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Abstract: Applying deep-learning methods, especially fully convolutional networks (FCNs),
has become a popular option for land-cover classification or segmentation in remote sensing.
Compared with traditional solutions, these approaches have shown promising generalization
capabilities and precision levels in various datasets of different scales, resolutions, and imaging
conditions. To achieve superior performance, a lot of research has focused on constructing more
complex or deeper networks. However, using an ensemble of different fully convolutional models
to achieve better generalization and to prevent overfitting has long been ignored. In this research,
we design four stacked fully convolutional networks (SFCNs), and a feature alignment framework
for multi-label land-cover segmentation. The proposed feature alignment framework introduces
an alignment loss of features extracted from basic models to balance their similarity and variety.
Experiments on a very high resolution(VHR) image dataset with six categories of land-covers indicates
that the proposed SFCNs can gain better performance when compared to existing deep learning
methods. In the 2nd variant of SFCN, the optimal feature alignment gains increments of 4.2%
(0.772 vs. 0.741), 6.8% (0.629 vs. 0.589), and 5.5% (0.727 vs. 0.689) for its f1-score, jaccard index,
and kappa coefficient, respectively.

Keywords: land-cover classification; image segmentation; ensemble learing; feature alignment;
fully convolutional networks

1. Introduction

The distributions and changes of natural and artificial surfaces, such as grasslands, forests,
buildings and roads, is fundamental information that is referenced for many applications such as
urban planning [1], navigation [2], land-used management [3], and forest monitoring [4]. Traditionally,
this information was obtained by labor-intensive and time-consuming field surveys [5]. The ability to
achieve precise and cost-efficient updating of land cover is a long-existing demand for remote sensing.
Over the last few years, with the emerging of innovative technologies, the cost as well as difficulty of
capturing very high resolution(VHR) aerial imagery has significantly declined [6,7]. Thus, robust and
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precise methods for the automatic classification and segmentation of land cover become the core of the
whole solution.

According to the conditions of image datasets such as scale, color space, and resolution, various
automatic segmentation methods have been proposed. These methods can be divided into two
categories depending on whether it is necessary to have ground truth: I. unsupervised methods
and II. supervised methods. Unsupervised methods can be further categorized as three groups
according to their operational mechanisms: (1) threshold-based, (2) edge-based, and (3) region-based
methods. Threshold-based methods separate different parts using thresholds determined by the value
or histogram of the pixels [8]. Edge-based methods detect the abrupt changes using mathematical
designed filters, such as Sobel [9] and Canny [10], to generate boundaries between different parts.
In region-based methods, image segmentations are done by clustering or region-growing [11–13].
Because of manually adjustable parameters and the lack of need for ground truth, unsupervised
methods are easier to implement, and are widely adopted for small scale datasets. However, for larger
datasets, as the variety and complexity increase, the performance of unsupervised segmentation
methods usually lacks generalization capability [14]. In direct contrast, supervised methods utilize
the ground truth to learn segmentation patterns and then apply it to new data. For supervised
methods, the segmentation problem is converted into a pixel-to-pixel image classification where pixels
of different parts are classified into their corresponding categories [15]. Because the segmentation is
made by classifying each pixel, these methods generally produce segmentations that are more precise.

For supervised segmentation methods, there are two fundamental procedures: feature extraction,
and classification. At the early stages, these steps are done separately. The spatial or textual features
are firstly extracted from the image through hand-crafted descriptors, such as haar-like, local binary
pattern, and histogram of oriented gradient [16–19]. Later, various classifiers, such as support vector
machines, decision trees, and neural networks are utilized for further classification using the extracted
features [20–23]. Because of the separateness of the two procedures, optimizing the performance of
methods requires many cycles of trial and error. Instead, convolutional neural network (CNN) methods
incorporate automatic feature extraction and classification through an unified framework [24]. As these
steps can directly learn from the ground truth, CNNs show superior generalization capabilities and
precision in many classification and segmentation tasks [25].

Before fully convolutional networks (FCN) [26], CNN-based methods adopted patch-based
approaches which classified the center pixel by using a small patch of the whole image [27].
Because of highly overlapped patches, these methods required massive memory space as well as high
computational capability. To solve this problem, the FCN method utilizes fully convolutional network
architectures that can directly perform pixel-to-pixel translation of the input images to ground truth.
In this manner, the FCN method significantly improves training efficiency and model performance [28].
In classic FCNs (FCN32s, FCN16s and FCN-8s), the methods adopt multiple scale bilinear upsampling
operations to generate segmentation output with the same height and width of input. These operations
lead to information loss that affects the precision of prediction. Recently, more advanced and
accurate FCN-based methods have been developed [29]. These methods improve model performance
through different strategies. The U-Net and FPN methods adopt multiple skip-connections between
corresponding lower and upper layers to share information between layers [30,31]. The DeconvNet
replaces bilinear upsampling with deconvolution (convolution transpose) operation [32]. The MC-FCN
method applies multi-constraints for various scale outputs [33]. Finally, the BR-Net method uses
additional boundary information to regulate the model [34]. These methods further develop the
potential of fully convolutional networks. However, with more complex architectures and stronger
representation capabilities, overfitting becomes inevitable [35].

Overfitting is a long-existing problem in deep learning. This problem is more critical for smaller
datasets. To compensate for the problem, several approaches are proposed. These approaches include
early stopping, data augmentation, regularization, and ensemble learning. The early stopping approach
stops the training model before convergence to prevent overfitting [36,37]. For the data augmentation
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approach, the original images are rotated, resized, random cropped, or re-colorized to generate
more training samples and increase the variety of data [38]. As for regularization, extra penalty
(e.g., L1/L2) [39,40] or dropout [41] is implemented to reduce and regulate the representation capability
of the model. By contrast, ensemble learning combines several models to generate a final prediction [42].
Owing to its capability of utilizing a variety of different models, biased predictions from one model can
be compensated for by other models, and better results can be produced. Currently, ensemble learning
is mainly applied to patch-based CNN for pixel-level classification [43]. Ensemble learning has not
received any attention in FCN-based architectures. In addition, research on ensemble learning is
mainly focused on various numbers or combinations of basic models. The studies on the combination
approaches of different basic models are not sufficient.

To explore the capability of ensemble learning using fully convolutional networks, we design
four stacked fully convolutional networks(SFCNs) using FCN-8s, U-Net, and FPN. Furthermore, we
propose a feature alignment framework for efficient ensemble learning, which enhances the relations
between basic models. Compared with traditional ensemble learning approaches, the proposed
method implements basic segmentation loss between prediction and corresponding ground truth as
well as extra alignment loss between features that are extracted separately from different basic models.
The value of the alignment loss is determined by the consistency of features extracted by different
models. If these features are similar, the alignment loss is zero. During iterations, the optimizer is
required to update parameters to reduce the value of the weighted sum of segmentation loss and
alignment loss. Thus, the optimized network is capable of generating predictions using features
extracted from basic models that contain a balance of similarity and variety.

The effectiveness of the proposed feature alignment framework is demonstrated by a VHR
image dataset with 2D multi-label segmantic information(refer to Section 2.1). In comparative
experiments, the performances of achieved by the proposed method (SFCNv3, +FL) are 0.785(±0.004)
of F1-score, 0.646(±0.005) of jaccard index [44], and 0.742(±0.005) of kappa coefficient [45], respectively.
Furthermore, sensitivity analysis indicates that the proposed feature alignment can control the balance
between similarity and variety of features extracted from different basic models. By optimizing the
feature alignment level, ensemble fully convolutional networks gain better model performance.

The main contributions of this study can be summarized as follows:(1) We design a stacked
fully convolutinal networks architecture using multiple FCNs for efficient multi-label land-cover
segmentation and (2) we further proposed a feature alignment framework to balance the similarity
and variety of features extracted from basic models to gain extra performance.

The rest of the paper is organized as follows: First, the materials and methods used for this
research are described in the Section 2. Then, the quantitative and qualitative comparison results of
different methods are presented in the Section 3. Finally, the discussions and conclusions from this
study are presented in the Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Dataset

For estimating the effectiveness of the designed SFCNs and proposed feature alignment
framework, we conduct our experiments on ISPRS Vaihingen (Germany) 2D semantic labeling dataset.
The dataset is an open benchmark, which is available online (http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-vaihingen.html). Within the dataset, there are 33 tiles including 16 tiles for
training and 17 tiles for testing. Only the tiles used for training are provided with images of annotated
ground truth. The size of each tile ranges from 1388× 2555 to 2006× 3007 pixels. The ground sampling
distance (GSD) of orthophoto is about 9 cm.

As shown in Figure 1, each tile of the dataset contains a orthophoto and its corresponding
annotated ground truth. The orthophoto is an 8-bit image with three bands, which correspond to the
near-infrared, red, and green bands delivered by the camera. The image of annotated ground truth

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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utilizes six different colors to represent land-covers of impervious surfaces, buildings, low vegetation,
trees, cars, and clutter/background (see color map in Table 1).

Impervious 
surfaces

Building

Low 
vegetation

Car

Tree

Clutter/
Background

(a) Orthophoto (b) Ground truth                                (c) Legend

Figure 1. Example of Vaihingen 2D semantic labeling dataset. (a) true orthophoto, (b) annotated
ground truth, and (c) legend. The ground truth contains six types of land-covers.

Table 1. Reference of color map of Vaihingen dataset.

Land-covers RGB Values

Impervious surfaces [255, 255, 255]
Building [0 , 0, 255]
Low vegetation [0 , 255, 255]
Tree [0 , 255, 0]
Car [255, 255, 0]
Clutter/Background [255, 0, 0]

2.2. Method

Figure 2 presents the workflow of this research. All 16 tiles of orthophoto, as well as their
corresponding ground truth, are divided into two sets for training and testing. These sets contain 12 and
4 tiles of images, respectively. A sliding window with stride of 224 pixel is applied to each tile of the
training set to generate image pathes with size of 224 × 224 pixels. After data preprocessing, the image
patches are shuffled and split into two groups that include training (70%), and cross-validating (30%).
The number of samples in training and cross-and validation are 744 and 312, respectively. Through
several cycles of training and cross validation, the hyper-parameters are determined and optimized.
Then, the predictions generated by the optimized model are further evaluated by the tiles in the
test set. For performance evaluations, we choose three commonly used evaluation metrics, namely,
jaccard index, f1-score, and kappa coefficient. These metrics are computed without post-processing
operations [46,47] for better estimation of experimental methods.
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Figure 2. Experimental workflow of this research. The existing methods, as well as the proposed
model, are trained and evaluated by 224 × 224 image patches extracted from original dataset.

2.2.1. Stacked Fully Convolutional Networks

After the invention of FCN in 2015, FCN and FCN-based methods have become a gold standard
for many image segmentation tasks [48,49]. Compared to conventional patch-based CNN methods,
FCN-based models significantly improve computational efficiency and performance. Advanced
FCN-based models further enhance feature representation capabilities and improve model performance
through various approaches. These approaches include various combinations of skip-connections
(U-Net & FPN), replacing bilinear upsample with unpooling (SegNet) or convolution transpose
(DenconvNet), multi-constraints (MC-FCN), and additional boundary information (BR-Net). However,
the increased representation capability and the complexity of the models usually lead to the overfitting
of training data, especially for small or biased datasets.

To avoid overfitting, approaches including early stopping, data augmentation, regularization,
and ensemble learning, are widely adopted. Of them, owing to its ability to utilize the representation
capability of different models, the ensemble learning approach shows better performance and
generalization capability. However, ensemble learning is currently used for patch-based CNN
architectures, but not for FCN-based architectures. Additionally, research on ensemble learning
mainly focuses on adding numbers or trying different combinations of basic models. To our best
knowledge, research on methods to discern better combinations of various FCNs in ensemble learning
does not exist.

Thus, we design stacked fully convolutional networks (SFCNs), and propose a feature alignment
method, which enhances the relations between basic models. For ensemble learning, if the predictions
from two models are completely different (in extreme cases, one of them is all zeros and the other
is all ones), the ensemble result is just an average of both biased predictions that cannot yield better
performances. Therefore, to have better results, the predictions of different models should contain a
certain level of variety as well as similarity. Compared with traditional ensemble learning approaches,
the proposed method introduces an extra alignment loss to control similarity as well as consistency
between features that are extracted separately from different basic models. In contrast to common
segmentation loss, which is computed as the difference between a ground truth and its corresponding
prediction, proposed alignment loss is computed among extracted features from stacked basic models.
To make sure the alignment loss can be applied to a various number of basic models (e.g., 2 models
of FCN and U-Net, 3 models of FCN, U-Net, and FPN), the alignment loss is computed as the mean
square error(MSE) between the maximum and minimum values of the extracted features (see details
in Equation (1)). The value of alignment loss becomes zero when all the extracted features are
similar. The value of the alignment loss reflects the consistency of extracted features. During iterations,
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the optimizer is required to update parameters to reduce the value of the weighted sum of segmentation
loss and alignment loss. Thus, the optimized network is capable of generating a normalized prediction
from variant basic models. Through feature alignment framework, the SFCNs can achieve a balance of
similarity and variety using different basic models, and improve performance.

Figure 3 presents the design of the proposed stacked fully convolutinal networks(SFCN).
The SFCN consists of two parts: (1) a framework for feature extraction using various fully convolutional
networks and (2) a framework for feature alignment and output generation.

Input ⊕

Feature 
Alignment

Output

A model

B model

N model

…

Figure 3. Proposed stacked fully convolutional networks(SFCN). The SFCN contains a framework for
feature extraction using N number of fully convolutional networks(A, B, ..., N model), and a framework
for feature alignment and final output generation.

In the feature extraction framework, different numbers or combinations of FCN-based models are
implemented to separately extract features from the same input image. For each FCN-based model,
there are several universal operations and model specific layers. For universal operations, there are
convolution, nonlinear activation, and subsampling operations. For backend models, various model
specific layers, such as skip-connection (U-Net & FPN) and unpooling (SegNet), are included.

For universal operations, element-wise multiplication within kernel is computed through the
convolutional operation. The size of the kernel determines the receptive field and the computational
efficiency of the convolution operation. Later, the output of convolution is handled by the rectified
linear unit (ReLU) [50], which returns the original value if the value is larger than zero and sets values
less than zero to zero. To accelerate network training, most models adopt batch normalization (BN) [51]
layers before (e.g., SegNet) or after non-linear activations (e.g., FPN). To reduce the width and height
of features, max-pooling [52] is chosen for subsampling in this study.

As for model specific layers, sequential bilinear upsampling [53] is commonly used to upsample
the width and height of the features. By contrast, SegNet backend uses unpooling which applies
corresponding pooling indices of max-pooling to achieve upsampling. In FPN and U-Net backends,
skip-connection, which concatenates two layers with consistent height and width across channel axis,
is applied between downward and upward layers.

In the framework for feature alignment and output generation, alignment loss that restricts
the consistency of extracted features from various models and multi-class segmentation loss are
computed sequentially.

• Alignment loss (Lossalign)

Through the nth FCN-based model, extracted features (denoted as Xn) with size of W × H × D
are generated. W and H is consistent with the height and width of the input. The value of D is the
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same as the number of classes of land covers. The maximum and minimum value for each position
from the 1st to the nth feature are computed. The final alignment loss (Lossalign) is calculated by
the mean square error between corresponding maximum and minimum values of all positions.

Xmaxi,j,k = max(X1i,j,k, X2i,j,k, ..., Xni,j,k)

Xmini,j,k = min(X1i,j,k, X2i,j,k, ..., Xni,j,k)

Lossalign =
1

W × H × D

W,H,D

∑
i=1,j=1,k=1

(Xmaxi,j,k − Xmini,j,k)
2

(1)

• Segmentation loss (Lossseg)

From all extracted features (X1, X2, ..., Xn), the final output/prediction(Y) of the network is
computed by taking the average value of all features. Then, the binary cross entropy [54],
which calculates the difference between ground truth(G) and its corresponding prediction, is used
as segmentation loss(Lossseg). The calculation can be formulated as

Y =
1
N ∑(X1, X2, ..., Xn)

Lossseg = − 1
W × H × D

W,H,D

∑
i=1,j=1,k=1

gi,j,k × log(yi,j,k) + (1− gi,j,k)× log(1− yi,j,k)

(2)

where yi,j,k and gi,j,k represent the (i,j,k) element of model output(Y) and ground truth (G).
The value of yi,j,k is the predicted probability of the pixel category.

Therefore, the total loss of the network can be formulated as

Loss f inal = Lossseg + λ× Lossalign (3)

where λ is the weight of the alignment loss (Lossalign). By controlling the value of λ, we are able to
adjust the balance between Lossalign and Lossseg.

During iterations, Adam optimizer [55] will minimize Loss f inal to driven proposed network to
generate pixel-to-pixel predictions for multi-label land-cover segmentation.

2.3. Experimental Set-Up

Three classic FCN-based architectures, including FCN-8s, U-Net, and FPN, are chosen as the
basic models. All these models are implemented by Geoseg [56] using PyTorch (https://pytorch.org/,
version = 0.3.0) as backend.

2.3.1. Network Specification

• FCN-8s. The classic FCN-8s architecture was proposed by Long et al. in 2015 [26]. This method
innovatively adopts fully convolutional architecture to perform pixel-to-pixel image classification
or segmentation. The FCN architecture is the first fully convolutional network used for image
segmentation.

• U-Net. The U-Net architecture was proposed by Ronneberger et al. [30] for medical image
segmentation. This method introduces multiple skip connections between upper and downer
layers. Owing to its robustness and elegant structure, U-Net and its variants are widely adopted
for many semantic segmentation tasks.

• FPN. The FPN architecture was published by Lin et al., 2017 [31]. Like U-Net, this method adopts
multiple skip connections. In addition, the FPN model generates multi-scale predictions for final

https://pytorch.org/
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output. By utilizing abundant information from the feature pyramid, the FPN method achieves
state-of-the-art performance.

The number and the size of convolutional kernels have significant impact on model performance.
To minimize their effect, basic models used in this research are implemented with consistent number
of kernel size at corresponding layers(see details in Figure 4).

a.   

b. 

c.

Conv1 
3x3x24

Conv2 
3x3x48

Conv3 
3x3x96

Conv4 
3x3x192

Conv5 
3x3x384

Conv6 7x7x4096 
Conv7 1x1x4096 
Conv8 1x1x6

MaxPool1 MaxPool2 MaxPool3 MaxPool4 MaxPool5

2x  
upsample

∑

2x  
upsample

∑

8x  
upsampleFCN-8s

Conv1 
3x3x24

Conv2 
3x3x48

Conv3 
3x3x96

Conv4 
3x3x192

Conv5 
3x3x384

MaxPool1 MaxPool2 MaxPool3 MaxPool4

Conv6 
3x3x192

2x  
upsample

2x  
upsample

2x  
upsample

2x  
upsample

Conv7 
3x3x96

Conv8 
3x3x48

Conv9 
3x3x24

Skip connections

Conv10  
1x1x6 

Conv1 
3x3x24

Conv2 
3x3x48

Conv3 
3x3x96

Conv4 
3x3x192

Conv5 
3x3x384

MaxPool1 MaxPool2 MaxPool3 MaxPool4

Conv6 
3x3x192

2x  
upsample

2x  
upsample

2x  
upsample

2x  
upsample

Conv7 
3x3x96

Conv8 
3x3x48

Conv9 
3x3x24

Skip connectionsConv13 1x1x6 

∑

Conv11 1x1x6 
4x  upsample

Conv12 1x1x6 
2x  upsample

Conv10 1x1x6 
8x  upsample

1x1 prediction

Figure 4. Specification of three basic models: (a) FCN-8s, (b) U-Net, and (c) FPN.

2.3.2. Model Setup

To analyze the importance or significance of the proposed alignment loss, four versions of
stacked fully conventional networks (SFCNs) are setup. There are three variants utilizing different
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combinations of two basic models, and a variant utilizing all three basic models. The variants
using two basic models, SFCN f &p, SFCN f &u and SFCNu&p consist of FCN-8s&FPN, FCN-8s&U-Net,
and U-Net&FPN, respectively (as shown in Table 2). All combinations are separately trained with
different values of λ (λ ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]). In all experiments, the models are trained,
cross-validated, and tested though exactly the same dataset. To prevent random bias, each set of
experiments is repeated five times. After removing the best and worst performances of each method,
their average performance with the testing dataset is carefully evaluated.

Table 2. Network setting of stacked fully convolutional networks from FCN-8s, U-Net, and FPN.

Version No. of basic models FCN-8s U-Net FPN

SFCN f &p 2 + − +
SFCN f &u 2 + + −
SFCNu&p 2 + + −

SFCN f &u&p 3 + + +

3. Results

Three well-known FCN-based methods, namely, FCN-8s, U–Net, and FPN, are chosen for basic
models in this study. Four SFCN models composed from three basic models (refer to Table 2) are
trained separately with various weight (λ) of alignment loss (Lossalign). All experiments are performed
on the same dataset and processing platform.

Three commonly used balanced metrics, including f1-score, jaccard index, and kappa coefficient,
are selected for quantitative evaluation. Figures 5 and 6 show the comparison results of
experimental methods.

3.1. Sensitivity Analysis of Feature Alignment

To investigate the significance of feature alignment, four stacked fully convolutional networks
(i.e., SFCNs) using sequential values of lambda (λ ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) are implemented and
validated on the testing dataset. To prevent random bias, each set of experiments is repeated five times.
After removing the best and worst performances of each method, their mean value and standard
deviation (SD) of the evaluation metrics are calculated. Figure 5 and Table 3 present the trends and
values of f1-score, jaccard index, and kappa coefficient over various λ of Lossalign.

Figure 5a shows the trend of performances over λ values of Lossalign on SFCN f &p. As the value of λ

increases, the values of three metrics improve. The best performance is achieved with maximum value
of λ = 1.0. This result indicates that the introduction of feature alignment leads to better performance
of the ensemble model. Figure 5b,c show the trend of performances on SFCN f &u and SFCNu&p,
respectively. When λ ≤ 0.8, higher λ generally has higher value metrics. By contrast, while λ ≥ 0.8,
higher λ leads to weaker performances. In contract to Figure 5a–c, there is no significant change in
the values of the metrics under various λ in Figure 5d, which implies that feature alignment has no
significant effect on SFCN f &u&p.

Table 3 reveals the values of evaluations metrics f1-score, jaccard index, and kappa coefficient of
four ensemble methods using λ in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. For SFCN f &p, the best performances are
achieved at λ values 0.8 and 1.0. When compared with no feature alignment(i.e.,λ = 0.0), the values of
f1-score, jaccard index, and kappa coefficient increase about 3.9% (0.767 vs. 0.738), 6.7% (0.623 vs. 0.584),
and 5.3% (0.721 vs. 0.685), respectively. For SFCN f &u, the best performance is achieved at λ value
0.8. When compared to no feature alignment, the highest values of f1-score, jaccard index, and kappa
coefficient increase about 4.2% (0.772 vs. 0.741), 6.8% (0.629 vs. 0.589), and 5.5% (0.727 vs. 0.689),
respectively. Like SFCN f &u, the best performance of SFCNu&p is at λ value 0.8. With comparison to
the baseline λ = 0.0, the maximum increments of f1-score, jaccard index, and kappa coefficient reach
2.6% (0.785 vs. 0.765), 4.4% (0.646 vs. 0.619), and 3.3% (0.742 vs. 0.718), respectively. By contrast to
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the above methods, the values of f1-score for SFCN f &u&p are almost identical (within [0.773, 0.780]).
Under optimal feature alignment condition (e.g., λ = 1.0), the values of jaccard index and kappa
coefficient increase about 1.6% (0.640 vs. 0.630) and 1.2% (0.736 vs. 0.727), respectively. When compared
to other methods (e.g., SFCN f &u), the improvement caused by feature alignment of SFCN f &u&p is not
so significant. The values for the standard deviation (SD) of the three metrics from different models
range from 0.001 to 0.006. When compared to the mean values, even the maximum value of SD (0.006)
is not significant.
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Figure 5. Trends of model performances of four SFCNs using lambda values in [0.0, 0.2, 0.4, 0.6, 0.8,
1.0]: (a) performances of SFCN f &p over lambda values; (b) performances of SFCN f &u over lambda
values; (c) performances of SFCNu&p over lambda values; and (d) performances of SFCN f &u&p over
lambda values.
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Table 3. Table of model performances of four SFCNs under lambda values in [0.0, 0.2, 0.4, 0.6, 0.8,
1.0].The x and y axes represent the models and their corresponding values, respectively. (b) Table of
mean value and standard deviation (SD) of performance comparisons among these methods. For each
evaluation metric, the highest mean values and lowest SD are highlighted in bold.

Method F1-Score Jaccard Index Kappa Coefficient

Version λ-Value Mean SD Mean SD Mean SD

SFCN f &p

0.0 0.738 0.003 0.584 0.004 0.685 0.004
0.2 0.748 0.002 0.598 0.003 0.698 0.003
0.4 0.761 0.004 0.615 0.004 0.714 0.004
0.6 0.764 0.004 0.619 0.004 0.717 0.004
0.8 0.767 0.002 0.623 0.002 0.721 0.002
1.0 0.767 0.003 0.623 0.003 0.721 0.003

SFCN f &u

0.0 0.741 0.003 0.589 0.004 0.689 0.004
0.2 0.764 0.002 0.619 0.002 0.717 0.002
0.4 0.762 0.003 0.616 0.004 0.715 0.004
0.6 0.762 0.004 0.615 0.005 0.714 0.004
0.8 0.772 0.003 0.629 0.004 0.727 0.004
1.0 0.770 0.001 0.626 0.002 0.723 0.002

SFCNu&p

0.0 0.765 0.006 0.619 0.007 0.718 0.006
0.2 0.772 0.004 0.629 0.006 0.727 0.005
0.4 0.772 0.006 0.629 0.008 0.726 0.007
0.6 0.780 0.001 0.639 0.002 0.736 0.001
0.8 0.785 0.004 0.646 0.005 0.742 0.005
1.0 0.784 0.001 0.645 0.002 0.741 0.002

SFCN f &u&p

0.0 0.773 0.006 0.630 0.007 0.727 0.006
0.2 0.780 0.002 0.638 0.002 0.735 0.002
0.4 0.780 0.001 0.640 0.001 0.736 0.001
0.6 0.778 0.002 0.637 0.002 0.734 0.002
0.8 0.778 0.001 0.637 0.002 0.733 0.001
1.0 0.780 0.001 0.640 0.002 0.736 0.002

3.2. Performances Comparison

Three basic models (FCN-8s, U-Net, and FPN) and four combinations of ensemble models
(i.e., SFCNs) with/without optimal feature alignment (FA) are implemented and validated by the
testing dataset. To prevent random bias, each set of experiments is repeated five times. After removing
the best and worst performances of each method, their mean value and standard deviation (SD) of
evaluation metrics are calculated.

Figure 6a shows the relative performances of these models. Among three basic methods, the FPN
shows the highest values for all evaluation metrics. For each combination of ensemble learning,
methods with optimal feature alignment(+FA) are generally better than the corresponding methods
without optimal feature alignment(−FA).

Figure 6b displays the corresponding mean and standard deviation(SD) values of evaluation
metrics from different methods. Among four ensemble models without optimal feature alignment
(SFCNs, −FA), SFCN f &u&p(−FA) shows the higher mean values than SFCNu&p(−FA), SFCN f &u(−FA),
and SFCN f &p(−FA) for all metrics. This observation indicates that an ensemble with more models can
lead to better performance. For ensemble models using the same number of basic models (SFCN f &p,
SFCN f &u, and SFCNu&p), a combination of U-Net and FPN (SFCNu&p) is better than a combination
of FCN-8s and U-Net(SFCN f &u) or FCN-8s and FPN (SFCN f &p). Surprisingly, the best basic model
(FPN) is better than the best ensemble model without feature alignment (SFCN f &u&p, −FA). This result
suggests that a simple ensemble of different basic models does not assure higher performance. As for
the four ensemble models with optimal feature alignment (SFCNs, +FA), SFCNu&p(+FA) shows the
highest mean values for f1-score (0.785), jaccard index(0.646), and kappa coefficient(0.742). Ensemble
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methods with feature alignment showed higher values for all three evaluation metrics Compared
than their counterparts without feature alignment. Among all methods, the SFCNu&p(+FA) methods
achieved the highest performance.

The values for the standard deviation (SD) of three metrics from different models range from 0.001
to 0.008. When compared to the mean values, even the maximum value of SD (0.008) is not significant.
Through independent t-test, except for SFCN f &u&p, methods with optimal feature alignment showed
significantly different values for all three evaluation metrics Compared than their counterparts without
feature alignment(see details in Table 4).
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Method
F1-score Jaccard index Kappa coe�cient

Mean SD Mean SD Mean SD

FCN-8s 0.724 0.003 0.568 0.004 0.669 0.004
U-Net 0.766 0.004 0.621 0.006 0.719 0.005
FPN 0.776 0.006 0.635 0.008 0.732 0.007

SFCNf&p (�FA) 0.738 0.003 0.584 0.004 0.685 0.004
SFCNf&u (�FA) 0.741 0.003 0.589 0.004 0.689 0.004
SFCNu&p (�FA) 0.765 0.006 0.619 0.007 0.718 0.006

SFCNf&u&p (�FA) 0.773 0.006 0.630 0.007 0.727 0.006

SFCNf&p (+FA) 0.767 0.002 0.623 0.002 0.721 0.002
SFCNf&u (+FA) 0.772 0.003 0.629 0.004 0.727 0.004
SFCNu&p (+FA) 0.785 0.004 0.646 0.005 0.742 0.005

SFCNf&u&p (+FA) 0.780 0.001 0.640 0.001 0.736 0.001

Figure 6. Comparison of performances of the basic models of FCN-8s, U-Net, and FPN as well as
four SFCNs with/without feature alignment. (a) Bar chart for comparison of relative performances.
(b) Table of mean value and standard deviation (SD) of the performance comparison of these methods.
For each evaluation metric, the highest mean values and lowest SD are highlighted in bold.
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Table 4. Result of independent t-test of four SFCNs under with/without feature alignment. The p-value
is the probability that SFCN has the same performances at both with and without feature alignment.

Group F1-Score Jaccard Index Kappa Coefficient

t-Value p-Value t-Value p-Value t-Value p-Value

SFCN f &p (+FA vs.−FA ) 14.438 0.0001 16.546 0.0001 15.123 0.0001
SFCN f &u (+FA vs.−FA ) 11.750 0.0003 11.558 0.0003 11.144 0.0004
SFCNu&p (+FA vs.−FA ) 5.350 0.0059 5.329 0.0060 5.210 0.0065

SFCN f &u&p (+FA vs.−FA ) 2.234 0.0892 2.271 0.0856 2.415 0.0732

3.3. Qualitative Comparison

Figure 7 shows the prediction results on testing areas Tile-1, Tile-2, Tile-3, and Tile-4 of three basic
models(FCN-8s, U-Net, and FPN) and optimized SFCNs. Generally, these models could correctly
segment the major parts of different land-covers from the original aerial images. The FCN-8s model
tends to misclassify low vegetation as trees (e.g., red rectangle in column 2, Tile 1), and the border
area of buildings is usually broken (e.g., the red rectangle in column 2, Tile 3). The result generated by
U-Net is unable to discriminate between roads and buildings (e.g., red rectangle in column 3, Tile 1 or
row 3, Tile 2). The FPN model is generally better than FCN-8S and U-Net. However, trees and roads
are misclassified as buildings (e.g., the red rectangle in column 4, Tile 3). Among SFCN models, results
generated from SFCN f &p and SFCN f &u tend to miss the buildings in the corner area (e.g., the red
rectangles in column 5, Tile 4 and column 5, Tile 4). The SFCN f &u&p model outperforms SFCN f &p
and SFCN f &u. However, there are misclassified holes within large buildings (e.g., the red rectangle in
column 8, Tile 3). When compared to other methods, even with some misclassification (e.g., the red
rectangle in column 7, Tile 3), SFCNu&p shows better performance in major areas.

Impervious  
surfaces

Building

Low  
vegetation

Car

Tree

Clutter/ 
Background

Tile-1                 

Tile-2                  

Tile-3                   

Tile-4

         Image          FCN-8s           U-Net             FPN            SFCNf&p          SFCNf&u         SFCNu&p         SFCNf&u&p

Figure 7. Segmentation results of FCN-8s, U-Net, and FPN and optimized SFCNu&p for testing areas
including Tile-1, -2, -3, and -4. Predicted land-covers are represented with six colors.

3.4. Computational Efficiency

All experiments are implemented and tested on a Sakura Internet Server(https://www.sakura.ad.
jp/) equipped with one NVIDIA Tesla V100 GPU (https://www.nvidia.com/en-us/data-center/tesla-
v100/) and installed with 64-bit Ubuntu 16.04 LTS. To eliminate the effect of some hyperparameters,

https://www.sakura.ad.jp/
https://www.sakura.ad.jp/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
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for all models, the size of batch and number of iteration are fixed to 24 and 1000, respectively. The Adam
stochastic optimizer, which is running at default setting (lr = 2−4, betas = [0.9, 0.999]), is used for
training different models.

Table 5 shows the computating speeds in frames per second (FPS) of these methods. In training
period, three basic model are processed at 41.4 FPS(FCN-8s), 59.4 FPS(U-Net), and 54.6 FPS(FPN),
respectively. When compared to basic models, the ensemble methods are much slower. As the number
of basic models increases (e.g., 3 in SFCN f &u&p vs. 2 in SFCN f &p,SFCN f &u, and SFCNu&p), the training
speed decreases. Even with the same number of basic models, because of the difference in model
combination, the training speeds are different. Generally, a combination of fast basic models can
form a faster ensemble model (e.g., 41.8 FPS of SFCNu&p vs. 31.2 FPS of SFCN f &p). In testing period,
these methods achieved 1.3–2.1 times the processing speed. Interestingly, SFCN f &u&p has the most
significant performance difference (57.6 vs. 27.2, 2.1x) between the training and testing stages.

Table 5. Comparison of the computational efficiencies of FCN-8s, U-Net, FPN and four ensemble fully
conventional networks. For each column, the highest mean values and lowest SD are highlighted
in bold.

Methods Training FPS Testing FPS

Mean SD Mean SD

FCN-8s 41.4 0.2 67.1 0.3
U-Net 59.4 0.4 75.4 1.3
FPN 54.6 2.0 74.7 4.4

SFCN f &p 31.2 0.2 61.7 0.7
SFCN f &u 33.4 0.8 63.2 0.9
SFCNu&p 41.8 0.9 67.7 3.0

SFCN f &u&p 27.2 0.2 57.6 0.1

4. Discussions

4.1. Regarding the Proposed Feature Alignment Framework

Deep-learning methods, especially FCN-based models, are widely adopted for automatic
building extraction from large-scale aerial images [57,58]. Compared to conventional methods,
the FCN-based models significantly improve segmentation performance when tested on various
benchmark datasets [59,60]. Recently, more advanced FCN-based models have enhanced feature
representation capabilities to achieve better model performance (e.g., FPN, MC-FCN, and BR-Net).
However, the increased representation capability and as complexity of the models usually lead to
overfitting. Ensemble learning, which utilizes several different networks to generate a weighted
prediction, is a promising option to avoid overfitting.

In this paper, we designed four SFCNs and proposed a novel feature alignment framework to
enhance the performance of the ensemble framework. In contrast to existing ensemble approaches
which mainly focus on adding numbers or trying different combinations of basic models, the proposed
framework introduces alignment loss to control the similarity and consistency of features extracted
from different basic models. Through feature alignment, the proposed ensemble method can achieve
a balance between variety and similarity so better predictions can be achieved from weaker basic
models. Qualitative and quantitative results on the testing tiles demonstrated the effectiveness of our
proposed stacked fully convolution networks as well as feature alignment framework. Additionally,
because of its flexibility, this framework can easily extend to ensemble learning architectures using
varied numbers of basic models.
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4.2. Accuracies, Uncertainties, and Limitations

From the sensitivity analysis, different ensemble models show a similar trend that as the weight
of alignment loss increases, the performance of the model will increase first and, after a certain level,
decline (see details in Figure 5). The interpolation of this trend is: (1) When there is no feature
alignment(λ=0), features extracted from different basic models are so diverse that they might have
different predictions for certain locations. An ensemble of these features doesn’t bring better results.
(2) When feature alignment is added, at early stages, a higher value of λ forces features extracted from
different basic models to be closer to each other so that they can compromise on specific locations
and generate better overall predictions. However, if λ rises beyond the optimal value, the extracted
features might be too similar to each other, and there will not be enough variety. Thus, the performance
of the ensemble method will regress to that of a single basic model. This observation indicates that
the feature alignment framework can help achieve a balance in similarity and variety of features in
ensemble learning.

Among the methods, the proposed SFCNs with feature alignment (SFCNu&p, +FA) shows
the highest values for all evaluation metrics. The values of f1-score, jaccard index, and kappa
coefficient are 0.785, 0.646, and 0.742, respectively. SFCN models using two basic models (SFCN f &p,
SFCN f &u, and SFCNu&p), with or without feature alignment (i.e., +/− FA), show significantly different
performances. Ensemble models with proper weights for alignment loss are generally better than
their counterparts without alignment loss. Especially for SFCN f &u, optimal feature alignment gains
increments of 4.2% (0.772 vs. 0.741) for f1-score, 6.8% (0.629 vs. 0.589) for jaccard index, and 5.5%
(0.727 vs. 0.689) for kappa coefficient. These results indicate that introducing feature alignment leads
to better performance of the ensemble model. However, for ensemble models using three basic models
(SFCN f &u&p), the values of jaccard index and kappa coefficient only increase about 1.6% (0.640 vs. 0.630)
and 1.2%(0.736 vs. 0.727), respectively. The improvement caused by feature alignment for SFCN f &u&p
is not significant. Additionally, when compared to the best basic model (FPN), the optimized ensemble
model doesn’t show big improvements (see details in Figure 6 b).

Through analysis of computating speed, we observed a significant decrease in computational
efficiency at the training stage when applying ensemble learning. Of four SFCN models, the model
with three basic models (SFCN f &u&p) is much slower than the models with two basic models (SFCN f &p,
SFCN f &u, and SFCNu&p). Because of the decrease in computational efficiency, even though feature
alignment can be easily extended to the ensemble model with all basic models, the proposed ensemble
model might not be suitable for the analysis of very large areas (e.g., automatic mapping of entire
country).

5. Conclusions

In this paper, we propose a novel feature alignment framework for efficient ensemble learning of
fully convolutional networks. The proposed framework can be seamlessly integrated with ensemble
learning models with variant number of basic models to regulate a balance in similarity and variety of
the features extracted from different branches. Their performances are verified by VHR image dataset
with multi-label segmentic information. The ensemble models with proposed feature alignment show
significantly better performance than existing methods. In SFCN f &u, optimal feature alignment gains
increments of 4.2% (0.772 vs. 0.741), 6.8% (0.629 vs. 0.589), and 5.5% (0.727 vs. 0.689) for f1-score,
jaccard index, and kappa coefficient, respectively. Sensitivity analysis demonstrated that feature
alignment plays an important role in controlling the balance between similarity and variety of the
ensemble model. In future studies, we will further optimize our feature alignment framework to
achieve better performance in more complex ensemble learning architectures.
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