3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images
Abstract
:1. Introduction
1.1. Related Works
1.2. Contributions
- (1)
- We propose a novel CT image processing pipeline based on 3D morphology analysis. The proposed novel method is a fully automatic, highly accurate method that allows for rapid and nondestructive phenotypes extraction. Compared with the state-of-the-art algorithm, the proposed method fully uses all 3D information of multi-layers CT images in a straightforward manner.
- (2)
- We define a set of new 3D phenotypes of wheat spikes. The new 3D phenotypes include Grain-to-Grain distance, aspect ratio, porosity, angles between grains and stem. These 3D phenotypes enable breeding scientists to find the relationship between phenotypes and genotypes precisely.
- (3)
- We analyze the correlation among wheat grain traits and distinguish the traits that are more likely to be controlled by genome than by environments. The aspect ratio, Grain-to-Grain distance and porosity are slightly affected by the environments, we speculate that they may be mainly genetically controlled. We also find close grains will inhibit grain volume growth and the aspect ratio 3.5 may be the best for higher yields in wheat breeding.
2. Materials
2.1. Physical Equipment and Plant Materials
2.2. Manual Labeling of Wheat Grains
3. Method
3.1. Holder Clearance
3.2. Intensity Equalization
3.3. Foreground Detection by GMM
3.4. Block-Like Tissue Detection by 3D Morphological Processing
3.4.1. Detection of Grain and Stem Nodes
3.4.2. 3D Growth to Recover Grains
3.5. 3D Phenotypes Calculation
3.5.1. Grain Length and Radius
3.5.2. Grain Volume and Surface Area
3.5.3. Aspect Ratio and Porosity
3.5.4. Grain Angle and Grain-to-Grain Distance (GGD)
4. Results and Discussion
4.1. Results of Grain Detection
- TP (True Positive): the number of voxels which belong to ground truth grains among the detection results.
- FP (False Positive): the number of voxels which do not belong to ground truth grains among the detection results.
- FN (False Negative): the number of voxels which belong to ground truth grains but have not been detected.
4.2. Grain Number Counting
4.3. Stem Node Detection
4.4. Grain Size and Angle
4.5. Analysis of 3D Phenotypes
4.5.1. Volume Distribution
4.5.2. Factors Affecting Spike Yields
4.5.3. Factors Affecting Grain Phenotype
4.5.4. Correlation Between Volume and Shapes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glémin, S.; Bataillon, T. A comparative view of the evolution of grasses under domestication. New Phytol. 2009, 183, 273–290. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, M.J.; Slafer, G.A.; Berry, P.; Parry, M.A.J.; Snape, J.W.; Angus, W.J. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef]
- Tardieu, F.; Tuberosa, R. Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol. 2010, 13, 206–212. [Google Scholar] [CrossRef]
- Fang, C.; Ma, Y.; Wu, S.; Liu, Z.; Wang, Z.; Yang, R.; Hu, G.; Zhou, Z.; Yu, H.; Zhang, M.; et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017, 18, 161. [Google Scholar] [CrossRef]
- Gao, J.; Yang, S.; Cheng, W.; Fu, Y.; Leng, J.; Yuan, X.; Jiang, N.; Ma, J.; Feng, X. GmILPA1, Encoding an anaphase-promoting complex-like Protein, affects Leaf Petiole Angle. Plant Physiol. 2017, 174, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhao, X.; Hu, Y.; Liu, S.; Nan, H.; Li, X.; Fang, C.; Cao, D.; Shi, X.; Kong, L.; et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat. Genet. 2017, 49, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, G.; Liu, X.; Zhou, Y.; Li, Y.; Zhang, X.; Yuan, X.; Zhang, Q.; Yang, D.; Wang, T.; et al. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cao, D.; Huang, Z.; Wang, J.; Lu, S.; Xu, Y.; Liu, B.; Kong, F.; Yuan, X. Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean. Plant Mol. Biol. 2015, 88, 343–355. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics–the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Kirigwi, F.M.; Van Ginkel, M.; Brown-Guedira, G.; Gill, B.S.; Paulsen, G.M.; Fritz, A.K. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed. 2007, 20, 401–413. [Google Scholar] [CrossRef]
- Granier, C.; Vile, D. Phenotyping and beyond: Modelling the relationships between traits. Curr. Opin. Plant Biol. 2014, 18, 96–102. [Google Scholar] [CrossRef]
- Leilah, A.A.; Al-Khateeb, S.A. Statistical analysis of wheat yield under drought conditions. J. Arid Environ. 2005, 61, 483–496. [Google Scholar] [CrossRef]
- Gegas, V.C.; Nazari, A.; Griffiths, S.; Simmonds, J.; Fish, L.; Orford, S.; Sayers, L.; Doonan, J.H.; Snape, J.W. A Genetic Framework for Grain Size and Shape Variation in Wheat. Plant Cell 2010, 22, 1046–1056. [Google Scholar] [CrossRef]
- Hughes, N.; Askew, K.; Scotson, C.P.; Williams, K.; Sauze, C.; Corke, F.; Doonan, J.H.; Nibau, C. Non-Destructive, high-Content analysis of wheat grain traits using X-ray micro computed tomography. Plant Methods 2017, 13, 1–16. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef]
- Wang, B.; Gao, Y. Fast and effective retrieval of plant leaf shapes. Lect. Notes Comput. Sci. 2013, 7725 LNCS, 475–486. [Google Scholar]
- Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G. Flexible building primitives for 3D building modeling. ISPRS J. Photogramm. Remote Sens. 2015, 101, 275–290. [Google Scholar] [CrossRef]
- Xiong, B.; Oude Elberink, S.; Vosselman, G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 93, 227–242. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, Q.; Xiong, J.; Li, S.; Wang, S.; Liang, D. Field-of-Experts Filters Guided Tensor Completion. IEEE Trans. Multimed. 2018, 20, 2316–2329. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, W.; Wu, S.; Wang, C.; Yu, Z.; Guo, X.; Zhao, C. Maize Plant Phenotyping: Comparing 3D Laser Scanning, Multi-View Stereo Reconstruction, and 3D Digitizing Estimates. Remote Sens. 2019, 11, 63. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Neuberger, T. Surveying the plant’s world by magnetic resonance imaging. Plant J. 2012, 70, 129–146. [Google Scholar] [CrossRef]
- Hubeau, M.; Steppe, K. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning. Trends Plant Sci. 2015, 20, 676–685. [Google Scholar] [CrossRef]
- Jahnke, S.; Menzel, M.I.; Van Dusschoten, D.; Roeb, G.W.; Bühler, J.; Minwuyelet, S.; Blümler, P.; Temperton, V.M.; Hombach, T.; Streun, M.; et al. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J. 2009, 59, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, Y.; Liu, Q.; Lu, H.; Zhang, M. Gradient-Based Low Rank Method for Highly Undersampled Magnetic Resonance Imaging Reconstruction. J. Shanghai Jiaotong Univ. 2018, 23, 384–391. [Google Scholar] [CrossRef]
- Wang, S.; Tan, S.; Gao, Y.; Liu, Q.; Ying, L.; Xiao, T.; Liu, Y.; Liu, X.; Zheng, H.; Liang, D. Learning Joint-Sparse Codes for Calibration-Free Parallel MR Imaging. IEEE Trans. Med. Imaging 2018, 37, 251–261. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Chen, D.; Gillani, Z.; Klukas, C.; Chen, M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Cavalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S.; Karunakaran, C.; Jayas, D.S.; White, N.D.G. X-ray Computed Tomography Image Analysis to explain the Airflow Resistance Differences in Grain Bulks. Biosyst. Eng. 2006, 94, 545–555. [Google Scholar] [CrossRef]
- Repesa, M.; Sofic, A.; Jakupovic, S.; Tosum, S.; Kazazic, L.; Dervisevic, A. Comparison of Results of Measurement of Dimensions of the Placed Dental Implants on Cone Beam Computed Tomography with Dimensions of the Producers of the Implants. Acta Inform. Medica 2017, 25, 116. [Google Scholar] [CrossRef]
- McElrone, A.J.; Choat, B.; Parkinson, D.Y.; MacDowell, A.A.; Brodersen, C.R. Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature. J. Vis. Exp. 2013, e50162. [Google Scholar] [CrossRef]
- Gomez, F.E.; Carvalho, G.; Shi, F.; Muliana, A.H.; Rooney, W.L. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum. Plant Methods 2018, 14, 59. [Google Scholar] [CrossRef]
- Rousseau, D.; Widiez, T.; Di Tommaso, S.; Rositi, H.; Adrien, J.; Maire, E.; Langer, M.; Olivier, C.; Peyrin, F.; Rogowsky, P. Fast virtual histology using X-ray in-line phase tomography: Application to the 3D anatomy of maize developing seeds. Plant Methods 2015, 11, 55. [Google Scholar] [CrossRef]
- Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods 2015, 11, 17. [Google Scholar] [CrossRef]
- Pardas, M.; Salembier, P.; Torres, L. 3D morphological segmentation for image sequence processing. In Proceedings of the IEEE Winter Workshop on Nonlinear Digital Signal Processing, Tampere, Finland, 17–20 January 1993. [Google Scholar] [CrossRef]
- Maire, E.; Colombo, P.; Adrien, J.; Babout, L.; Biasetto, L. Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J. Eur. Ceram. Soc. 2007, 27, 1973–1981. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, X.; Jiang, W. Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery. Sci. China Technol. Sci. 2010, 53, 85–90. [Google Scholar] [CrossRef]
- Mangan, A.P.; Whitaker, R.T. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 1999, 5, 308–321. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Windreich, G.; Kiryati, N.; Lohmann, G. Voxel-based surface area estimation: From theory to practice. Pattern Recognit. 2003, 36, 2531–2541. [Google Scholar] [CrossRef]
- Mullikin, J.C.; Verbeek, P.W. Surface area estimation of digitized planes. Bioimaging 1993, 1, 6–16. [Google Scholar] [CrossRef]
- Marshalla, D.R.; Maresa, D.J.; Mossb, H.J.; Ellison, F.W. Effects of grain shape and size on milling yields in wheat. II. Experimental studies Effects of Grain Shape and Size on Milling Yields in Wheat. II *. Experimental Studies. Aust. J. Agric. Res. 1986, 37, 331–342. [Google Scholar] [CrossRef]
- Karimi, M.; Kheiralipour, K.; Tabatabaeefar, A.; Khoubakht, G.M.; Naderi, M.; Heidarbeigi, K. The Effect of Moisture Content on Physical Properties of Wheat. Pakistan J. Nutr. 2009, 8, 90–95. [Google Scholar]
Treatment No. | Grain Number | Our Method | Hughes’ Method | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | ||
B1165 | 22 | 96.96% | 98.64% | 97.79% | 95.78% | 98.60% | 97.17% |
1189 | 9 | 95.36% | 99.26% | 97.27% | 84.11% | 95.50% | 89.44% |
T1180 | 8 | 95.40% | 99.29% | 97.31% | 78.81% | 99.72% | 88.04% |
B1178 | 36 | 96.37% | 98.83% | 97.59% | 94.46% | 98.27% | 96.33% |
1175 | 3 | 96.26% | 99.11% | 97.67% | 83.23% | 99.74% | 90.74% |
T1178 | 31 | 94.75% | 98.93% | 96.80% | 88.10% | 94.57% | 91.22% |
1170 | 15 | 98.72% | 96.78% | 97.74% | 90.29% | 98.52% | 94.23% |
1188 | 1 | 92.61% | 98.01% | 95.23% | 68.08% | 99.16% | 80.73% |
T1183 | 2 | 96.56% | 92.90% | 94.70% | 83.03% | 93.20% | 87.82% |
1172 | 1 | 89.22% | 99.85% | 94.24% | 72.63% | 99.76% | 84.06% |
Total | 128 | 96.36% | 98.49% | 97.42% | 90.49% | 97.65% | 93.93% |
Treatment No. | Our Method | Our Ground Truth | Hughes’ Method | Hughes’ Ground Truth | Treatment No. | Our Method | Our Ground Truth | Hughes’ Method | Hughes’ Ground Truth |
---|---|---|---|---|---|---|---|---|---|
1170 | 15 | 15 | 15 | 15 | 118A | 0 | 0 | 2 | 0 |
1171 | 0 | 0 | 1 | 0 | 118B | 2 | 2 | 2 | 2 |
1172 | 1 | 1 | 1 | 1 | 118C | 1 | 1 | 2 | 1 |
1173 | 0 | 0 | 1 | 0 | 118D | 36 | 36 | 36 | 35 |
1175 | 3 | 3 | 3 | 3 | 118E | 4 | 4 | 4 | 4 |
1176 | 1 | 1 | 1 | 1 | 1189 | 9 | 9 | 8 | 8 |
1177 | 1 | 1 | 2 | 2 | 1160 | 14 | 14 | 14 | 14 |
1178 | 67 | 67 | 64 | 62 | 1161 | 23 | 23 | 24 | 22 |
1179 | 0 | 0 | 2 | 0 | 1162 | 22 | 22 | 22 | 22 |
117A | 5 | 5 | 5 | 5 | 1163 | 24 | 24 | 25 | 24 |
117B | 0 | 0 | 1 | 0 | 1164 | 22 | 22 | 23 | 22 |
117C | 0 | 0 | 1 | 0 | 1165 | 26 | 26 | 27 | 26 |
1180 | 43 | 44 | 44 | 44 | 1166 | 30 | 30 | 32 | 30 |
1182 | 31 | 31 | 31 | 31 | 1167 | 18 | 18 | 19 | 18 |
1183 | 23 | 23 | 24 | 23 | 1168 | 20 | 20 | 20 | 20 |
1184 | 13 | 13 | 14 | 13 | 1169 | 14 | 14 | 15 | 14 |
1185 | 0 | 0 | 1 | 0 | 0116A | 14 | 14 | 15 | 14 |
1188 | 1 | 1 | 2 | 2 | 0116C | 25 | 25 | 27 | 24 |
Total | 508 | 509 | 530 | 502 |
Grain | Angle | Length | Radius | Volume | Pore Volume | Surface Area | GGD |
---|---|---|---|---|---|---|---|
No. | (°) | (mm) | (mm) | (mm3) | (mm3) | (mm2) | (mm) |
1 | 20.62 | 6.2 | 1.97 | 36.08 | 1.75 | 82.04 | 9.49 |
2 | 13.64 | 5.8 | 1.93 | 33.01 | 0.10 | 84.8 | 9.46 |
3 | 14.64 | 5.11 | 1.59 | 23.18 | 0.04 | 48.37 | 4.16 |
4 | 14.37 | 6.06 | 1.93 | 38.41 | 0.04 | 76.12 | 4.18 |
5 | 31.35 | 6.41 | 1.99 | 32.5 | 2.43 | 92.29 | 4.35 |
6 | 24.75 | 6.06 | 2.00 | 39.44 | 2.53 | 85.31 | 4.97 |
7 | 19.55 | 5.84 | 1.95 | 34.93 | 0.89 | 89.58 | 7.72 |
8 | 21.41 | 6.36 | 1.97 | 35.39 | 1.84 | 102.19 | 6.87 |
9 | 17.18 | 6.17 | 1.79 | 34.7 | 2.08 | 71.80 | 4.23 |
10 | 19.58 | 6.78 | 1.89 | 43.35 | 0.20 | 86.32 | 4.91 |
11 | 30.28 | 7.38 | 2.02 | 43.86 | 2.59 | 98.99 | 4.72 |
12 | 8.08 | 6.61 | 2.03 | 44.27 | 0.04 | 82.41 | 6.06 |
13 | 17 | 7.00 | 2.09 | 46.45 | 2.52 | 104.13 | 6.65 |
14 | 9.73 | 7.02 | 2.06 | 50.11 | 0.04 | 84.96 | 7.83 |
15 | 22.33 | 6.16 | 1.81 | 35.99 | 0.07 | 70.62 | 9.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, B.; Wang, B.; Xiong, S.; Lin, C.; Yuan, X. 3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images. Remote Sens. 2019, 11, 1110. https://doi.org/10.3390/rs11091110
Xiong B, Wang B, Xiong S, Lin C, Yuan X. 3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images. Remote Sensing. 2019; 11(9):1110. https://doi.org/10.3390/rs11091110
Chicago/Turabian StyleXiong, Biao, Bo Wang, Shengwu Xiong, Chengde Lin, and Xiaohui Yuan. 2019. "3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images" Remote Sensing 11, no. 9: 1110. https://doi.org/10.3390/rs11091110
APA StyleXiong, B., Wang, B., Xiong, S., Lin, C., & Yuan, X. (2019). 3D Morphological Processing for Wheat Spike Phenotypes Using Computed Tomography Images. Remote Sensing, 11(9), 1110. https://doi.org/10.3390/rs11091110