Satellite-based Cloudiness and Solar Energy Potential in Texas and Surrounding Regions
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methods
4. Results
4.1. Temporal Variability of Cloudiness and Solar Energy Attenuation in San Antonio, Texas
4.2. Spatial Distribution of Clouds and Solar Energy Potential in Texas and Nearby Regions
4.3. Time Series of Solar Energy Potential in San Antonio, Texas
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [Google Scholar] [CrossRef]
- Stoffel, T. US Department of Energy Workshop Report: Solar Resources and Forecasting. Contract 2012, 303, 275–3000. [Google Scholar]
- Kleissl, J. Solar Energy Forecasting and Resource Assessment; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Voskrebenzev, A.; Riechelmann, S.; Bais, A.; Slaper, H.; Seckmeyer, G. Estimating probability distributions of solar irradiance. Theoret. Appl. Climatol. 2015, 119, 465–479. [Google Scholar] [CrossRef]
- Pfister, G.; McKenzie, R.L.; Liley, J.B.; Thomas, A.; Forgan, B.W.; Long, C.N. Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. J. Appl. Meteor. 2003, 42, 1421–1434. [Google Scholar] [CrossRef]
- Mubiru, J.; Banda, E.J.K.B.; D’Ujanga, F.; Senyonga, T. Assessing the distribution of monthly mean hourly solar irradiation at an African Equatorial site. Energy Convers. Mgmt. 2007, 48, 380–383. [Google Scholar] [CrossRef]
- Nikitidou, E.; Kazantzidis, A.; Tzoumanikas, P.; Salamalikis, V.; Bais, A.F. Retrieval of surface solar irradiance, based on satellite-derived cloud information, in Greece. Energy 2015, 90, 776–783. [Google Scholar] [CrossRef]
- Amillo, A.G.; Ntsangwane, L.; Huld, T.; Trentmann, J. Comparison of satellite-retrieved high-resolution solar radiation datasets for South Africa. J. Energy S. Afr. 2018, 29, 63–76. [Google Scholar] [CrossRef]
- Frank, C.W.; Wahl, S.; Keller, J.D.; Pospichal, B.; Hense, A.; Crewell, S. Bias correction of a novel European reanalysis data set for solar energy applications. Sol. Energy 2018, 164, 12–24. [Google Scholar] [CrossRef]
- Wong, M.S.; Zhu, R.; Liu, Z.; Lu, L.; Peng, J.; Tang, Z.; Lo, C.H.; Chan, W.K. Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies. Renew. Energy 2016, 99, 325–335. [Google Scholar] [CrossRef]
- Pinker, R.T.; Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor. 1992, 31, 194–211. [Google Scholar] [CrossRef]
- Pinker, R.T.; Frouin, R.; Li, Z. A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ. 1995, 51, 108–124. [Google Scholar] [CrossRef]
- Pinker, R.T.; Tarpley, J.D.; Laszlo, I.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Lohmann, D.; Cosgrove, B.A.; et al. Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project: GEWEX Continental-Scale International Project, Part 3 (GCIP3). J. Geophys. Res. 2003, 108. [Google Scholar]
- Xia, S.; Mestas-Nuñez, A.M.; Xie, H.; Vega, R. An Evaluation of Satellite Estimates of Solar Surface Irradiance Using Ground Observations in San Antonio, Texas, USA. Remote Sens. 2017, 9, 1268. [Google Scholar] [CrossRef]
- Ineichen, P.; Perez, R. A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy 2002, 73, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: description and validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Reno, M.J.; Hansen, C.W.; Stein, J.S. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis. SANDIA report SAND2012-2389. 2012. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.651.1676&rep=rep1&type=pdf (accessed on 10 May 2019).
- Schillings, C.; Meyer, R.; Trieb, F. Solar and Wind Energy Resource Assessment (SWERA). DLR—activities within SWERA. Available online: https://openei.org/datasets/files/712/pub/sri_lanka_10km_solar_country_report.pdf (accessed on 10 May 2019).
- Jia, Y. Solar Shift: A perspective on Building Energy Performance under Haze Pollutions in China; Georgia Institute of Technology: Atlanta, GA, USA, 2016. [Google Scholar]
- Xia, S.; Mestas-Nuñez, A.; Xie, H.; Tang, J.; Vega, R. Characterizing Variability of Solar Irradiance in San Antonio, Texas Using Satellite Observations of Cloudiness. Remote Sens. 2018, 10, 2016. [Google Scholar] [CrossRef]
- Kasten, F.; Young, A.T. Revised optical air mass tables and approximation formula. Appl. Optics. 1989, 28, 4735–4738. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.J.; Warren, S.G. A Gridded Climatology of Clouds over Land (1971-96) And Ocean (1954-97) from Surface Observations Worldwide; Report ORNL/CDIAC-153 NDP-026-E; US Department of Energy: Oak Ridge, TN, USA, 2007.
- Eastman, R.; Warren, S.G.; Hahn, C.J. Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate. 2011, 24, 5914–5934. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res. 2009, 114, D00H06. [Google Scholar] [CrossRef]
- Gupta, A.K.; Rajeev, K.; Sijikumar, S.; Nair, A.K.M. Enhanced daytime occurrence of clouds in the tropical upper troposphere over land and ocean. Atmos. Res. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Bais, A.F.; Lagouvardos, K.; Kotroni, V.; Keramitsoglou, I.; Kiranoudis, C. Estimation of the solar energy potential in Greece using satellite and ground-based observations. In Perspectives on Atmospheric Sciences; Springer: Athens, Greece, 2017; pp. 1149–1156. [Google Scholar]
Cloud Category | Classification ID | Description |
---|---|---|
Cloud type | 0 | clear |
1 | partly (partly cloudy/fog) | |
2 | water (water cloud) | |
3 | mixed (supercooled/mixed-phase cloud) | |
4 | glaciated (optically thick ice cloud) | |
5 | cirrus (optically thin ice cloud) | |
6 | multilayered (cirrus over lower cloud) | |
Cloud layer | 1 | low (0–2 km) |
2 | mid (2–7 km) | |
3 | high (5–13 km) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Mestas-Nuñez, A.M.; Xie, H.; Vega, R. Satellite-based Cloudiness and Solar Energy Potential in Texas and Surrounding Regions. Remote Sens. 2019, 11, 1130. https://doi.org/10.3390/rs11091130
Xia S, Mestas-Nuñez AM, Xie H, Vega R. Satellite-based Cloudiness and Solar Energy Potential in Texas and Surrounding Regions. Remote Sensing. 2019; 11(9):1130. https://doi.org/10.3390/rs11091130
Chicago/Turabian StyleXia, Shuang, Alberto M. Mestas-Nuñez, Hongjie Xie, and Rolando Vega. 2019. "Satellite-based Cloudiness and Solar Energy Potential in Texas and Surrounding Regions" Remote Sensing 11, no. 9: 1130. https://doi.org/10.3390/rs11091130
APA StyleXia, S., Mestas-Nuñez, A. M., Xie, H., & Vega, R. (2019). Satellite-based Cloudiness and Solar Energy Potential in Texas and Surrounding Regions. Remote Sensing, 11(9), 1130. https://doi.org/10.3390/rs11091130