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Abstract: The use of unmanned aerial vehicles (UAVs) for remote sensing applications in precision
viticulture significantly increased in the last years. UAVs’ capability to acquire high spatiotemporal
resolution and georeferenced imagery from different sensors make them a powerful tool for a better
understanding of vineyard spatial and multitemporal heterogeneity, allowing the estimation of
parameters directly impacting plants’ health status. In this way, the decision support process in
precision viticulture can be greatly improved. However, despite the proliferation of these innovative
technologies in viticulture, most of the published studies rely only on data from a single sensor in
order to achieve a specific goal and/or in a single/small period of the vineyard development. In order
to address these limitations and fully exploit the advantages offered by the use of UAVs, this study
explores the multi-temporal analysis of vineyard plots at a grapevine scale using different imagery
sensors. Individual grapevine detection enables the estimation of biophysical and geometrical
parameters, as well as missing grapevine plants. A validation procedure was carried out in six
vineyard plots focusing on the detected number of grapevines and missing grapevines. A high overall
agreement was obtained concerning the number of grapevines present in each row (99.8%), as well
as in the individual grapevine identification (mean overall accuracy of 97.5%). Aerial surveys were
conducted in two vineyard plots at different growth stages, being acquired for RGB, multispectral
and thermal imagery. Moreover, the extracted individual grapevine parameters enabled us to assess
the vineyard variability in a given epoch and to monitor its multi-temporal evolution. This type
of analysis is critical for precision viticulture, constituting as a tool to significantly support the
decision-making process.

Keywords: unmanned aerial vehicles; precision viticulture; individual grapevine analysis;
multispectral imagery; thermal infrared imagery

1. Introduction

The need to assess vineyard spatiotemporal variability is crucial in viticulture, as it is directly
related to grapevine health status and yield [1], which can be achieved through precision viticulture
(PV). Derived from precision agriculture (PA) concepts [2], in PV, different technologies for vineyard
management and grape production are employed for data acquisition and processing, aiming, among
others, to maximize the oenological potential of vineyards, according to their spatiotemporal variability,
by adopting site-specific management practices to increase both quality and yield [3,4]. Thus, individual
grapevine identification is important to precisely assess the vineyard status by estimating several
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metrics for each plant. In this way, a better knowledge of grapevine (Vitis vinifera L.) development and
spatial heterogeneity within the vineyard [1], along with the factors influencing it [5], can be reached
enabling individual plant treatments.

Traditional airborne remote sensing platforms such as satellites and manned aircraft, both suitable
for applications requiring a regional coverage, were used in PV to detect grapevine varieties [6],
vigour assessment [7,8], vineyard disease mapping [9], leaf area index (LAI) and canopy density
estimation [10,11]. However, given their coarser spatial resolution, crop and non-crop data are often
mixed or represent multiple plants, lacking true individual grapevine information [12]. Nevertheless,
data from these platforms can still deliver a general overview of vineyards, at least at a plot level [13]. To
overcome this scale-related issue, some approaches rely on proximal remote sensing [14–16]. However,
these approaches are time-consuming, requiring passage through the whole vineyard and some
issues can occur due to the terrains’ topography and possible obstacles in between the vine rows [17].
Vibrations induced by the vehicles can interfere in data quality and the high costs of LiDAR sensors
constitute a drawback to their widespread adoption.

On the other hand, unmanned aerial vehicles (UAVs) provide aerial remote sensed data, with
high temporal and spatial resolutions, and at lower costs for small to medium area coverages when
compared to traditional airborne platforms [18]. UAVs are capable of acquiring high-resolution
georeferenced data from different sensors exploring different parts of the electromagnetic spectrum [19].
The georeferenced images driven from these sensors can be used to compute orthorectified outcomes
through photogrammetric processing [20]: orthophoto mosaics, digital elevation models (DEM)
and spectral indices [19] are among the most used. The normalized difference vegetation index
(NDVI) [21] is a vegetation index widely used in different remote sensing platforms for different
purposes [19]. In the scope of PV, it is known to be correlated with LAI [22], vegetative vigour [23] and
yield [24]. In turn, the crop water stress index (CWSI) [25] is used in different studies to assess vineyard
water status [26–29]. In PA, crop surface models (CSM) were used in different annual crops [30–33],
where good agreements with crop height and biomass were observed. CSMs were also used in
olive groves [34], chestnut trees [35] and lychee trees [36]. As for PV, CSMs demonstrated a high
agreement with grapevines’ height [22,37,38] and with vineyard vigour [39,40]. Its usage also enabled
the estimation of grapevine volume [22,24,37,38]. Regarding vineyard vegetation detection, several
methods were already proposed based on different approaches using the photogrammetric outcomes
from UAV-based imagery by applying image processing techniques, machine learning methods and by
filtering dense point clouds and DEMs [41–49]. Those methods are capable of distinguishing grapevine
from non-grapevine vegetation and to extract different vineyard macro properties such as the number
of vine rows, row spacing, width and height, potential missing plants and vineyard vigour maps.

In what concerns UAV-based approaches for individual identification of plants, the published
studies mostly focus on tree detection within both forest and agriculture contexts [50–52]. The
outcomes resulting from photogrammetric processing can be used to estimate individual geometrical
and biophysical grapevine parameters, providing a plant-specific application for PV [53]. In this scope,
De Castro et al. [38] proposed an object-based image analysis (OBIA) method using very high-resolution
vineyard DSMs (1 cm ground sample distance—GSD) to estimate grapevine vegetation within vineyard
plots. The method is based on a chessboard algorithm to consider pixels as grapevines. Grapevines are
then divided by considering the spacing between plants, wherein missing plants are also estimated.
Different geometrical properties were extracted per grapevine for: area, height, width, length, and
volume. Matese and Di Genaro [54] assessed missing plant detection in a semi-automatic procedure
by filtering the DSM (1 cm GSD) in a 40 × 60 m experimental vineyard plot and by manually placing
polygons of 1.00 × 0.60 m, representing each grapevine plant and, then, analysing the number of pixels
intercepted by each polygon by using a five-classes approach based on quantiles to verify the probability
of a missing plant presence. Primicerio et al. [53] used a binary multivariate-logistic regression model
for the individual detection of grapevines, including missing grapevines, in orthophoto mosaics.
Grapevine vegetation segmentation was addressed by the method proposed by Comba et al. [41].
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While De Castro et al. [38] only focused on the extraction of grapevine geometric parameters, Primicerio
et al. [53] and Matese and Di Genaro [54] mainly relied on the detection of the presence/absence of
grapevines. In the previously mentioned studies, it is pointed out that the integration of data from
other sensors can enable the extraction of single plant vigour, health and water status, allowing some
of the problems of correct representation of vigour zones within the vineyard to be solved. Usually,
vineyard vigour maps rely on the averaging and/or interpolation of vegetation indices values [53].
Moreover, De Castro et al. [38] state that grapevine multi-temporal analysis would provide a rapid
way to monitor its status when compared to time-consuming and inconsistent in-field observations.

In this study, it is intended to address the gaps that were not covered in those implementations,
by performing an individual grapevine estimation for site-specific management in a multi-temporal
context, helping winegrowers fully explore the potential of the high-resolution data provided by
UAVs and to combine data resultant from the different imagery sensors for a more precise decision
support and a quick vineyard inspection. This way, grapevine biophysical and geometric parameters
extraction is performed using UAV-based data from different imagery sensors, namely: RGB, for
grapevine vegetation detection and geometrical features extraction; multispectral, for feature extraction
from vegetation indices; and thermal infrared (TIR) imagery for grapevine temperature and water
status estimations.

Next section characterizes the study areas, describes the data acquisition and processing, presents
the method used for vineyard segmentation and individual grapevine estimation, as well as the
validation procedures. The obtained results are shown in Section 3, considering grapevine estimation
accuracy and the multi-temporal analysis. Section 4 discusses this study’s findings. Section 5 addresses
the main conclusions and presents potential future developments using the proposed method.

2. Materials and Methods

Aerial surveys were conducted in different vineyards, in the context of this study, and the most
significant of their characteristics are shown in Table 1. Except for vineyard B, the analysed plots are
located in the campus of the University of Trás-os-Montes e Alto Douro (UTAD, Vila Real, Portugal), in
the Douro demarcated region. They are rainfed irrigated and trained in double guyot system. Vineyard
B is located at Quinta do Suco (Amares, Braga, Portugal), in the Vinhos Verdes region, it is trained
in a single cordon and is irrigated through an irrigation system. Both training systems are the most
common in these wine regions [55]. The selection of these vineyard plots was based on the fact they
present different row orientation, diverse levels of missing grapevines (0% to 33%) and plant height.
The surveyed vineyard plots are presented in Figure 1.

Table 1. Characteristics of the analysed vineyard plots, indicating the original number of grapevines
and missing grapevines; its number of rows, spacing, and height.

Vineyard
plot

Coordinates
(Lat., Lon.) Area (ha)

Number of
Grapevines Rows

Original Missing Number Spacing
(m)

Height
(m)

A 41◦17′12.1” N
7◦44′15.2” W 0.36 1440 381 34 1.20 1.4–1.7

B 41◦39′24.2” N
8◦22′24.5” W 0.19 234 0 7 2.00 2.8

C 41◦17′08.6” N
7◦44′13.6” W 0.35 1439 448 36 1.20 1.4–1.7

D 41◦17′13.2” N
7◦44′08.7” W 0.30 1228 320 22 1.20 1.4–1.7

E 41◦17′08.1” N
7◦44′09.9” W 0.57 2266 416 55 1.25 1.4

F 41◦17′09.5” N
7◦44′09.1” W 0.32 1224 405 45 1.25 1.4
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Figure 1. Analysed vineyard plots. The uppercase letter in the upper left corner represents each 
vineyard plot ID. Coordinates in WGS 84 (EPSG: 4326). 

Aerial imagery acquisition was performed using two UAVs, a multi-rotor UAV, the DJI 
Phantom 4 (DJI, Shenzhen, China) and a fixed-wing UAV, the senseFly’s eBee (senseFly SA, 
Lausanne, Switzerland). The Phantom 4 was used to acquire RGB and multispectral imagery at lower 
flight heights, whereas eBee was used to survey a larger area for TIR imagery acquisition, which 
included the studied areas. RGB imagery was acquired using Phantom 4 native camera, FCC 3 model, 
a CMOS sensor with 12.4 MP resolution mounted in a 3-axis electronic gimbal. Multispectral imagery 
acquisition was conducted using the Parrot SEQUOIA (Parrot SA, Paris, France), using green (550 
nm), red (660 nm), red-edge (735 nm), and near-infrared (790 nm) bands, with 1.2 MP resolution. The 
radiometric calibration is performed based on the irradiance measured by the sensor located at the 
top of the UAV and using the reflectance from the calibration target (Airinov, Paris, France) prior to 
each flight. TIR imagery was acquired using thermoMAP (senseFly SA, Lausanne, Switzerland) 
which can acquire TIR data between 7500 nm to 13500 nm with 640 × 512 pixels and with a 
temperature resolution of 0.1 °C. The sensor’s calibration is automatically performed in-flight.  

UAV flight campaigns performed with the multi-rotor UAV were conducted with 80% front 
overlap and 70% side overlap at ≈40 m height from the take-off point in a double-grid configuration, 
resulting in GSDs of approximately 2 cm for RGB imagery and approximately 5 cm for multispectral 
imagery. While the flights conducted with the fixed-wing UAV had 90% front overlap and 70% side 
overlap and were performed at 75 m height in a single grid, these specifications were selected 
according to manufacturer recommendations, obtaining an approximate GSD of 18 cm. The 
preparation and execution of flight campaigns of the multi-rotor UAV took 20 minutes, while the 
fixed-wing UAV took 30 minutes. 

2.1. Data Acquisition 

2.1.1. Validation Dataset 

A validation dataset, composed of all the surveyed vineyard plots (A to F), was created for 
accuracy assessment of the individual grapevine detection procedure. Specifically, for the estimation 
of the number of grapevines and for canopy gaps detection, i.e., parts of vine rows where no 
grapevine canopy is present (missing plants). For this purpose, only RGB data was considered. The 
data was collected between May to August 2018 at the following at days of the year (DOY):136 

Figure 1. Analysed vineyard plots. The uppercase letter in the upper left corner represents each
vineyard plot ID. Coordinates in WGS 84 (EPSG: 4326).

Aerial imagery acquisition was performed using two UAVs, a multi-rotor UAV, the DJI Phantom 4
(DJI, Shenzhen, China) and a fixed-wing UAV, the senseFly’s eBee (senseFly SA, Lausanne, Switzerland).
The Phantom 4 was used to acquire RGB and multispectral imagery at lower flight heights, whereas
eBee was used to survey a larger area for TIR imagery acquisition, which included the studied areas.
RGB imagery was acquired using Phantom 4 native camera, FCC 3 model, a CMOS sensor with 12.4 MP
resolution mounted in a 3-axis electronic gimbal. Multispectral imagery acquisition was conducted
using the Parrot SEQUOIA (Parrot SA, Paris, France), using green (550 nm), red (660 nm), red-edge
(735 nm), and near-infrared (790 nm) bands, with 1.2 MP resolution. The radiometric calibration is
performed based on the irradiance measured by the sensor located at the top of the UAV and using
the reflectance from the calibration target (Airinov, Paris, France) prior to each flight. TIR imagery
was acquired using thermoMAP (senseFly SA, Lausanne, Switzerland) which can acquire TIR data
between 7500 nm to 13500 nm with 640 × 512 pixels and with a temperature resolution of 0.1 ◦C. The
sensor’s calibration is automatically performed in-flight.

UAV flight campaigns performed with the multi-rotor UAV were conducted with 80% front
overlap and 70% side overlap at ≈40 m height from the take-off point in a double-grid configuration,
resulting in GSDs of approximately 2 cm for RGB imagery and approximately 5 cm for multispectral
imagery. While the flights conducted with the fixed-wing UAV had 90% front overlap and 70% side
overlap and were performed at 75 m height in a single grid, these specifications were selected according
to manufacturer recommendations, obtaining an approximate GSD of 18 cm. The preparation and
execution of flight campaigns of the multi-rotor UAV took 20 min, while the fixed-wing UAV took
30 min.

2.1. Data Acquisition

2.1.1. Validation Dataset

A validation dataset, composed of all the surveyed vineyard plots (A to F), was created for
accuracy assessment of the individual grapevine detection procedure. Specifically, for the estimation
of the number of grapevines and for canopy gaps detection, i.e., parts of vine rows where no grapevine
canopy is present (missing plants). For this purpose, only RGB data was considered. The data was
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collected between May to August 2018 at the following at days of the year (DOY):136 (vineyard plot B);
186 (vineyard plot A); 197 (vineyard plot D); 215 (vineyard plot C); and 219 (vineyard plots E and F).

2.1.2. Multi-Temporal Dataset

Vineyard plots A and B were used for multi-temporal analysis and were surveyed using different
UAV-based sensors, namely, RGB, MSP and TIR. The context of these vineyard plots is different:
vineyard plot A, located at UTAD campus, is mainly used for experimental purposes, while plot B is a
commercial vineyard. Vineyard plot B was selected to be surveyed throughout the vegetative growth
cycle. It is composed of seven rows of two white grapevine varieties, four rows of cv. Alvarinho and
three rows of cv. Loureiro. Vineyard plot A had a higher incidence of missing grapevines and suffered
from powdery and downy mildew due to the conjugation of high air temperature and high humidity
levels. These fungi affect the grapevines yield and leaves causing potential losses [56]. It is composed
of a collection of recommended Portuguese grapevine varieties.

In the case of vineyard plot A, flight campaigns were conducted in the first and fourth weeks
of July and in the third week of August and September (2018), with an average time distance of
approximately 26 days in between flight campaigns, covering most parts of the fruit set and veraison
phenological stages. As for vineyard B, the flight period is broader encompassing most parts of the
grapevine’s phenological development, from the third week of May 2018 until the second week of
October 2018, after grape harvesting. The remaining campaigns were performed on the third week
of June and July, and on the second week of August 2018. The temporal mean distance between
campaigns is 37 days.

For an accurate multi-temporal analysis, six ground control points (GCP) were acquired in different
points from the surroundings of each analysed vineyard plot using a GNSS receiver in RTK mode
in the TM06/ETRS89 coordinate system to perform imagery alignment during the photogrammetric
processing. In order to ensure GCPs’ recognition in TIR imagery, aluminium foil was used, as in
Hartmann et al. [57]. Figure 2 presents an example of the aluminium target appearance thermal and
RGB images.
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Figure 2. Thermal target, indicated by the arrow, used for data alignment: (left) its representation in
thermal infrared imagery and (right) in RGB.

2.2. Data Processing

The data acquired in each flight campaign passed through a pre-processing stage by means
of photogrammetric processing for computation of different orthorectified outcomes. After this
stage, the data was used as input for individual grapevine estimation and computation of different
vineyard-related parameters.

2.2.1. Data Pre-Processing

Pix4Dmapper Pro (Pix4D SA, Lausanne, Switzerland) was used for photogrammetric processing.
It supports the imagery from all the sensors used in this study, allowing the generation of 3D point
clouds using Structure from Motion (SfM) algorithms and, therefore, different orthorectified outcomes.
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However, depending on the source data, different outcomes were computed. This way, when processing
RGB imagery, orthophoto mosaics, DSMs and DTMs were generated. Moreover, crop surface models
(CSM) were computed subtracting the DTM altitude values from the DSM. The G% index [58] was
computed according to [48], from the RGB orthophoto mosaic, as in (1), by normalizing the green band
with the sum of all bands. The data from other sensors used in this study can also generate CSM,
but they suffer from smoothing effects since they have less spatial resolution and, therefore, lack of
detail [39].

G% = Green/(Red + Green + Blue) (1)

The NDVI was computed using multispectral imagery. Using TIR imagery, the land surface
temperature (LST) was computed. However, since crop temperature varies along the day and epoch
of the year, it can penalize the multi-temporal data analysis representativeness [28]. Thus, to ensure
the most representative results from TIR data, LST from each flight campaign was used to compute
the CWSI [25]. This index relies on the usage of upper and lower temperature bounds (Twet and Tdry)
which, respectively, correspond to the temperatures of a well-watered leaf and a non-transpiring leaf.
Since GSDs from different sensors were also different, to enable data integration, it was necessary
to standardize the GSD. This operation was directly performed in the photogrammetric software,
using the gaussian average, being the data resampled to 5 cm GSD. Obviously, this procedure did not
improve the resolution of the thermal data, as in practice the original pixel was split divided allowing a
direct comparison. This ensures the resolution of the remaining information is maintained and, at the
same time, making the image processing stage quicker, and preserving all relevant information. CSM
and G% were computed using QGIS software, an open source geographical information system (GIS).

2.2.2. Vine Rows Estimation and Individual Grapevine Estimation

The detection of vineyard vegetation and vine rows was accomplished using the method from
Pádua et al. [48]. Figure 3 presents the main stages of the method for individual grapevine estimation
and parameters extraction.
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Vegetation detection relies on the combination of CSM and G% with image processing techniques
for a given vineyard plot P. Both CSM and G% are binarized by thresholding, automatically using the
Otsu’s method [59] for G%, and using a height range for the CSM. The resulting images are combined
resorting in a new binary image V representing the estimated vineyard vegetation, forming a different
group of pixels (clusters). Then, the detected clusters are dilated according to their orientation resulting
in the vine rows estimations. By eroding this image, a new image S with the rows central lines is
obtained. Considering the equidistance space d between grapevines’ trunks along with S, grapevine
plants can be estimated. This is the common scenario in modern vineyards where grapevines are
mechanically implanted [53]. This way, points are positioned along the vine rows and then dilated
with a morphological line structuring element with the same orientation as the vine rows. Depending
on the vineyard training system, the trunk’s position can vary, being in the middle or in edges of
the grapevine area. Taking this into account, the grapevines are correctly positioned. The resulting
binary image is subjected to a thickening morphological operation, by adding pixels to the border of
the clusters but maintaining the clusters as unconnected. The binary image G forms the area where
vegetation from each grapevine is confined since they are trained with wires to grow vertically and
horizontally in between rows.

2.2.3. Parameters Extraction

By estimating the area of where each grapevine is present within a given plot, it is possible to
individually estimate different parameters from biological and physical characteristics. This way, the
outcomes from different sensors can be useful to provide grapevine parameters.

This procedure uses the estimated grapevine vegetation V along with G, both are combined
as in (2). The result of this combination in a new image E, representing the vegetation for each
estimated grapevine, enabling the extraction of biophysical and geometric grapevine parameters from
the UAV-based photogrammetric outcomes.

ei, j =

{
1, if vi, j = 1∧ gi, j = 1

NaN, otherwise
(2)

Depending on the available data, different parameters can be extracted for each grapevine, namely:

1. the area of each grapevine, which is computed by the number of pixels present in each cluster
from E multiplied by its squared GSD value;

2. the grapevine height, these values are extracted from the CSM, only retrieved in the pixels
of E (the remaining CSM pixels are not considered), mean, maximum and minimum values
are estimated;

3. the volume of the grapevine, it is estimated using both height and area, the different height
estimates (mean, maximum and minimum estimated height values) are used to calculate different
volume values;

4. features are driven from multispectral and TIR imagery, in the case of this study, NDVI, LST and
CWSI are masked according to E and its mean, maximum and minimum values are estimated;

Mean value refers to mean value of a given cluster, maximum and minimum values are estimated
from the mean value of the higher/lower 10% values, this way, potential outlier pixels are discarded
independently from the area of the clusters. Since CWSI needs upper and lower bound temperature
values, this was achieved by using the mean temperature values retrieved from LST, considering the
mean temperature value of the 10% lowest and highest temperature values to compute Tdry and Twet,
respectively. The estimation of other vegetation indices from different sensors is also supported. In
the scope of this study, only NDVI and CWSI are estimated. Still, other parts of the electromagnetic
spectrum can also be used. The grapevine mask clusters are associated with the extracted grapevine
parameters, which, in turn, are converted to a point shapefile or in a table format. Statistical parameters
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as the standard deviation of the estimated values are also calculated, but such values are not in the
scope of this study.

2.2.4. Multi-Temporal Analysis

The estimated grapevine positions enable its multi-temporal analysis which is crucial to track the
grapevine vegetative development over time. This way, the analysis is performed by considering the
position of each detected grapevine in a given flight campaign, aiming to individually monitor them
regarding the various estimated parameters extracted from the multi-sensor data. This analysis is also
performed at the vineyard plot scale, as proposed in Pádua et al. [37].

The multi-temporal analysis is performed by using the detected grapevine estimation in each
flight campaign. Using the mask created in G in the first flight campaign upon the estimated grapevine
vegetation V from a flight campaign k, it is possible to estimate the different parameters from the
available UAV-based data for n flight campaigns. Thus, data from flight campaign k can be used
to evaluate the current vineyard status, by statistically assessing the distribution of the different
extracted parameters, and to compare it with other flight campaigns. This enables the observation of
the grapevines vegetative evolution through the extracted biophysical and geometrical parameters.

2.3. Grapevine Counting Accuracy

For accuracy purposes, the number of estimated grapevines was evaluated. This process was
conducted by counting the plants in the vineyard plots, in each vine row, and then different cases
were evaluated:

1. the total number of estimated grapevines, this value helps to understand the robustness of the
method, by considering the total number of grapevines for an analysed vineyard plot;

2. the number of existing plants, by cross-referring the actual number of plants observed in-field
with the ones estimated from the method; and

3. the number of missing grapevines, i.e., grapevines that were missing causing a canopy gap in the
vine row.

These values are compared at the vineyard plot level and at the row level.
Grapevine detection was evaluated based on true and false positives (TP/FP) which refer to

the number of correct/incorrect estimated grapevines as real grapevines and, similarly, true and
false negatives (TN/FN) for non-grapevines. For this purpose, different parameters were evaluated
(equation presented in Table 2), namely:

1. precision, the fraction of estimated grapevines that are correctly estimated (TP) rather than
wrongly estimated (FP);

2. recall, the fraction of grapevines that are correctly detected rather than wrongly estimated;
3. false negative rate (FNR), percentage of grapevines falsely classified as being missing;
4. F1score, the harmonic mean of precision and recall measures; and
5. overall accuracy, considering all correctly estimated grapevines and missing grapevines in all data.

Table 2. Evaluation parameters in grapevine vegetation classification.

Parameter Equation

Precision Precision = TP
TP+FP

Recall Sensitivity = TP
TP+FN

False Negative Rate FNR = 1− TP
TP+FN

F1score F1score = 2
(

Precision ×Recall
Precision+Recall

)
Overall accuracy Accuracy = TP+TN

TP+TN+FP+FN
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2.4. Data Alignment

Data alignment is crucial in multi-temporal analysis to accurately extract individual grapevine
parameters with minor alignment errors. Thus, the photogrammetric processing of the UAV-based
imagery from the different sensors was evaluated for each vineyard plot in the flight campaigns
encompassed in the multi-temporal dataset. The mean error and root mean square error (RMSE) were
used. The RMSE equation is shown in (3), where ei is the error of each point in a given direction
(X, Y, Z) and n the total number of GCPs. This evaluation can further provide the deviation of the
acquired UAV-based imagery taken from each sensor along the flight campaigns.

RMSE =

√∑n
i=1 ei2

n
(3)

3. Results

3.1. Grapevine Counting Accuracy

Individual grapevine estimation for different plots of the study area is presented in Table 3. A
perfect agreement was observed in vineyards A, B, D, and F, where the number of estimated grapevines
per row matched with the ground-truth values. However, for vineyards C and E, the number of
estimated vine rows differed by one in each vineyard plot, which was expected since in these vine
rows there were no grapevines, thus, these missing grapevines were discarded from further validation.
The number of estimated grapevine plants differed by two for vineyard C and seven for vineyard
E. Discarding the plants belonging to the undetected vine rows, the overall agreement was 99.88%,
missing solely by nine plants (total: 7786, estimated: 7777).

Table 3. Number of estimated grapevines when compared to ground truth data observed in-field.

Vineyard Plot Number of Grapevines Percentage (%)
Observed Estimated

A 1436 1436 100.00
B 234 234 100.00
C 1369 1367 99.85
D 1238 1238 100.00
E 2279 2272 99.69
F 1230 1230 100.00

Total 7786 7777 99.88

Figure 4 presents the estimated grapevines in each vineyard plot, along with the corresponding
numerical assessment shown in Table 4. The precision rate was above 99% (mean value of 99.59%),
reaching 100% in vineyard B. Regarding recall, also quantifying FN; a mean value of 98.06% was
obtained, being the lowest recall value obtained in vineyard C (93.98%). These cases reflect the number
of grapevines that were incorrectly classified as missing grapevines (FN). Consequently, FNR was
approximately 3% (vineyards C, D and F), while the mean FNR reached 1.94%. In what concerns the
harmonic mean of precision and recall metrics (F1score), its mean value is above 98%. The lower value
for this metric was observed for vineyard plot F (96.75%), in opposition to vineyards A and B (99%),
which had better ranks. For the remaining plots, F1score was within the range of 97–98%. Focusing on
accuracy metrics, an overall value of 98% was obtained, with minimum occurrences above 96%. These
results seem to represent a good overall agreement concerning individual grapevine classification.
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Table 4. Evaluation of the proposed method in the grapevine’s classification for the following
parameters: precision, recall, F1score, false negative rate (FNR) and overall accuracy (OA).

Vineyard plot Precision (%) Recall (%) F1score (%) FNR (%) OA (%)

A 99.22 98.71 98.96 1.29 98.33
B 100.00 100.00 100.00 0.00 100.00
C 100.00 93.98 96.90 6.02 95.17
D 99.90 96.62 98.23 3.38 97.09
E 99.71 97.67 98.68 2.33 97.58
F 99.00 97.07 98.03 2.93 96.75

Mean 99.64 97.34 98.47 2.66 97.49Remote Sens. 2020, 12, 139 10 of 21 
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3.2. Multi-Temporal Vineyard Monitoring

Since the used methods anticipated a multi-temporal context application supported through
different photogrammetric outcomes from which individual grapevine parameters can be extracted, an
analysis using UAV-based RGB, multispectral, and TIR imagery was conducted in vineyards A and B.
Moreover, for this type of application, it is important to ensure a reliable imagery alignment, which
was also evaluated.

3.2.1. Data Alignment

The spatial accuracy of each orthorectified outcomes, generated from the photogrammetric
processing, were evaluated in their mean spatial deviations (X, Y, Z) and mean RMSE. In this case,
the UAV-based imagery acquired from RGB, multispectral and TIR sensors, with different spatial
resolutions, were used along with georeferenced GCPs. The projection errors obtained in vineyards A
and B for each sensor are presented in Table 5, for each flight campaign. Overall, the errors are lower
for RGB, below 5 cm; followed by multispectral imagery, with errors ranging from 5 cm to 10 cm; and
when processing TIR imagery, higher error rates were obtained ranging from 10 cm to 20 cm. Pixel
projection error was similar in all sensors, i.e., from approximately 0.5 to 1 pixel, being generally higher
for RGB imagery. The overall mean RMSE values in vineyard A were 3.61 cm for the RGB imagery,
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7.35 cm for the multispectral imagery, and 15.50 cm for the TIR imagery, while in vineyard B they
were, respectively, 2.24 cm, 4.84 cm, and 14.34 cm. The mean pixel projection error of all campaigns
was lower than one pixel in all sensors; it was higher in the RGB, followed by the multispectral and
TIR imagery.

Table 5. Mean error, root mean square error (RMSE) and projection errors for the alignment of each
project during photogrammetric processing in both analysed vineyard plots, at each flight campaign (F#).

Vineyard Plot Sensor F# Mean (cm) RMSE (cm) Projection
Error (Pixel)

A

RGB

F1 −0.19 3.15 1.30
F2 −0.19 4.55 1.21
F3 0.08 3.65 0.57
F4 0.06 3.09 0.58

MSP

F1 0.78 5.47 0.71
F2 −0.40 5.90 0.43
F3 0.41 8.22 1.25
F4 0.24 9.82 0.51

TIR

F1 0.72 12.39 0.65
F2 −0.98 13.34 0.54
F3 3.82 19.38 0.74
F4 4.70 16.87 0.90

B

RGB

F1 −0.37 3.68 1.30
F2 0.02 2.20 0.63
F3 0.00 1.73 0.57
F4 −0.03 1.81 0.57
F5 −0.01 1.76 0.58

MSP

F1 −0.63 4.66 0.50
F2 0.24 4.38 0.85
F3 −1.16 3.84 0.93
F4 −0.76 4.99 0.53
F5 0.11 6.35 0.75

TIR

F1 2.84 11.30 0.47
F2 3.14 16.52 0.76
F3 2.35 15.55 0.66
F4 2.60 14.02 0.59
F5 1.55 14.30 0.77

3.2.2. Vineyard Plot A

The applied method enables the estimation of vegetation (grapevine and. inter-row vegetation)
present in the vineyard plot. In between the flight campaigns, an increment of grapevine vegetation
area was observed from the first to the second flight campaign (from 675 m2 to 782 m2, corresponding to
a 16% increase). From the second to the third flight campaign, there was a decline of 35% (−272 m2). For
the remaining flight campaigns, the grapevine vegetation area remained unchanged (around 500 m2).
The same behaviour was observed in grapevine volume, where 877 m3 was estimated in the first flight
campaign, 939 m3 (growth of 7%) for the second flight campaign, followed by 619 m3 (decline of 34%)
and 610 m3 (decline of 1%), for the third and fourth flight campaigns, respectively. Focusing on the
inter-row vegetation, its area declined from the first to second flight campaigns (from 1221 m2 to 6 m2),
and then remained unchanged on subsequent flights (lower than 90 m2).

Figure 5 provides the distribution of the mean values of the different parameters extracted from
the estimated grapevine plants. The flight campaigns were carried out with a significant vegetation
development from fruit set to harvest. This way, the height distribution in the different flight campaigns
(Figure 5a) did not vary significantly, starting with a mean height of 1.23 m in the first flight campaign,
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and stabilizing around 1.13 m in the remaining campaigns. In what concerns the grapevine area and
volume (Figure 5b,c), both parameters presented a similar behaviour, declining from the first to the last
flight campaign. The grapevines mean area starts at 0.44 m2 in the first campaign and a progressive
decrease can be observed until the last campaign, in which the grapevine mean area ends up at 0.32 m2.
In terms of the mean grapevine canopy volume, it is 0.69 m3 in the first flight campaign, 0.58 m3 in
the second one and 0.50 m3 in the remaining flight campaigns. Considering the distribution of the
NDVI values (Figure 5d), a decline was verified when comparing the values of the previous campaigns
sequence in which 0.80, 0.73, 0.66, and 0.55 of grapevine mean NDVI were respectively reached.
Regarding the parameters extracted from the thermal infrared imagery, both grapevine temperature
and CWSI (Figure 5e,f) presented distinct distributions. The temperature values were lower in the first
flight campaign and higher in the third flight campaign. Despite the mean temperature variability
through the flight campaigns, CWSI distribution is similar.
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Figure 6 presents the main parameters extracted for the estimated grapevines. The grapevine’s
height distribution (Figure 6a) suffered a decline along the flight campaigns. In fact, 87% of estimated
heights were higher than 1.0 m in the first flight campaign, falling to 77% in the second flight campaign,
64% in the third and 72% in the fourth flight campaign. Regarding plants with heights lower 0.5 m, no
estimates were presented in the first flight campaign, whereas in the following campaigns this number
represented 0.3%, 8% and 2%, of the total estimates. Individual grapevine canopy volume (Figure 6b)
presented a similar trend. In the first flight campaign, 53% of the grapevines showed a volume greater
than 0.75 m3, while in the following flight campaigns only 39%, 24% and 19% were greater than 0.75 m3.
Regarding plants with a volume greater than 1 m3, they represented 19%, 10%, 6% and 4% of the
estimated grapevines. Considering individual grapevine NDVI values (Figure 6c) bigger than 0.7,
a total of 85% higher were identified in the first flight campaign, 60% in the second, 38% in the third,
and 16% in fourth flight campaign. Focusing on the CWSI (Figure 6d), 75% of the grapevine plants
were lower than 0.6 in the first three flight campaigns, while in the last flight campaign this value
is 70%.
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3.2.3. Vineyard Plot B

In what concerns vineyard B, a broader period was analysed (from May to October 2018),
encompassing most of the vineyard vegetative development from flowering to harvesting. A growth
trend of the grapevine vegetation area and volume is observed across the first four flight campaigns
(growth of 218%, from 262 m2 to 833 m2 and 463%, from 339 m3 to 1301 m3). In the last campaign, a
decline of 15% (−128 m2) in area and 21% (−401 m3) in volume was verified. From the second to third
flight campaigns, there was a canopy management operation (leaf removal), due to the smaller growth
area in between these flights (20% and 101 m2). As for inter-row vegetation, this value increases until
July (from 34 m2 to 546 m2) and decreases in August (34 m2), with a small growth in October (to 83 m2).

The estimation of the individual grapevines position in the vineyard enabled us to estimate several
parameters. Their distribution is presented in Figure 7. Height distribution (Figure 7a) was lower in
the first flight campaign with a mean value of 1.24 m, then increased until the fourth flight campaign
and declined in the last one. Similar trends were observed in other geometrical parameters such as
area and volume (Figure 7b,c), as well as in the NDVI (Figure 7d). Indeed, from the first to the second
flight campaigns, a significant growth was registered. The mean grapevine area increased almost to
double (from 1.10 m2 to 2.12 m2), and the mean grapevine volume increased 193% (from 1.38 m3 to
4.04 m3). In what concerns the grapevines NDVI values, the mean value ranged from 0.56 in the first
flight campaign, to 0.84 in the second, 0.86 in the third, 0.89 in the fourth and declined to 0.76 in the
last flight. As for LST (Figure 7e) and CWSI (Figure 7f) values, a different trend was observed, the first
flight campaign presented a higher temperature than the remaining ones (approximately 10 ◦C higher),
while CWSI values spanned towards higher values in the first flight campaign and lower values in
remaining flight campaigns, where most of the data is located below 0.5.
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surface temperature (e), and crop water stress index (f) of each flight campaign in vineyard B. Mean
values are marked with •.

The individual grapevine values estimated for each parameter in the most representative flight
campaigns are presented in Figure 8. From the first to the remaining flight campaigns (Figure 8a–c), an
overall numerical increase of assessed characteristics can be noted, while a decline from the fourth
to fifth flight campaign is better observed in the NDVI, rather than with height or volume. Most of
the height values (Figure 8a) in the first flight campaign are below 1.5 m, whereas in the remaining
flight campaigns they are higher than 1.5 m. As for grapevine canopy volume (Figure 8b), in the first
flight campaign all plants show a value below 4 m3, estimations made upon data from the second
flight campaign point out a rate of 57% of grapevine plants greater than 4m3, being above 94% in the
remaining flight campaigns. NDVI values (Figure 8c) are lower than 0.7 in the first flight campaign
(0.56 mean value) and higher than it in the remaining flight campaigns, excluding the last one where
82% of the grapevines were higher than 0.7. For CWSI, 53% of the grapevines presented a value
higher than 0.6 in the first flight campaign, but in the remaining campaigns it is lower, as an example,
it represents 21% and 28%, respectively, in the fourth and fifth campaigns.
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4. Discussion

4.1. Grapevine Counting Accuracy

The results presented in Section 3.1 document the method’s effectiveness in the individual
grapevine estimation using the six vineyard plots analysed. As for the number of grapevines presented
in each vineyard plot (Table 3), the method showed 100% accuracy for vineyard plots A, B, D and F.
However, for vineyard plots C and E, there was an under-estimation in the number of grapevines in
both cases, due to the lack of one plant per vine row. Still, a mean accuracy value of 99.88% was achieved.
This is related to the way that the vine rows were estimated, the distance of the rows was smaller than
its ground-truth, possibly related to the automatic vine row orientation used during their estimation.
Furthermore, as stated in the results section, there were two vine rows that were not detected, one in
vineyard plot C (three grapevines) and another in vineyard D (five grapevines). However, since there
were no grapevines present in those plots, they were discarded from this evaluation procedure.

As for grapevine identification, the results from the performed evaluation were slightly lower
(Table 4), which is related to FP and FN estimations for grapevines. Nevertheless, a mean overall
accuracy of 97.5% was achieved. It can be stated that the method tends to overestimate grapevines
rather than underestimate since more FN cases were identified (a mean of 2.0% and a mean of 0.4%
FP). In vineyard A, the percentage of FP and FN was 1.6% representing, respectively, 8 and 10 cases.
The higher number of FP was verified in vineyard F with 10 cases (1%), whereas a higher number of
FN was reached in vineyard E with 49 cases (2.4%). However, vineyard F had the highest percentage
of FN cases with 3% (30 occurrences). Cases of grapevines classified as missing (FP) can be justified by
erroneous three-dimensional reconstruction of the surveyed vineyard plots. Increasing the imagery
overlap in the mission plan stage can help to mitigate this issue since more common tie points will be
found in correspondent images. The grapevine plants from the commercial vineyard (vineyard plot
B) were correctly estimated, as this plot only composed seven vine rows and had only two missing
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grapevine plants. In Primicerio et al. [53], this issue was addressed by evaluating a total of 211 missing
plants (incidence of 9.4%), in which the parameter found with most correlation was the grapevine
area. Different area thresholds were considered, based on the cardinality of each cluster attributed to
grapevine plants, wherein lower values showed to be more suitable for missing plant discrimination
but inducing the FP number growth, while higher values result in the inverse behaviour. In Matese and
Di Genaro [54], the results demonstrated 80% accuracy in missing plants detection with the application
of their method. Authors stated that FP results (plants estimated as a missing plant) were related to
their low vegetative development, while FN results (missing plant classified as a plant) were related
to the high presence of weeds and overlap of adjacent plants. However, neither of these studies
considered height properties. In De Castro et al. [38] an overall accuracy of 95.3% was obtained in the
analysis of three vineyard plots in Northeastern Spain at two different epochs (July and September).
Similarly, to this study, according to the authors, most of the misclassification cases were related to
grapevines lower vegetative development (thin branches and fewer leaves) which led to issues in
the 3D canopy reconstruction through photogrammetric processing. Regarding FN cases, it can be
justified by the growth of adjacent grapevines which tends to cover missing spots in the wires, making
it difficult to estimate missing plants. This way, as a future direction, machine learning classification
should be considered to detect the number of missing grapevines. Moreover, as stated by Matese and
Di Genaro [54], by selecting an anticipated period to conduct this type of survey would increase the
results accuracy, by having plants with less vegetative development, which would avoid the presence
of adjacent grapevine vegetation in missing plant areas.

4.2. Data Alignment

Since one of the main goals of this study is to extract grapevine properties from different outcomes
through photogrammetric processing of UAV-based imagery from different sensors, a correct data
alignment must be ensured to mitigate data alignment errors. Aiming to reduce geolocation errors
from a few metres to some centimetres [60]. In Turner et al. [61] the same tendency was inferred,
when compared to the results obtained in this study. More specifically, the overall RMSE values were
approximately 1.9 cm for RGB imagery (1 cm GSD), 6.4 cm for multispectral imagery (3 cm GSD),
and 17.8 cm for TIR imagery (10 cm GSD). In their study, the authors used a higher number of GCPs
along with a lower flight height and almost half of the spatial resolution used in this study. The
need of GCPs for multi-sensor data alignment will be mitigated by the technological development
of sensors by combining visible, multispectral and TIR data into a single sensor, this is the case
of the MicaSense Altum (MicaSense Inc., Washington, United States of America) which provides
radiometrically corrected blue, green, red, red edge, NIR spectral bands along with TIR imagery. This
way, in a single UAV flight, all data is acquired and photogrammetric processing can be achieved in a
single project.

4.3. Multi-Temporal Vineyard Monitoring

By analysing the results obtained through the method application in both vineyards A and B
(Sections 3.2.2 and 3.2.3), the spatial grapevine variability is noticeable. Furthermore, the multi-temporal
analysis enabled us to track the changes throughout the analysed periods.

In what concerns the experimental vineyard (vineyard A), it presented a higher incidence of
missing grapevines, which is associated with the occurrence of phytosanitary problems and to the
presence of different grapevine varieties, wherein a higher data variability is clearly visible (Figure 6).
Areas with a better grapevine overall status, are located in the upper right and bottom left parts of the
vineyard. Higher NDVI values and grapevine volume were detected in those areas throughout the
flight campaigns, as this is more notorious in all flight campaigns for the estimated grapevine volume
and in the first three flight campaigns for NDVI. With respect to CWSI, only the first and last two flight
campaigns highlighted this behaviour. On the other hand, the southern central part showed the lowest
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results. The grapevines in this region presented a lower volume, particularly in the last two flight
campaigns, along with higher CWSI values (potential water stress) and lower NDVI values.

The commercial vineyard plot (vineyard B) presented a high vegetative dynamic over the analysed
period, its parameters grew throughout the flight campaigns and declined after the harvest season
(Figure 7). Its geometrical features (height, area, and volume) along with NDVI showed a higher
development from the first to second flight campaigns. These results are related to both phenological
stages and training systems implemented in the Vinho Verde wine region. This vineyard presented
overall good results as confirmed by the estimated grapevine values in the flight campaigns (Figure 8).
The northern part presented a higher grapevine volume when analysing each flight campaign, while
for NDVI this was only verified in the last two campaigns. The southern part presented some water
stress signs (Figure 8d) in the last two flight campaigns, along with lower grapevine volume verified on
all flight campaigns, and lower NDVI values were only observed in the last flight campaign. Regarding
CWSI, the inferior grapevine vegetative development verified in the first flight campaign led to the
estimation of potential water stress in the upper part of the vineyard, while in the last flight campaign
the higher CWSI agreed with the lower NDVI values.

When comparing the commercial (vineyard B) and the experimental (vineyard A) vineyard, the
former obtained better results in almost all parameters. A higher spatial heterogeneity was verified
in vineyard A, while vineyard B presented a more homogeneous development, as can be seen when
analysing the grapevine canopy volume and NDVI. However, some similar trends were detected in
both vineyards, an overall decline of the NDVI values in the last flight campaigns and an agreement
between NDVI with the estimated grapevine volume and with the CWSI values was observed. The
decline of NDVI in the last flight campaigns can be related to the leaf senescence and, consequently, its
discolouration [62,63]. The relationships among the NDVI and volume relationships were verified in
other studies [24] that showed that both of these parameters are related with LAI, which in fact, is also
verified in this study.

Grapevines located in the southern parts (first plant of the rows) of the analysed vineyards
presented potential water stress in the CWSI, an observation that gains meaning in the last two flight
campaigns of vineyard B and in the first, third and fourth flight campaigns in vineyard A. This can
be considered as outliers, since higher temperatures are observed due to heat advection from the
soil in proximity to the edges of the rows of the grapevine canopy, which can affect, in a significant
manner, the air temperature, with an increase in the loss of water by evapotranspiration [64]. These
results corroborated with Tucci et al. [65] where external rows in a terraced vineyard presented higher
temperatures due to solar exposition and shadowing effects when compared with internal vine rows.
Although the individual grapevine temperature is estimated, this parameter showed to be ineffective
to be evaluated in a multitemporal analysis. It is useful to understand the global temperature context
on the flight campaign day. The CWSI trends shown a more stabilized distribution since this index
represents a normalization throughout the flight campaigns. Moreover, other TIR-based indices can
be computed, as it is the case of stomatal conductance indices Ig and I3 [66], which, respectively,
implicated increases with stomatal conductance and correlates it with stomatal resistance. The same
applies to other multispectral-based vegetation indices and to hyperspectral data, as long as it comes
in an orthorectified format. Usually, published studies resort to NDVI to produce vigour maps and use
that information to improve the decision support at the vineyard plot scale [13,23,67]. The approach
proposed in this study provides a more incisive analysis. Multi-sensor parameters are extracted at the
plant level and are not exclusively relying on qualitative analysis.

5. Conclusions

This study explores the usage of UAV-based photogrammetric outcomes to extract individual
grapevine geometrical and biophysical parameters within vineyard plots. Missing plants and other
vegetation are detected but not considered to perform multi-temporal analysis over a series of flight
campaigns. Three different types of sensors (RGB, multispectral and TIR) were used. By estimating
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vine rows and the individual position of each plant, several parameters can be extracted at the plot
level, namely the: number of vine rows; number of plants; and number of missing plants and grapevine
vegetation area; and at the plant level, the: position; length; width; area; volume; vigour (driven
from NDVI); temperature from (TIR) and water status (driven from CWSI). The two multi-temporal
analyses conducted in the two different vineyards presented in this study confirmed the method’s
suitability for plant-specific analysis, allowing us to assess the different estimated parameters and to
establish relationships among them and between flight campaigns. This way, the methods employed
in this study enable an overview of the current status of the grapevine plants and the monitoring of
their evolution over time. The estimated geometrical and biophysical parameters can significantly
help farmers and/or winemakers understand the current vineyard overall status and can be used
as a decision support tool to apply treatments in certain plants and to observe their response with
multi-temporal analysis, helping to improve grapevines health. Moreover, it can be used to compare
growth seasons from different years by extending the flight campaigns.

The potential of the method can be extended for different applications, it can help in the decision
support by means of grapevine growth and status evaluation, and the individual grapevine water
status estimation. Moreover, the different extracted parameters can be used to create datasets for
supervised and unsupervised classification methods for disease detection and to improve the results
in the detection of missing grapevines. The extracted individual grapevine parameters can be
used for computation of prescription maps for individual grapevine treatment in PV plant-specific
applications and to estimate individual grapevine production. The topographical data produced
from the photogrammetric processing along with the position of each grapevine and its estimated
parameters can be used to reproduce a 3D virtual vineyard environment. As such, this information can
be used in augmented reality applications for easier vineyard in-field inspections.
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