambiguous wave information, surface currents, and
(in shallow water) also water depth.

Driven by the growing need for precise information about waves and surface currents,
commercially available MR-based wave and current monitoring devices, such as WaMoS® II, have
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been developed [4–6]. Their capability and performance in a wide range of different applications,
ranging from coastal applications [7–9] to vessel-mounted applications [10–12], have been proven.

The sea clutter observations of MRs typically range up to 3–5 km, with spatial and temporal
resolutions on the order of 7.5 m and 2 s, respectively. This allows MRs to monitor waves longer than
15 m and current conditions over an area of several km2 in real time. As sea clutter is caused by the Bragg
backscatter of the transmitted electromagnetic waves from the short sea surface ripple waves (~2 cm),
a minimum wind speed of 2–3 m/s is required for its presence [13]. In calm periods in the absence
of ripples, no sea clutter can be observed, thereby preventing MR sea state and current observations.
Also, signatures of rain or snow (weather clutter), or other features in the radar image not related to sea
clutter, can disturb MR wave and current observations. These environmental limitations reduce the
confidence and acceptance of the MR-based measurements, and therefore need to be treated carefully.

The aim of this paper is to assess the present status of the MR-based WaMoS® II system, focusing
on its data usability with respect to reliability and accuracy. For this purpose, current measurements
obtained onboard the German research vessel Polarstern during the Atlantic transit cruise PS113 [14]
between Punta Arenas, Chile, and Bremerhaven, Germany, in May 2018 are used. The outline of the
paper is as follows: In Section 2, we give a brief introduction on the methods used to estimate the
accuracy and precision of fluctuating measurements. Section 3 describes the sensors used, with a
focus on WaMoS® II. In Section 4, we present the WaMoS® II real-lime quality control (rtQC) used to
specify data reliability. Observations made during the Atlantic transit cruise PS113 are presented in
Section 5. Results of the accuracy estimation and comparison with acoustic Doppler current profiler
(ACDP) measurements are presented in Section 6. Finally, in Section 7, we give a summary and
draw conclusions.

2. Methods: Accuracy and Precision

A common method to evaluate the accuracy and precision of measurements is to perform a
direct comparison of data sets from different sensors. In the case of MR-based current measurements,
corresponding reference measurements from in situ sensors like ADCPs are used [15]. The underlying
assumption of this approach is that both sensors observe the same property (P), and it is assumed
that spatial and temporal homogeneity and deviations between the data sets can be related directly to
inaccuracies in the measurements. However, this method of comparison is limited in that observed
deviations do not automatically relate to inaccuracies of the measurement technique [16]. The biggest
contribution to independent sensor deviations can be attributed to the different measurement locations
of the sensors. For example, an ADCP delivers subsurface current measurements in a limited local
volume, while MR-based observation represents current measurements at the sea surface over a spatial
domain of several hundreds of square meters. Due to different current structures (e.g., wind-forced
surface Ekman flow and geostrophic current shear extending deeply over a large part of the water
column), vertical homogeneity is not given at all times. Ref. [17] found that 80%, or more, of the
observed deviations between ADCP and HF radar current measurements on the West Florida shelf
were associated with horizontal and vertical separation between the measurements.

In addition, the informative value of the direct comparison of two independent data sets might
be misleading, as it completely neglects the natural variability of the current as a vector, consisting
of mean, oscillatory and chaotic contributions. This makes the results more difficult to compare and
properly interpret [18]. Therefore, we use a combination of methods to evaluate the quality, reliability,
precision, and accuracy of MR surface current measurements.

For practical handling of a fluctuating quantity, P, its temporal averages P over a suitable period
(averaging time τ) are used. This allows to describe P as P = P + P′, where P′ is the fluctuation with
P′ = 0. Based on this assumption, the resulting measurement is represented by the average P, which
depends, among other things, also on the used sampling and averaging intervals.

In this paper, we aim to evaluate the general performance of WaMoS® II data by directly
comparing both the mean current, U, and the corresponding standard deviation, σU, representing the
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short-term oceanic fluctuating component of the current. To evaluate the accuracy of the WaMoS® II
measurements, a direct comparison of U, with the corresponding ADCP measurements is carried out,
where the accuracy is described by correlation coefficient (r), bias (∆) and standard deviation (σ∆) of
the difference:
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Assuming that the measurement errors of the two sensors are uncorrelated and of equal magnitude,
the individual (single) standard deviation σs = σX = σY, and can hence be estimated by:

σS =
1
2

√

2 σ∆. (4)

Note that r, ∆, and σS include deviations related to horizontal (σ∆h) and vertical (σ∆v) gradients,
as well as temporal variation (σt) of P, which are not related to inaccuracies of the measurement device.
Using the mean instead of the instantaneous measurements leads to statistically more stable and
reliable results as the effect of uncorrelated natural variability is minimized.

To evaluate the precision of an individual sensor itself, we use a more general approach. This
approach is based on statistical analysis of a property P, represented by a statistical population {P1, P2,
. . . , PN}. The precision of the measurement of P can be estimated by the standard deviation σ

(
P
)
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where i = 1, N denotes individual values over the averaging interval τ.
Following this strategy, the precision of a measurement is estimated by the standard deviation

σP of the mean P. Using an averaging interval of τ = 20–30 min in combination with typical update
rates of WaMoS® II measurements ranging between 1–3 min allows us to obtain a sufficient number of
independent measurements, and hence gives statistically significant results for our investigation.

3. Data

The data used for the WaMoS® II-ADCP comparison were acquired on board Polarstern during
the Atlantic transit cruise PS 113 (May 2018) [14].

3.1. Sigma S6 WaMoS® II

The MR-based measurements were carried out by the sigma S6 WaMoS® II system. This standard
commercial, off-the-shelf system consists of a high-speed video digitizing and storage device, which
can be interfaced to most conventional analog and digital navigational X-Band radars. The sigma S6
system technology can be supplied with different software packages for various real-time applications
like small target detection, oil spill detection and ice navigation and monitoring, as well as real-time
sea state and current measurements (WaMoS® II).
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The WaMoS® II system can be operated from fixed platforms and coastal sites, as well as from
moving vessels. For the latter application, the horizontal vessel motion needs to be compensated.
The large vertical beam width of MRs, the range of which is normally between 20◦ and 25◦, depending
on the used radar type, ensures the ability to scan the sea surface even when the ship is pitching and
rolling [19]. Hence, we assume that vessel motions like pitch, roll and heave have no critical influence
on the WaMoS measurements.

The horizontal vessel movement can be removed during data processing, either in the space-time
or in the wave number-frequency domain. The compensation in the wave number-frequency domain
requires that the vessel movement over ground is constant (no variation in speed or course) during
radar data acquisition given by number of individual radar images times radar repetition rate. In this

case, the vessel movement is related to a fixed Doppler shift (
→

k
→

Vship), and can be separated from the

Doppler shift related to the surface current (
→

k
→

Ucurrent), where
→

k is the wave number vector. The motion
compensation in the space-time domain is performed by georeferencing [15,20]. Using GPS ship
position and heading (gyro), orientation and position are estimated for every radar pulse. When
transforming the sea clutter information from polar coordinates to Cartesian image sequences, each
point of the resulting analysis area corresponds to a fixed position relative to the earth, independent of
how the vessel is moving during the acquisition time. This method requires more computing time
and limits the area available for analysis, but is independent of the ship movement. However, in
cases when the vessel is moving very fast (>20 kn), this method might fail, and this occurs when the
analysis area moves out of the radar view field. In both cases, very precise vessel heading is required
as the error due to misalignment is amplified by the vessel speed [10]. For this application, WaMoS®

II processing was set to georeferencing mode, as the vessel speed of Polarstern was <12 kn, in general.
With the sampling strategy of 64 images per individual WaMoS® II measurement and a radar rotation
time of 2.5 s, the maximum expected offset during data acquisition is about 1 km, and this is acceptably
small compared to the WaMoS® II radar view range of 3 km.

The WaMoS® II system onboard Polarstern is connected to an analog SAM Radarpilot 1100
(9.4 GHz), with a rotation rate of RPT = 2.5 s. This radar is dedicated to the WaMoS® II application
(in the following, this is referred to as the WaMoS® II radar). The mounted 5 ft antenna provides
1.5◦ angular resolution. Running in short pulse mode, with a pulse length of 80 nsec, the transceiver
delivers data with 12 m range resolution. By oversampling of the radar raw data in direction and
range, the sigma S6 digitizer delivers radar information with an angular resolution of 0.35◦ and 5.62 m
in range (26.7 MHz). The WaMoS® II radar view field covers a range for 0.303–2.356 km from the
antenna, with the second quadrant sector blanked due to the mast construction (Figure 1).

For one individual WaMoS® II measurement on board Polarstern, 64 consecutive radar images
were analyzed, so that the WaMoS® II results represent temporal means of 2.67 min (64 × 2.5 s).
To overcome the effects of the directional dependency of the wave imaging in radar images from
radar look direction relative to wave and wind direction [10], the WaMoS® II analysis areas were
placed all around the vessel. Figure 1 shows a vessel-oriented radar image, which was obtained by
sigma S6 WaMoS® II on 12 May 2018, 12:00 UTC. At that time Polarstern was sailing northeastwards
(42◦) at 12 kn (6.2 m/s), while the wind was blowing from 271◦, at about 14.4 m/s. The color refers to
the measured radar return: black meaning no return level, and white indicating the maximum level.
The radar return is digitized to 12 bits, which allows a signal strength ranging from 0–4095. To ensure
no information is lost due to clipping at the lower limits, the digitizer is set below the noise level of the
system. For the Polarstern system, a mean noise level of 500 was determined during system installation.
To avoid reflections from the vessel superstructure in the near range, the system starts sampling after
a dead range of 300 m. The analysis areas are the three grey rectangles indicating size (128×256
pixels) and alignment (35◦, 255◦, 325◦ relative to vessel heading) of the sigma S6 WaMoS® II (Figure 1).
To overcome the directional dependency of the wave imaging in the radar images, the individual wave
spectra of each analysis area are averaged. From the resulting spatially averaged spectrum, statistical
wave parameters such as significant wave height (Hs), peak wave period (Tp), peak wave direction
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(θp), etc., are derived. The WaMoS® II update rate onboard Polarstern is approximately 3 min, given by
the time taken for 64 images to be acquired, multiplied by the radar repetition rate of 2.5 s.
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Figure 1. Vessel head-oriented WaMoS® II radar image acquired onboard the Polarstern on 12 May
2018, 12:00 UTC. The color scale refers to strength of the received radar return. The highlighted boxes
indicate size and alignment of the three WaMoS® II wave analysis areas relative to the radar view field.
The arrow in the center indicates the orientation of the Polarstern, which was moving at 12 kn and a
course of 43◦ during data acquisition, and north is indicated by the arrow in the top right.

From the measurements of the phase speed (c) of the captured surface waves, the underlying

ocean surface currents (
→

Us) are derived by identifying deviations from the known dispersion relations

of surface waves. Assuming that
→

Us is small compared to c, the depth-weighted effective surface
current is given by:

→

Us(k) = 2k
∫ H

0

→

U(z) exp(−2kz)dz (6)

where
→

U(z) is the vertical current profile, with z being positive downwards and H being the water

depth. As the influence decays exponentially with depth, the resulting current
→

Us represents a vertical
average of the ocean currents within the wave-influenced surface layer DW [21]. DW varies depending
on the wavelength (λ = 2π/k) and height of the captured waves. On average, DW is assumed to
range between 3 and 10 m depending on the predominant wave length, and this will be shallower for
short wind sea waves than for long swell waves [15].

3.2. ADCP

As a reference, data from a vessel-mounted acoustic Doppler current profiler (ADCP) type Ocean
Surveyor from Teledyne RD instruments [22] were used. Its transducers/receivers, operating at a
nominal frequency of 150 kHz, are mounted in the hull of Polarstern, about 11 m below the water
line. It was working in long-range mode with a vertical cell size of 4 m, a blanking distance of
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4 m, and a maximum range of ~320 m. Heading, pitch, and roll from the ship’s inertial navigation
system (GPS and magnetically constrained “gyro”) were used to convert the ADCP velocities to earth
coordinates. The accuracy of the ADCP velocities mainly depends on the quality of the position
fixes and the ship’s heading data. Further errors stem from a misalignment of the transducer with
the ship’s centerline. The ADCP data were processed using the Ocean Surveyor Sputum Interpreter
(OSSI) developed by GEOMAR, Helmholtz Centre for Ocean Research, Kiel ([22]), which corrects for a
possible misalignment between the ADCP transducer orientation and the ship’s forward direction.

To avoid interference with vessel-induced currents, the ADCP measurements are averaged over
the 20–50 m depth range. For the data comparison, quality controlled ADCP current data with
averages over 2 min were used. The quality filter is based on the statistical analysis, where data
outliers exceeding the range of mean value and standard deviation of surface velocity are neglected.
The ideal-theoretical precision σADCP(ideal) of the ADCP measurements can be estimated from the single
ping/bin standard deviation of σADCP(SP) = 0.3 m/s, given by the ADCP manufacturer. Neglecting
natural variability and assuming vertical and temporal homogeneity and independence over 20–50 m
(7 depth bins) and 2 min (100 pings), results in σADCP(ideal) = σADCP(SP)/

√
N = 0.0113 m/s.

4. WaMoS® II Quality Control

The detection of surface waves in radar images is sensitive to data acquisition and environmental
conditions. To create sea clutter, a minimum wind speed is required [13]. Furthermore, a minimum
wave height is required to significantly modulate the sea clutter information. In case of insufficient
wave signatures in the radar images, the system cannot deliver reliable information. To indicate the
reliability of a sigma S6 WaMoS® II measurement, real-time quality control (rtQC) is implemented.
During processing, the rtQC is carried out in different steps, which are also summarized in Figure 2:

• Data acquisition check: This check verifies if all mandatory information is available.
• Sea clutter checks: In this step, the radar raw input is controlled. In cases of insufficient sea clutter

information due to no sea state, rain, very low wind conditions (<3 m/s) or missing data sections,
the data set is marked with a quality identifier IQ of 0 < IQ < 9.

• SNR-checks: Here, the quality of the separation of signal and noise within the image spectrum is
used to evaluate the quality of the current estimate and wave filtering. Data sets which do not
pass these checks have potentially unreliable current estimates and are marked with 10 < IQ < 400.

• Wave system checks: When deriving the standard sea state parameters from the frequency
direction spectrum E( f ,θ), the number of individual wave systems is determined. In cases of
more than 5 wave systems, E( f ,θ) can be regarded as too noisy to give reliable results. In these
cases, the resulting data sets are marked with 400 < IQ < 1000.

• Data basis check: For spatial and temporal averages, a minimum of individual measurements is
required to obtain a statistically stable result and hence trustful data. All mean data sets with less
measurements are marked with 0 < IQ < 10.

The results of the different rtQC tests are accumulated and summarized in an individual IQi value,
which is assigned to the measurement areas (i) (Figure 2). The IQ values are binary numbers where
each digit (0 or 1) corresponds to whether the individual measurement has passed or failed a particular
test. These binary numbers are then converted to decimals, which is what is given as output and
discussed here. Based on the individual IQ value, it is possible to separate reliable data which pass the
tests from unreliable data which do not pass all of the tests. Furthermore, the binary structure of the
IQ makes it possible to backtrack the individual results of the different tests, and therefore enables
validation of the significance of an individual test and the adjustment/optimization, if necessary, of
thresholds for particular installations. For example, if the sea clutter test yields parts of the analysis
area that contain rain signatures (see Figure 1), this leads to IQ = 4. If in the SNR check the data does not
pass the significance test so that IQ = 20, this is added to give IQ = 24. Furthermore, if the wave system
check failed as the resulting spectrum is too noisy to identify significant individual wave systems,
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IQ = 100 is added. The accumulated result is then IQ = 124, indicating unreliable measurements due to
insufficient radar data because of rain. For the presented data set, it turned out that the sea clutter
checks do not indicate unreliable data on their own. This means that partly missing or disturbed sea
clutter information alone does not automatically lead to identification as unreliable data. Only in
combination with the subsequent quality checks can the results be regarded as unreliable. Even when
the results of the sea clutter checks do not explicitly indicate insufficient data, it reveals the potential
cause of measurement failures. This will be discussed in more detail with respect to rain signatures
later on. For practical use a decimal IQ valid limit of 10 is set.
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Figure 2. Flow chart of the WaMoS II real-time quality control (rtQC) The different quality checks
(diamonds) are carried out with in the levels of the WaMoS processing chain. Boxes indicate key steps
in the processing from the radar images in polar coordinates to the resulting wave spectra, peak wave
and current parameter.
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Figure 3a shows a radar image acquired during a calm period with wind speed <3 m/s. Due to
the absence of ripple waves (~3 cm) no sea clutter is visible. Figure 3b shows a radar image acquired
during heavy rain. The potential sea clutter is covered by the rain signatures visible as patches of high
backscatter intensity generated by the rain drops in the air. In both cases, no sufficient sea clutter is
visible, and the corresponding rtQC results in IQ > 400.
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Figure 3. Radar images showing insufficient sea clutter information for wave and current retrieval.
(a) Calm wind condition showing no sea clutter. (b) Heavy rain condition, where rain signatures covers
sea clutter information. The color code refers to strength of the received radar return. The highlighted
boxes indicate size and alignment of the three WaMoS® II analysis areas.

Figure 4 shows radar images under limited conditions due to moderate rain. The rain signatures
are spatially localized (Figure 4a) or are weak (Figure 4b) and allow the detection of wave signatures
and therefore also the wave and current analysis. The evaluation of the resulting data suggested that
some of the wave parameters are more robust than others with respect to limited sea clutter information.
The analysis shows that the directly measured parameters like wave period (Tp), wave direction (θp),

and surface current (
→

U) are more robust than the indirect measurement of significant wave height
(Hs). As long as no other rtQC check has been failed, these direct wave parameters can be assumed
to be reliable when IQ < 10. This does not apply to the indirect estimates of Hs, which are based on
the accurate determination of the signal to noise ratio (SNR). Missing sea clutter information leads
immediately to missing signal intensity and hence to a lower SNR, which results in a decrease in Hs.

It needs to be stressed that the rtQC is performed in real time during data processing, and does not
require post processing. Furthermore, the identification of insufficient radar information is carried out
independently of external information on rain and wind. In cases where the internal WaMoS® II rtQC
identifies insufficient sea clutter (IQ > 10), this information is aligned with wind information (if available)
to give the combined information, to indicate that currently MR measurements are not possible due
to the lack of sufficient wind. This keeps the WaMoS® II rtQC independent of additional external
information and their reliability. The relation between IQ and wind information is an additional piece
of information for the user and makes it possible to evaluate the actual threshold of the wind speed for
the particular WaMoS® II set up (used radar, installation geometry, etc.).



Remote Sens. 2019, 11, 1030 9 of 18

Remote Sens. 2019, 11, 1030 9 of 19 

 

 
Figure 4. Radar images showing limited sea clutter information for wave and current retrieval. (a) 
Rain signature partly obscures sea clutter. (b) Weak rain signatures blur the sea clutter. 

It needs to be stressed that the rtQC is performed in real time during data processing, and does 
not require post processing. Furthermore, the identification of insufficient radar information is 
carried out independently of external information on rain and wind. In cases where the internal 
WaMoS® II rtQC identifies insufficient sea clutter (IQ > 10), this information is aligned with wind 
information (if available) to give the combined information, to indicate that currently MR 
measurements are not possible due to the lack of sufficient wind. This keeps the WaMoS® II rtQC 
independent of additional external information and their reliability. The relation between IQ and 
wind information is an additional piece of information for the user and makes it possible to evaluate 
the actual threshold of the wind speed for the particular WaMoS® II set up (used radar, installation 
geometry, etc.). 

5. Observations During the Cruise 

Figure 5 shows the cruise track of Polarstern during PS113 for May, 2018 outside of exclusive 
economic zones (EEZ, 200 miles). The WaMoS® II recording started when Polarstern left the EEZ of 
Argentina, Mai 11th, 2018. During the cruise different current regimes from wind-forced to density-
driven currents up to more than 2 m/s were encountered. Besides different current regimes, various 
environmental conditions were experienced. These ranged from a storm event at the beginning of the 
cruise (May 12/13), with wind speeds up to 20–25 m/s and sea states up to 6–7 m significant wave 
height (𝐻௦), to calm (wind speed <3 m/s) and rainy periods. The latter give the possibility of validating 
the proper rtQC. Even though no reference data for the WaMoS® II sea state measurements were 
available, unreliable data can be identified in the data set, as during insufficient sea clutter conditions, 
the peak wave direction and current shows an unrealistically high variance. 

N

(b)

05-18-2018 17:00:47 UTC

-2 -1 0 1 2
x [km]

-2

-1

0

1

2

y 
[k

m
]

Wind
  3.4m/s,357.o

blanked area

ra
da

r b
ac

ks
ca

tte
r i

nt
en

si
ty

no

Max
05-16-2018 07:20:01 UTC

-2 -1 0 1 2
x [km]

-2

-1

0

1

2

y 
[k

m
]

Wind
 13.5m/s,331.o

blanked area

ra
da

r b
ac

ks
ca

tte
r i

nt
en

si
ty

no

Max

N

(a)

Figure 4. Radar images showing limited sea clutter information for wave and current retrieval. (a) Rain
signature partly obscures sea clutter. (b) Weak rain signatures blur the sea clutter.

5. Observations During the Cruise

Figure 5 shows the cruise track of Polarstern during PS113 for May, 2018 outside of exclusive
economic zones (EEZ, 200 miles). The WaMoS® II recording started when Polarstern left the EEZ of
Argentina, 11 May 2018. During the cruise different current regimes from wind-forced to density-driven
currents up to more than 2 m/s were encountered. Besides different current regimes, various
environmental conditions were experienced. These ranged from a storm event at the beginning of
the cruise (May 12/13), with wind speeds up to 20–25 m/s and sea states up to 6–7 m significant wave
height (Hs), to calm (wind speed <3 m/s) and rainy periods. The latter give the possibility of validating
the proper rtQC. Even though no reference data for the WaMoS® II sea state measurements were
available, unreliable data can be identified in the data set, as during insufficient sea clutter conditions,
the peak wave direction and current shows an unrealistically high variance.

During the cruise, it turned out that the other X-Band radar onboard Polarstern, which is used for
navigation, interfered strongly with the WaMoS® II radar. This led to partly corrupted radar image
acquisition and gaps in the time series. These corrupted radar data were identified by WaMoS® II
rtQC. To minimize and evaluate the impact of the radar interferences on the WaMoS® II measurements,
corrupted images or sectors were replaced by blanked data, and such data sets are marked with IQ = [1
or 2], depending on the amount of missing data in the analysis sequence. This allowed us to evaluate
the impact of missing sectors on the general performance of the system. It turned out that, when
sufficient sea clutter was visible in the other parts of the image and no other rtQC test failed (IQ > 10),
the direct measurement was undisturbed and reliable. The missing signal leads to an underestimation
of the indirect measurement of Hs, which is indicated by IQ > 0.



Remote Sens. 2019, 11, 1030 10 of 18

Remote Sens. 2019, 11, 1030 10 of 19 

 

 
Figure 5. Cruise track (grey) of Polarstern. Stick plot (red) indicating the surface currents observed by 
WaMoS® II during PS113 (May data only). The length of the sticks is related to current speed, 
orientation represents current direction (going to). 

During the cruise, it turned out that the other X-Band radar onboard Polarstern, which is used 
for navigation, interfered strongly with the WaMoS® II radar. This led to partly corrupted radar image 
acquisition and gaps in the time series. These corrupted radar data were identified by WaMoS® II 
rtQC. To minimize and evaluate the impact of the radar interferences on the WaMoS® II 
measurements, corrupted images or sectors were replaced by blanked data, and such data sets are 
marked with IQ = [1 or 2], depending on the amount of missing data in the analysis sequence. This 
allowed us to evaluate the impact of missing sectors on the general performance of the system. It 
turned out that, when sufficient sea clutter was visible in the other parts of the image and no other 
rtQC test failed (IQ > 10), the direct measurement was undisturbed and reliable. The missing signal 
leads to an underestimation of the indirect measurement of 𝐻௦, which is indicated by IQ > 0. 

The resulting data (Figure 6) analysis proved the performance of the rtQC. It successfully 
identified data sets with insufficient sea clutter during rain or no sufficient wind (>3 m/s) conditions, 
which are marked grey. Cases with insufficient wind speed were confirmed by independent direct 
wind speed measurements (German Weather Service, DWD) onboard. Rain cases were confirmed by 
visual observations and visual inspections of the corresponding radar image. Figure 6 shows the time 
series of wind speed (top panel in turquoise) and WaMoS® II current speed and direction (middle 
and lower panel). WaMoS® II data with IQ < 10 are marked in red, while data with IQ > 10 are marked 
in grey. The data sets, which were acquired during very low wind speeds (<3 m/s), show unrealistic 
scatter in the current speed and direction. These data sets were successfully identified (IQ > 10) by 
the WaMoS® II rtQC, and hence are displayed in grey. This evaluation confirms that a minimum wind 
speed of 3 m/s is required for reliable WaMoS® II measurements. In cases of too low wind speed, the 
radar images contain only random noise rather than wave information. Without the stringent quality 
control, the WaMoS algorithm outputs current solutions based on random noise which are 
completely unrelated to the real current conditions (e.g., May 18th). Please note that the WaMoS® II 
rtQC is independent of the wind measurements; hence, it is independent from their availability, 
accuracy and reliability. 

 

-80 -70 -60 -50 -40 -30 -20 -10 0

-70 -60 -50 -40 -30 -20 -10

-5
0

-4
0

-3
0

-2
0

-1
0

0
10

20
30

-50
-40

-30
-20

-10
0

10
20

30

2018-05-11 12:00:00 UTC

2018-05-31 23:55:53 UTC

La
tit

ud
e

Longitude

1 m/s

Equator

Figure 5. Cruise track (grey) of Polarstern. Stick plot (red) indicating the surface currents observed
by WaMoS® II during PS113 (May data only). The length of the sticks is related to current speed,
orientation represents current direction (going to).

The resulting data (Figure 6) analysis proved the performance of the rtQC. It successfully identified
data sets with insufficient sea clutter during rain or no sufficient wind (>3 m/s) conditions, which
are marked grey. Cases with insufficient wind speed were confirmed by independent direct wind
speed measurements (German Weather Service, DWD) onboard. Rain cases were confirmed by visual
observations and visual inspections of the corresponding radar image. Figure 6 shows the time series
of wind speed (top panel in turquoise) and WaMoS® II current speed and direction (middle and lower
panel). WaMoS® II data with IQ < 10 are marked in red, while data with IQ > 10 are marked in grey.
The data sets, which were acquired during very low wind speeds (<3 m/s), show unrealistic scatter in
the current speed and direction. These data sets were successfully identified (IQ > 10) by the WaMoS®

II rtQC, and hence are displayed in grey. This evaluation confirms that a minimum wind speed of 3 m/s
is required for reliable WaMoS® II measurements. In cases of too low wind speed, the radar images
contain only random noise rather than wave information. Without the stringent quality control, the
WaMoS algorithm outputs current solutions based on random noise which are completely unrelated to
the real current conditions (e.g., May 18th). Please note that the WaMoS® II rtQC is independent of the
wind measurements; hence, it is independent from their availability, accuracy and reliability.
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Figure 6. Time series of wind speed (a) and WaMoS® II surface current speed (b) and direction (c).
Data which passed the WaMoS® II rtQC with IQ < 10 are in red, data with IQ ≥ 10 are assumed to be
unreliable and are shown in grey.

For the May 2018 period shown, WaMoS® II carried out 9727 individual instantaneous measurements.
From this data set, about 80% pass the rtQC with IQ < 10 and can be accepted as reliable for direct wave
and surface current measurements. The rest of the data is identified as unreliable because of insufficient
sea clutter due to interferences with the navigation radar and/or environmental conditions (no sufficient
wind, rain, very low sea state). About 10% of the WaMoS® II data had reduced quality, with 10 < IQ<

400, characterized by noisy wave spectra. These data sets may include valuable information, but no
statistically reliable estimates of integrated wave parameters can be derived. Especially rain induced noise

interferes with Hs estimates, while more robust direct measurements like Tp or current
→

U might contain
valuable information. The final 10% of the data set with IQ > 400 does not contain any sufficient radar
signals for WaMoS® II processing.

The results of the WaMoS® II surface current measurements were compared with the ADCP
measurements (Figure 7). The visual comparisons of the measurements demonstrate the general
agreement of the WaMoS® II surface and ADCP subsurface measurements, with exception of the
equatorial region, where a significant vertical current shear does not allow a direct comparison.
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Figure 7. Time series of the current speed (a) and current direction (b) as derived by WaMoS® II
(red/grey) and ADCP (blue) on board Polarstern during PS113 cruise. The grey values indicate WaMoS®

II marked as unreliable (IQ ≥ 10). The vertical line at May 25th marks the time when the equator
was crossed.

The best agreements in current speeds and directions between WaMoS® II and ADCP were
observed at the beginning of the cruise (May 12th–14th) in mid-latitudes (~40◦ S). Oceanographically,
this region is characterized by the opposing northward oriented Falkland-Malvinas Current and the
southward flowing Brazil Current. The area where both currents meet, the Brazil Falkland-Malvinas
Confluence, is recognized as one of the most energetic in the world’s ocean, with large-amplitude
meanders and mesoscale eddies [23]. WaMoS® II as well as the ADCP, observed almost identical
currents with maximum speeds up to 2 m/s, strongly varying in speed and direction. Leaving this
zone, a region with current speed <0.5 m/s was passed. Here small deviations between surface
WaMoS® II and sub-surface ADCP measurements can be observed. This is most likely due to vertically
inhomogeneous current conditions. In the region of the equator (±2◦, ~May 25th), the surface current
measured by WaMoS® II and the subsurface current recorded by ADCP deviate. This deviation is
primarily caused by the Equatorial Under Current (EUC) that occupies the depth range of 30–250 m
with its strong eastward-directed velocities [14], opposing the north-westward-directed wind drift of
the surface layer.

6. Results

In this section, we present the comparison of the quality-controlled WaMoS® II surface current
data (IQ < 10) with the quality-controlled ADCP subsurface current data. The agreement of both
data sets is estimated from the following statistical parameters: Bias, correlation coefficient (r) and
standard deviation (σ∆, σs). For both data sets (WaMoS® II and ADCP), standard deviation of the
mean (σWaMoS, σADCP) for the individual measurements was determined over an averaging interval
of 20 min. For the comparison, the data obtained near the equator was excluded, because vertical
homogeneity was not given there [14]. Finally, 7272 individual data sets pass the rtQC and are used for
this evaluation.

Figure 8 shows the direct comparison of the quality controlled WaMoS® II surface and ADCP
subsurface current measurements for the eastward (UE) and northward (UN) components. For both
components (UE and UN), the statistical results (Figure 8a,c) are in the same range (r: 0.94, 0.97;
bias = −0.02 m/s, −0.06 m/s and σs: 0.05 m/s, 0.05 m/s, respectively). For the UN component, the
correlation r as well as bias∆ and σs are slightly higher. This is most likely related to the fact that
higher absolute values of UN with speeds up to 1.5 m/s were observed, while UE speeds remained
below 0.7 m/s during the entire cruise. The corresponding histograms of the signed differences (∆UE
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and ∆UN) between the WaMoS and ADCP current components are shown in Figures 8b and 8d.
Both distributions can be fairly well approximated by a Gaussian distribution (ae−(x−b)2/c2

, with a the
height, b the center, c the width (the standard deviation) of the Gaussian distribution). Given the fact
that WaMoS and ADCP measure in different depths, and that ocean currents tend to be vertically
sheared and to veer with depth geostrophically, following the Ekman spiral of the wind driven flow
or the Stokes drift associated with surface waves, some differences between the two measurements
are expected. Hence, a bias of the found magnitude and the slight deviations of the histograms from
Gaussian shape do not necessarily signify a measurement error.
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√
2 σ∆ the standard deviation.

The bin width is 0.1 m/s in the scatter plots and 0.02 m/s in the histograms.

The comparison of the absolute current speed (US =
√

UE2 + UN2) (Figure 9a,b), reveals
the same agreement (r: 0.96 and σs: 0.05 m/s) with an almost perfect Gaussian distribution and
no significant bias (−0.0004 m/s) of the differences. For the current direction (Uθ, Figure 9c,d) the
correlation is slightly lower (r: 0.87). The bias of −6.88◦ suggests that the disagreement between the
two systems is mostly due to differences in the orientation of the determined currents. However, we
cannot completely rule out at present that one of the two measurement systems or both are subject to
some small systematic errors. A bias in the same range as in our observations is reported from most
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studies comparing MR-derived surface current estimates with estimates from other devices (e.g., [10]).
It is also possible that effects from a possible misalignment of the ADCP transducer are not completely
removed during the ADCP data processing.
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Figure 9. Comparison of the current speed (US) and current direction (Uθ) of WaMoS® II surface
and ADCP subsurface (mean of the 20–50 m depth range) currents. Uθ = 0 refers to northward
current. Please note that due to the angle discontinuity at North (360◦/0◦), Uθ covers the range of
[−90:450◦]. (a,c): Scatter plot of WaMoS versus ADCP. (b,d): Histograms (black) and PDF (blue) of the
differences between WaMoS and ADCP. N gives the number of data pairs, r the correlation coefficient,
σs = 1

2

√
2 σ∆ the standard deviation. The bin width for US is 0.1 m/s in the scatter plot (a) and 0.02 m/s

in the histogram (b). The bin width for Uθ is 16◦ in the scatter plot (c) and 12◦ m/s in the histogram (d).

Histograms of the absolute deviations
∣∣∣∆(UE)

∣∣∣ and
∣∣∣∆(UN)

∣∣∣ (black) and of the individual standard
deviations for WaMoS (red) and ADCP (blue) for both current components are shown in Figure 10.
Again, the measurement differences for both current components reveal approximately the same
distribution, covering the range up to 0.2 m/s and standard deviation ofσ∆ = 0.07 m/s. The corresponding
histograms for the standard deviations of the individual measurements, σWaMoS and σADCP (WaMoS®

II: red, ADCP: blue) show the same behavior: WaMoS exhibits most variation in the interval 0–0.02 m/s,
decaying exponentially at higher values. Due to the natural variability of currents, σ > 0 must be



Remote Sens. 2019, 11, 1030 15 of 18

expected, especially in areas with strong currents. Therefore, σ does not solely reflect precision of
the measurements. Again, both components (UE, UN) show the same behavior. The distribution of
the ADCP data has its peak at the 0.02–0.04 m/s bin and decays from there exponentially to higher
values. For both sensors, the individual standard deviations σWaMoS and σADCP are below the estimated
common value, σ∆, obtained from the comparison: σWaMoS, σADCP < σS. The square root of the sum of

the squares of both standard deviations is also below the combined value:
√
σ2

WaMoS + σ2
ADCP < σ∆.

The slightly lower values of σWaMoS compared to σADCP are assumed to result from the different
spatial coverages. Since the ADCP delivers measurements that are locally more confined than those
obtained by WaMoS® II, they can be assumed to be subject to more variability than the WaMoS® II data
representing areal means over several square kilometers. In summary, most of the observed deviations
between WaMoS and ADCP can be explained by the different observation volumes (vertical and
horizontal extents) and the natural velocity variability contained therein. The results of the comparison
between WaMoS and ADCP for the different current components are summarized in Table 1.
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Figure 10. Histogram of the standard deviation of the mean WaMoS® II (red) and ADCP (blue) current
component—(a) UE, (b) UN, (c) US, and (d) Uθ—and the absolute difference between the WaMoS and
ADCP measurements (black). The bin width of the histograms is 0.02 m/s for the current components
and 12◦ for the current direction.
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Table 1. Results of the comparison between WaMoS® II surface and ADCP subsurface current measurements.

Parameter Symbol UE UN US Uθ

Number of data sets N 7272
Correlation coefficient

(Equation (1)) r 0.94 0.97 0.96 0.87

Bias (Equation (2)) ∆ −0.02 m/s −0.06 m/s −0.0004 m/s −6.88◦

Total standard deviation of the
difference (Equation (3)) σ∆ 0.07 m/s 0.07 m/s 0.07 m/s 55.71◦

Individual standard deviation
(Equation (4)) σS 0.05 m/s 0.05 m/s 0.05 m/s 39.39◦

Standard deviation of the
temporal mean ADCP

measurements (Equation (5))
σADCP 0.05 m/s 0.05 m/s 0.05 m/s 18.00◦

Standard deviation of the
temporal WaMoS®II

measurements (Equation (5))
σWaMoS 0.03 m/s 0.02 m/s 0.03 m/s 6.00◦

7. Summary and Conclusions

The key motivation of this analysis was to evaluate the usability of the MR-based sigma S6
WaMoS® II system with respect to the reliability, precision and eventually accuracy of the surface
current measurements. As previous evaluations of WaMoS® II measurements were based on direct
comparisons with ADCP measurements, the resulting accuracies often lead to misinterpretation. This
is because the data sets used are results of different measurement principles, and also because of
temporal and spatial misalignment of the data sets [24]. The fact that vertical and horizontal current
shears, which lead to deviation of WaMoS® II surface and ADCP subsurface current measurements,
do not automatically reflect an error in one of the measurements was occasionally mentioned in earlier
work [15,25].

To reduce the effect of natural current variability on the data set comparison, temporal means
over an averaging interval of 20 min were used. The averaging further allows one to estimate the
standard deviation of the observed current. The mean current values of WaMoS® II and ADCP were
then directly compared with standard statistical tools, such as correlation coefficient (r), bias (

∣∣∣∆∣∣∣), and
standard deviation (σ∆, σs). The results of r > 0.9,

∣∣∣∆∣∣∣ < 0.06 m/s and σs = 0.05 m/s reveal an excellent
agreement between the two data sets and hence the validity of the measurements, especially when
taking into account that these values may include deviations unrelated to errors or inaccuracies in the
measurement devices but to vertical and horizontal inhomogeneities. Only data sets acquired in the
equatorial region, where a large vertical current shear associated with the Equatorial Undercurrent
exists, were excluded from this comparison. The standard deviation of the individual mean current
value (σWaMoS, σADCP) was assumed to reflect the precision of the individual measurements, even
when this parameter is strongly linked to the natural variability of the currents. Here the results
σWaMoS = 0.02 m/s for both current components reflect the high stability of the measurement during
different current regimes and wave conditions. This value represents a combination of the natural
variability of the flow and potential measurement errors. Due to the spatial character of the WaMoS®

II measurement σWaMoS is lower than the equivalent value obtained for the ADCP, σADCP = 0.04 m/s.
The fact that both σWaMoS and σADCP do not exceed the combined single standard deviation σs confirms
the consistency of the validation. Assuming that the sensor-related error of the ADCP is equivalent to
the theoretical error σADCP(theoretical) = 0.0113 m/s the error related to the natural current variations
σ f luctuation(ADCP) = σADCP − σADCP(theoretical) = 0.03 m/s. The fact that σWaMoS < σ f luctuation(ADCP)
is related to the larger integration domain of the WaMoS and that σADCP(theoretical) is an ideal value,
which in reality is likely larger.

To ensure consistent data set precision, and that all WaMoS® II data sets satisfy this high validity,
an internal quality control flag is set for each individual measurement. During Polarstern cruise PS113
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different environmental conditions with high and low wind speeds and wave heights as well a different
precipitation conditions were met, proving the proper performance of the WaMoS® II rtQC.

For operational use of X-Band radar wave and current observations, stringent quality control
is advisable. Interferences in the radar images or in the absence of wind no reliable and accurate
observation of waves and current are possible and can lead to inaccurate measurements. Therefore,
the quality of the measurement needs to be indicated to the user.

For our comparison of WaMoS® II measurements with ADCP reference data, we unfortunately could
not make use of ADCP currents above 17 m. This points to a general shortcoming of vessel-mounted
ADCPs; namely, that no current measurements are taken from the water column above the keel depth of
the ship plus some blanking distance. This shortcoming hampers scientific progress in the understanding
of processes which govern the coupling of atmosphere and ocean. Having shown in our study that
quality-controlled WaMoS® II measurements compare well with ADCP data in regions which are not
obviously subject to strong near-surface vertical shear such as, for instance, the equatorial region with
its undercurrent, suggests making use of WaMoS® everywhere when the quality control indicates valid
measurements, and combine those with ADCP data in order to obtain a full vertical current profile
reaching up to the surface.
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