
remote sensing  

Article

Low Overlapping Point Cloud Registration Using
Line Features Detection

Miloš Prokop † , Salman Ahmed Shaikh * and Kyoung-Sook Kim

National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
m.prokop@sms.ed.ac.uk (M.P.); ks.kim@aist.go.jp (K.-S.K.)
* Correspondence: shaikh.salman@aist.go.jp; Tel.: +81-80-3557-4442
† Current address: College of Science and Engineering, The University of Edinburgh, Edinburgh, UK.

Received: 26 November 2019; Accepted: 19 December 2019; Published: 23 December 2019 ����������
�������

Abstract: Modern robotic exploratory strategies assume multi-agent cooperation that raises a need
for an effective exchange of acquired scans of the environment with the absence of a reliable global
positioning system. In such situations, agents compare the scans of the outside world to determine
if they overlap in some region, and if they do so, they determine the right matching between them.
The process of matching multiple point-cloud scans is called point-cloud registration. Using the
existing point-cloud registration approaches, a good match between any two-point-clouds is achieved
if and only if there exists a large overlap between them, however, this limits the advantage of using
multiple robots, for instance, for time-effective 3D mapping. Hence, a point-cloud registration
approach is highly desirable if it can work with low overlapping scans. This work proposes a
novel solution for the point-cloud registration problem with a very low overlapping area between
the two scans. In doing so, no initial relative positions of the point-clouds are assumed. Most of
the state-of-the-art point-cloud registration approaches iteratively match keypoints in the scans,
which is computationally expensive. In contrast to the traditional approaches, a more efficient
line-features-based point-cloud registration approach is proposed in this work. This approach,
besides reducing the computational cost, avoids the problem of high false-positive rate of existing
keypoint detection algorithms, which becomes especially significant in low overlapping point-cloud
registration. The effectiveness of the proposed approach is demonstrated with the help of experiments.

Keywords: point cloud registration; low overlapping point-cloud; multi-agent cooperation; line
features detection

1. Introduction

Point cloud registration is the process of aligning two or more point-clouds by estimating the
relative transformation between them. Point cloud registration is an important part of computer
vision algorithms, 3D mapping and 3D scene reconstruction, to name a few. Three-dimensional
mapping of the surrounding environment using a multi-robot system is an established research area.
A multi-robot system has the potential to improve the efficiency of 3D mapping over a single robot.
Authors in [1,2] presented new approaches for multi-robot martial cave explorations. Among the novel
concepts in autonomous robotics explorations presented in their work is sophisticated coordination
autonomy. This requires peer-to-peer communication between agents that allows scouting rovers
to explore beyond the reach of their telecommunication resources. In case two agents meet at a
sufficient distance from each other, either by chance or deliberately, the exchange of information about
explored environment should happen reliably and effectively. Assuming no global localization system
is available, it is tempting to merge the world models based on areas of their intersection. This problem
becomes especially complex if the state-of-the-art LiDAR mapping technique is used. Even though

Remote Sens. 2020, 12, 61; doi:10.3390/rs12010061 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0823-5210
https://orcid.org/0000-0002-2204-8561
http://www.mdpi.com/2072-4292/12/1/61?type=check_update&version=1
http://dx.doi.org/10.3390/rs12010061
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 61 2 of 20

an extensive research in the area of point-cloud registration has been done (see Section 2), the case
where the ratio of an overlapping area is significantly small, has not yet been explored. Hence, this
work proposes an approach for point-cloud registration with an overlapping area between two scans
as low as 20% (As suggested by our experiments).

Our proposed approach assumes the existence of straight edges in the 3D scans, which in most
environments is a reasonable assumption. In offices, one can find desks, monitors, chair legs, etc.
In urban areas, such objects include buildings, pavements, road signs, lamps or in the case of the
outdoors such objects include trees, branches, sharp rocks, karst formations in caves, etc. We propose
the use of edge detection followed by Hough transform to detect lines in the two-point-clouds which
need to be merged.

For an arbitrary area A ⊆ P of a point-cloud scan P, the set of lines SA := {l ∈ Lines(P)|l ∩ A 6=
∅} serves as a global descriptor of A provided SA 6= ∅. Generally speaking, in order to find a
transformation, we do not need to run exhaustive calculations to create and pair-wise match the
local descriptors of keypoints in two scans as proposed in [3] or in other state-of-the-art point-cloud
registration approaches [4]. In contrast, our work proposes the use of a trial-and-error method, where
the evaluation of a match is much more efficient. The key idea is to prune the search space by finding
the transformation parameters one by one rather than searching throughout the whole parameter
space. This is achieved by performing the matching phase in the following three main steps.

1. Finding a rotation between the two-point-clouds (Figure 1b)
2. Determining the translation over y-axis (Figure 1c)
3. Determining the translation over x-axis (Figure 1d)

(a) (b) (c) (d) (e)

Figure 1. Step by step outline of the low overlapping point-cloud registration. (a) original alignment
(b) result of rotation search (c) result of translation over y axis (d) result of translation over x axis (e)
Iterative Closest Point (ICP) refinement

All the three matchings are performed by minimizing a fitness function based on pairwise dot
products between directional vectors of lines detected in the two given scans. In parallel with this,
the following two assumptions are made.

1. The gravity vector is known prior to running our outline and, hence, only rotation around z-axis
is required to find correct rotations of the scans relative to each other. This is a reasonable
assumption in the majority of real-world scenarios because all the LiDAR scanners are equipped
with a gyroscope sensor and their output is correctly aligned with gravity vector pointing in the
negative direction of z-axis.

2. No scans need to be translated in a vertical direction. This assumption greatly simplifies the
presentation of the idea and derivation of mathematical formulas at the cost of its applicability to
a larger problem domain. We aim to motivate the more general solution, which allows translation
over all three x, y and z-axes and can be implemented as an extension to this work.

We believe that the results, even in the presence of the above assumptions, are of a real-world
use for a number of problems, e.g., merging indoor scans of the same floor in a building or a simple
outdoor environment with a straight ground.

The rest of the paper is organized as follows. Section 2 discusses the related work. In Section 3,
our proposed point-cloud registration approach using line features is presented. Section 4 presents the



Remote Sens. 2020, 12, 61 3 of 20

experimental evaluation of the proposed approach while Section 5 discusses in detail the proposed
approach’s parameters tuning. Section 6 concludes our paper by highlighting some of the limitations
of this work and discussing interesting future directions.

2. Related Work

To the best of our knowledge, very little work on the problem of merging two-point-clouds,
where the overlapping area is much smaller than any of their corresponding sizes, has been done.
One of the most related work in this area has been done by Jiří Hörner in [3]. Their method uses a
similar approach to the point-cloud registration problem and has recently gained a lot of attention
in research [5,6], i.e., they presented an algorithm based on matching keypoints with calculated
corresponding geometrical descriptors around them. This explicitly introduces the general assumption
of a point-cloud registration problem; that the size of an overlapping area is very large and only a
minor correction in translation and rotation is sought [4]. Generally, the solution in a high overlapping
point-cloud consists of keypoints detection [7–9], descriptors calculation [10–12] around each of the
keypoints and running an Iterative Closest Point (ICP) algorithm [13,14] to find a transformation that
pair-wise matches the individual descriptors. When the overlapping area is small, as in our case, it is
difficult to reliably find the matching keypoints in the two-point-clouds, which is an essential step in
almost all of the existing point-cloud registration approaches. Besides, there exists two more problems
with the ICP algorithm being used by majority of the above discussed works. (1) ICP is an iterative
algorithm and the quality of results strongly depends on an initial configuration, which in our case
might be too far from the one leading to a reasonable solution since we do not assume any initial
alignment (2) the convergence accuracy is strongly correlated to the ratio of an overlapping area with
the value of 50% being critical [15].

To tackle this problem, several approaches have been suggested. For instance, Ref. [16] explores
correlations between Extended Gaussian Images [17] in Fourier Transform domain to find a crude
alignment, which is later refined by ICP and accepts as low as 45% partial overlap. Go-ICP [18]
uses a branch-and-bound scheme to search 3D motion space and guarantees to return globally
optimal solutions disregarding an initial configuration. As pointed out by [19], this method becomes
computationally too complex if the overlap gets below 70%. Moreover, Go-ICP has been tested only on
small point-cloud scans and the scalability is unlikely due to its complexity. Super 4PCS [20] aims to
reach globally optimal solutions as well. According to experiments in [19], it can produce reasonable
results for scans with overlapping ratios as low as 30%, however, it suffers from instability, i.e., variance
of accuracy of results is high. [19] proposes a method to use hidden Markov random fields to capture
the fact that most of the time, the non-correspondences appear close to each other. The comparison
of [19] with Go-ICP [18] and Super 4PCS [20] suggests only a negligible improvement over minimum
ratio of an overlap that is required for the algorithm to work accurately. However, the results show
that the approach benefits from the greater stability compared to the other two methods, i.e., it has
lower variance in its results.

Wu et al. [15] proposed a modified version of the registration method with the use of the LM-ICP
method which can converge with lower overlapping ratios between point-clouds and demonstrated the
approach on cases with 37% and 44% overlapping ratios. Their method evaluates pair-wise similarities
between sampled points in two given point-clouds by calculating mean and Gaussian curvatures of
local surrounding surfaces. Because of an exponential rise of the number of possible pairs, this method
is not scalable to larger, possibly indoor or outdoor environments.

Other approaches to the problem include optimization via genetic algorithms [21–23] and
demonstrate good results for as low as 50% overlap between two-point-clouds. However, their
performance has been only evaluated on registration of CAD models and their generalization to
real-world scene registration is rather questionable due to the problems of local optima and of a slow
convergence time with an increasing amount of data.



Remote Sens. 2020, 12, 61 4 of 20

The closest approach to our work is [24] where planar surfaces are detected via RANSAC.
As opposed to our idea, the planar surfaces are then intersected obtaining keypoints around which
descriptors are calculated, which is the main drawback of the work due to the complexity of descriptor
computation. A geometric constrained matching between them is then performed obtaining a coarse
alignment. Another interesting work worth mentioning is [25] which can be used to augment existing
point-cloud registration methods with an Expectation Maximization procedure which estimates
overlapping regions by considering LiDAR sensor field-of-view with little computational overhead.

Our proposed approach deals with the aforementioned problems of ICP, namely, dependence on
an initial configuration and deterioration of results due to many false positive keypoint matchings
as a consequence of a large non-overlapping area. It is achieved by: (1) avoiding keypoint detection
approach and considering “line shapes” in data as features to be matched, (2) using a technique whose
search results do not depend on initial configuration and which is not generally influenced by local
false positive matching between features, as our work considers the relative positions of detected
features globally, and (3) performing a geometric constrained alignment search with similar ideas
as in [24], however, by using more complex features than points, our search method gets simplified,
as one can avoid tedious descriptor calculations and use geometric properties of features such as a
comparison criterion.

3. Point Cloud Registration Using Line Features Detection

Given two-point-clouds A and B with a small overlap, we wish to register them by applying
a series of appropriate transformations. Our idea is to tackle the complexity of the problem in two
main steps.

1. Obtain a simplified representation of point-clouds by extracting line features from them, obtaining
two sets of lines SA and SB respectively.

2. Find a transformation T such that SA best matches with TSB .

In this work we restrict T to be a function of rotation angle around z-axis and two translation
parameters over xy-plane. This results in finding an approximate solution to the following
optimization problem:

maximizeT ∑
(a,b)∈SA×TSB

f it_score(a, b) (1)

where × denotes Cartesian product and f it_score(a, b) is a function rewarding for a very close match
between lines a and b, but returning zero otherwise. The goal of this work is to propose an efficient
method for the optimization problem (Equation (1)) and to find an effective implementation of the
f it_score(·, ·) function.

Algorithm 1 gives an outline of the proposed approach. Gaussian filter (lines 1–2) reduces
the density of point-clouds so that the subsequent Sharp Features Detector (lines 3–4) provides
less noisy extraction of points corresponding to sharp features. The output is filtered again by
StatisticalOutlierFilter (which is part of the PCL library, see http://docs.point-clouds.org/1.7.1/
classpcl_1_1_statistical_outlier_removal.html.) (lines 5–6) prior to a Line Detector (lines 7–8), which
detects straight line features. The filtering steps are crucial in our outline as our method is sensitive to
the output of the Line Detection algorithm (see Section 3.1). In the rest of the Algorithm 1, a search is
performed to determine the optimal line features alignment. Possible alignment angles between A
and B are found (line 10) by ignoring origins of lines in SA and SB and iteratively evaluating pair-wise
cosine similarities for angle θ ∈ [0, 2π] in small steps. Best candidates are then propagated for further
calculation of the translational alignment over xy-plane. The search is performed on a surface of a
geometric object fitted around point-cloud A, where intersections of SA and TSB with the surface
are matched. This brings an advantage of effective match evaluation. The evaluation fitness function
considers only positions of intersection points of lines and the objects surface. If an appropriate
geometric object is chosen, we gain the advantage of the possibility of determining alignments over

http://docs.point-clouds.org/1.7.1/classpcl_1_1_statistical_outlier_removal.html
http://docs.point-clouds.org/1.7.1/classpcl_1_1_statistical_outlier_removal.html


Remote Sens. 2020, 12, 61 5 of 20

x and y axes one by one. That is, both the alignments are searched, avoiding a computationally
expensive approach to perform search in a two-dimensional space. Both PossibleYTranslations(·, ·) and
BestXTranslation(·, ·) use the aforementioned technique and are discused in Sections 3.5.1 and 3.5.2
respectively. Refer to Figure 1 for illustration of the approach where given two unaligned point-clouds,
the results for angle search, y-alignment, x-alignment and ICP-refinement are plotted, respectively.

Algorithm 1: Outline of our approach.

Input: point-cloud A , point-cloud B
Output: Transformation T, such that A is aligned with TB

1 GA ← GaussianFilter(A)
2 GB ← GaussianFilter(B)
3 FA ← SharpFeaturesDetector(GA)
4 FB ← SharpFeaturesDetector(GB)
5 ζA ← StatisticalOutlierFilter(FA)
6 ζB ← StatisticalOutlierFilter(FB)
7 SA ← LineDetector(ζA)
8 SB ← LineDetector(ζB)
9 container← { }

10 foreach θ ∈ AngleSearch(SA, SB) do
11 C ← ParabolicCylinder(ζA.dimensions)
12 foreach y ∈ PossibleYTranslations(C, SA, R(θ)SB) do
13 x, score← BestXTranslation(C, SA, R(θ)SB+y)
14 container.push(<score, θ, x, y>)
15 end
16 end
17 <θ, x, y>← bestScoredEntry(container)
18 return T(x, y) ◦ R(θ)

3.1. Line Detection

We use Hough Transform to find the sets SA and SB of the form Si = {(tm, dm) ∈ Lines(i)}
where tm, dm are translation and direction vectors of a line m in point-cloud i respectively. In order
to improve the accuracy and complexity of the method prior to line extraction, we extract subsets
of both A and B which only contain points located on sharp features in the point-clouds (see the
corresponding red points in Figure 2). This is because the line features of the point-cloud datasets
are subsets of points lying on edges of arbitrary objects. Hence, points lying on smooth areas (e.g.,
in planar surfaces) can be omitted from the calculation.

(a) (b)

Figure 2. Cont.



Remote Sens. 2020, 12, 61 6 of 20

(c) (d)

Figure 2. Outline of line detection: (a) Original point-cloud scan, (b) Point-cloud after convolution
with Gaussian kernel, (c) Result of sharp features extraction and subsequent filteration by
StatisticalOutlierFilter, (d) Line detection after edge detection phase. A green unit length marker
indicates the corresponding line has been detected. Note that it does not depict any information about
line length which is ignored in our approach.

3.1.1. Sharp Features Detection

An approach proposed by D. Bazazian, et al. [26] is used to detect points corresponding to sharp
features, preceded by a convolution operation with a Gaussian kernel to improve the results. For each
point p ∈ GA, GB , the surface variation σ(p) as proposed by [27] is calculated as follows:

σ(p) =
λ0

λ0 + λ1 + λ2

where λi are eigenvalues of the co-variance matrix of the point p k-neighborhood. All points with
σ(·) < τ are considered to be subsets of smooth areas and are discarded from A and B , where τ

denotes user-defined threshold and is obtained experimentally using the procedure given by authors
in [26]. Finally, in order to lower noise in the output the StatisticalOutlierFilter is applied to discard
points outside dense areas.

3.1.2. Line Features Detection

After the subsets ζA ⊂ A and ζB ⊂ B containing points corresponding to sharp features are
identified, we proceed to find line features in them. We discretize the Hough parameter space by the
method of [28] based on a tessellation of an icosahedron. This is followed by a modified version of
Hough transform algorithm, which is applied iteratively and corrected by least squares error line
fitting [28]. These two improvements results in greater accuracy. In order to avoid the exponential rise
in the complexity in the subsequent steps, we limit the maximum number of line detection to 80 per
scan. This number demonstrated to be sufficiently large for all of our experimental datasets.

3.2. Transformation Search

Once SA and SB are obtained an affine transformation T is determined, such that SA best matches
with TSB . It can be decomposed as

T = T(x, y) ◦ R(θ)

Transformation matrix T(x, y) translates a point-cloud by a specified amount over the xy-plane,
while R(θ) rotates the point-cloud around the z-axis. The strength of our method lies in searching for



Remote Sens. 2020, 12, 61 7 of 20

the parameters x, y, θ, one by one, instead of considering their span as a search space. This results in a
significant reduction in computational complexity.

We do not propose a global evaluation of T which remains an interesting question for future
research. Instead, in our step by step method where parameters x, y, θ are searched one by one, each
parameter is rated according to its own fitness function, considering the parameters found in the
previous steps as well. A small set of best rated possible values is then propagated to the next step
to prune the search space of the parameters to be determined next. The fitness functions Fx, Fy, FΘ
corresponding to the three parameters are defined in the following sections.

3.3. Determining Rotation between Point-Clouds

A rotation around the z-axis is found prior to searching for translation parameters. In our work,
we do not consider rotations around other axes, which is sufficient in most, if not all, situations, as all
LiDAR sensors determine the vector by the built-in gyroscope and orientate the point-cloud gravity
downwards. We relax the problem by ignoring the origins of lines in SA and SB and find θ such that the
nearest-neighborhood pair-wise cosine similarities between vectors of SA and R(θ)SB are minimized,
where R(θ) is a 3D rotational matrix around z-axis. More specifically, assuming that direction vectors
da and db are normalized, we define a fitness function as shown in Equation (2).

FΘ(θ) = ∏
((ta,da),(tb,db))∈SA×R(θ)SB

1 + A exp

((
||da · db| − 1|

2σΘ

)2
)

(2)

where × denotes a Cartesian product. By making σΘ sufficiently small, this product of scaled and
shifted Gaussian functions rewards for a matching pairs of vectors whilst not matching pairs have
almost no influence on the fitness value. This property is desirable because most vectors from SA and
SB do not overlap by definition of the problem and hence the ideal algorithm would ignore them. We
iteratively find best approximations of θ and for each of the best candidates, we run the steps described
in the following sections.

3.4. Constructing a New Search Space

Once an angle θ between point-clouds has been determined, we proceed to find translation over
the xy-plane. In our solution, we omit the translation over the z-axis in order to keep the proposed
solution simple and present the idea more clearly. We leave a more general solution considering the
translation over the z-axis as an interesting future research problem. We believe that this does not
limit the applicability of our work in many real-world cases, e.g., matching indoor spaces on the same
building floor or matching outdoor environments with a ground present.

The proposed approach avoids searching in a 3D space and avoids exhaustive repetitive
calculations involving origins and directions of vectors. The key idea is to construct a geometrical
object around a point-cloud A and use its surface as a 2D transformed search space, where points
correspond to intersections of vectors with this geometrical object.

3.4.1. Object Shape Selection

There are many choices for an object to be wrapped around a point-cloud. A naive solution is to
use a plane (e.g., xy-plane underneath A). This choice involves a serious problem. Suppose there are
two detected line features, one in point-cloud A, another in B such that their angles with the plane α1

and α2 are relatively small. Moreover, suppose they are sufficiently close to each other, i.e., α1 ≈ α2,
but α1 6= α2. Hence we want our algorithm to recognize them as a potential match. However, even
though α1 ≈ α2, since 0 < |α1 − α2| the distance between the corresponding intersection points of the
lines and the plane can get very large. Therefore, these two lines might be ignored by our algorithm
despite the fact that they are very close to each other. Furthermore, as an angle of an arbitrary line
with the plane tends to zero, the corresponding intersection point on the plane would tend to complex



Remote Sens. 2020, 12, 61 8 of 20

infinity and make the bounds of the search space extremely large. As a result, in practice many lines
would need to be omitted from calculation resulting in a poor accuracy. The ideal solution for us seems
to use a sphere constructed around A, which completely solves this problem. However, as argued in
Section 3.4.1, this makes the problem too complex to solve at this stage. We leave it as another possible
extension of our work and focus on a simpler solution, that only partially solves the aforementioned
problem, yet provides good results.

3.4.2. Fitting a Parabolic Cylinder

In case a parabolic cylinder is used as the shape of the wrapping object, only the lines with
direction vectors parallel to the axis of the parabolic cylinder (i.e., the line z = H ∩ C) are discarded
from computation. For example, suppose we construct a parabolic cylinder C with Equation (3).

z = −(Ky)2 + H (3)

where constants K and H are chosen such that all vectors of SA are guaranteed to intersect C unless
they are parallel to it. This is further discussed in Appendix A.2. For each (ta, da) ∈ SA we can hence
find a constant t such that

ta + tda ∈ C (4)

See Appendix A.1 for more details about the solution to (4). Suppose t1, t2 ∈ C ∪∞ are two
such solutions. By Appendix A.2, either at least one of the solutions is real and left hand side of
Equation (4) gives a point of intersection with C or both the solutions tend to infinity. Hence vectors
with min(|t1|, |t2|) > T for some threshold T are discarded from the following computations. Moreover,
lowering T ignores position vectors of SA with a long distance to their points of intersections with C in
the directions of their direction vectors and, hence, lowers the noise in the output of the Line Detection
stage for the future stages of calculation.

We can minimize the number of discarded vectors by rotating C by angle ψ around the z-axis.
In order to simplify equations, suppose we rotate the point-clouds A and B by −ψ around the z-axis
prior to the construction of C to achieve the identical effect. Generally, most, if not all, of the possible
values of ψ should work unless we expect majority of line features to point in approximately the same
direction. In this case, the value of ψ can be set according to a domain-specific knowledge and we do
not need to search for an optimal value of ψ, which minimizes a number of omitted vectors as part of
the algorithm. In our experiments, we found that ≥98% vectors were preserved if we set ψ to be an
angle of eA + eB with y-axis. Where eA and eB are eigenvectors of co-variance matrices ζA and R(θ)ζB
(Section 3.1) that correspond to largest eigenvalues found by Principal Component Analysis and T
is a distance between two lines, i.e., intersections of C and xy-plane. Here, we premised that many
line features are either parallel or orthogonal to the scanning direction (e.g., wall edges, orientation of
windows, etc.).

3.5. Translation Search Using Parabolic Cylinder Approach

Once a new search space has been constructed, we begin to find transformations over both the
y, x-axes on this space separately.

3.5.1. Finding First Translational Parameter

Algorithm 2 repeatedly calculates intersections of lines and a parabolic cylinder. It is, hence,
essential that the implementation of these operations should be vectorized.

Suppose Si = {(ti, di)} is a set of lines, where ti = tixi + tiyj + tizk and di = dixi + diyj + dizk
stand for origin and direction vectors, respectively. Consider a parabolic cylinder representation from
Equation (3). We propose the following linear time algorithm to find best candidates for alignment
over the y-axis between corresponding point-clouds.



Remote Sens. 2020, 12, 61 9 of 20

Algorithm 2: Determining best translation over y-axis.

Input: SA = {(tAi , dAi )|i = 0, 1, ..., nA}
R(θ)SB = {(tBi , dBi )|i = 0, 1, ..., nB}
C := parabolic cylinder
Output: Y := best rated y-translations

1 Function PossibleYTranslations(C, SA, R(θ)SB):
2 A, B, C, D← calculateCoefficients(SA, C)
3 τ1, τ2 ← B±

√
D // solutions to (4)

/* IA := points of intersection of elements of SA and C */
4 IA := (tA+τ1dA) ∪ (tA+τ2dA)

5 A, B, C, D← calculateCoefficients(R(θ)SB , C)
6 ty← minY
7 container← { }
8 while ty<maxY do
9 τ1, τ2 ← Aty + B±

√
Cty + D // solutions to (4)

10 IB := (tB+τ1dB) ∪ (tB+τ2dB)
11 score← Fy(IA, IB) // fitness of a match
12 container.push(<score, ty>)
13 ty← ty + small_step
14 end
15 return bestScoredElements(container)
16 End Function

Details about calculateCoe f f icients(·, ·) used in the Algorithm 2 can be found in Appendix A.1.
The algorithm uses Fy(·, ·) fitness function (Equation (5)) which ignores dis-alignment on x-axis and
uses arc length between nearest neighbors from IA and IB as a distance metric. Let,

Ii = {yi|i = 0, 1, ..., n}

where yi are y-coordinates of an intersection points on C. We engineer Fy(·, ·) in the manner similar to
Equation (2).

Fy(IA, IB) = ∏
yB∈IB

yA=nny(yB)

1 + A exp

(arclength(yA, yB)

2σy(1 + 2tA

C.width )

)2
 (5)

The nearest neighbor function nny(·) is implemented as a binary tree search and is discussed in
Appendix B. C.width is a distance between two lines of intersection of C and xy-plane. Scaling of σy by
the distance between intersection point from the origin of a corresponding vector and C demonstrated
to improve the accuracy of results, since this makes the sensitivity of score, i.e., the width of the
Gaussian, takes into account the effect of amplification of inaccuracy, whose significance increases
with the distance from line origins to their corresponding intersections (see Section 5.2 for details).
The arclength(yA, yB) is a length of a shortest curve lying on C projected onto yz-plane between points
yA and yB . Hence it ignores the x-coordinates of the points and calculate the arc length assuming
they share the same x-coordinate. Let z(·) be an equation of C as in (3). Then the arc length can be
expressed as

arclength(yA, yB) =
∫ yB

yA

√
1 +

(
dz
dy

)2
dy (6)

3.5.2. Determining Second Translational Parameter

Once the list of angles and translations over y-axis with highest fitness are determined, they are
used to find the final remaining transformation over x-axis (see Algorithm 3). Just like in Algorithm 2,



Remote Sens. 2020, 12, 61 10 of 20

we determine the translation by an iterative search in small steps over all possible x-transformations
and return an alignment with the highest fitness value.

Algorithm 3: Determining best translations over x-axis.

Input: SA = {(tAi , dAi )|i = 0, 1, ..., nA}
R(θ)SB + y = {(tBi , dBi )|i = 0, 1, ..., nB}
C := parabolic cylinder
Output: < x, score > := translation over x-axis with highest fitness and its corresponding score

1 Function BestXTranslation(C, SA, R(θ)SB + y):
2 A, B, C, D← calculateCoefficients(SA, C)
3 τ1τ2 ← B±

√
D // solutions to (4)

/* IA := points of intersection of elements of SA and C */
4 IA := (tA+τ1dA) ∪ (tA+τ2dA)

5 A, B, C, D← calculateCoefficients(SB , C)
6 τ1, τ2 ← B±

√
D // solutions to (4)

7 IB := (tB+τ1dB) ∪ (tB+τ2dB)

8 container← { }
9 tx ← minX

10 while tx<maxX do
11 score← Fy(IA, IB + tx) // fitness of a match
12 container.push(<score, tx>)
13 tx ← tx + small_step
14 end
15 return bestScoredElement(container)
16 End Function

The fitness function Fx(·, ·) is a modified version of Equation (5). The modification lies in
considering only difference in x-coordinates of nearest neighbors instead of the y-coordinate. One
might argue that both the coordinates should be used for the determination of the final alignment.
Although such an approach certainly improves accuracy, it complicates the nearest neighbor search.
Our experiments show that we can still get sensible results by considering translations over both
axes separately, i.e., finding them one by one instead of considering them as a pair while gaining a
computational time speedup by using a binary search tree nnx(·) as discussed in Appendix B.

Fx(IA, IB) = ∏
(xB ,tB)∈IB

(xA ,tA)=nnx(xB)

1 + A exp

( |xA − xB |
2σx(1 + 2tA

C.width )

)2
 (7)

4. Experimental Evaluation

This section summarizes the coarse alignment search results and the post-ICP correction results.
The experiments are conducted on the dataset generated at our research center, i.e., AIRC, AIST, Japan.

4.1. Dataset Description

We acquired multiple point-cloud scans of the 8th floor of AIST, Tokyo Waterfront Area building
using Kaarta Contour scanner, downsampled by the device with 0.5 cm resolution (The dataset used
in the experiments can be downloaded from project repository https://github.com/Milos9304/
LowOverlapPCRegistration.). The scanned environment imitates a typical household interior and
the objects include various type of furniture, windows, sofa, television, bed, bathtub, etc. Overall,
we perform six scans. Figure 3 shows the relative positions of each scans and Table 1 shows the
overlapping ratios of the neighboring scans. Table 2 shows the corresponding sizes of each scan

https://github.com/Milos9304/LowOverlapPCRegistration
https://github.com/Milos9304/LowOverlapPCRegistration


Remote Sens. 2020, 12, 61 11 of 20

in number of points and in number of points after edge detection. The overlapping area of the
neighboring scans is computed as follows:

overlap_ratio =
VolumeA∩B
VolumeA∪B

Table 1. Overlapping ratios of dataset scans.

Pair Overlap Ratio

A-B 20.25%
B-C 29.36%
C-D 16.54%
D-E 15.22%
D-F 26.73%

Table 2. Size of point-clouds.

ID # Points # Points after Edge Detection

A 2,715,304 351,036
B 1,350,946 124,001
D 1,900,559 194,050
E 1,213,707 153,252
F 1,449,478 222,750

A
B

C
D

E F
Figure 3. Relative positions of dataset scans.

4.2. Experimental Settings

The experiments are performed on a Mac OS 10.13.6 machine with 3.3 GHz Intel Core i5 processor
and 32 GB of RAM. We consider pairs of point-clouds from Table 1 and plot the runtime of each part of
our algorithm in Figure 4. After a transformation is found and a merge is performed, we further run
ICP algorithm just on the overlapping part to see if the results get improved. We discuss the results
empirically and include the corresponding images in Figure 5. The left image shows the resulting
alignment before ICP refinement and the right one after ICP refinement.



Remote Sens. 2020, 12, 61 12 of 20

A-B B-C C-D D-E D-F
0

100

200

300

400

Dataset pairs

El
ap

se
d

Ti
m

e
(i

n
se

co
nd

s)

Gaussian filter
Edge detection
Statistical filter

Hough transform
Angle search

Translation search

Figure 4. Runtime analysis.

(a) (b)

(c) (d)

(e)

Figure 5. Results on the dataset pairs. Left image shows resulting alignment before ICP refinement
and the right one after ICP refinement. Pairs: (a) A-B, (b) B-C, (c) C-D, (d) D-E, (e) D-F.



Remote Sens. 2020, 12, 61 13 of 20

4.2.1. Parameter Tuning

Our approach requires many hyperparameters to be tuned in order to work correctly. We believe
that the optimal setting is correlated with specification of input data like its density, noise, etc. The issue
can be relaxed by using more aggressive preprocessing techniques like downsampling or upsampling
to get desired densities and using various noise removal techniques [29]. In our experiments, we
discovered that performing a Gaussian convolution filter with 3 cm radius improved the results
of the subsequent Sharp Features detector with the parameter values experimentally computed
and specified in [26]. The statistical outlier removal filter (which is part of the PCL library, see
http://docs.point-clouds.org/1.7.1/classpcl_1_1_statistical_outlier_removal.html.) using 50-nearest
neighbors with standard deviation multiplicator 0.05 is then applied to remove noise and outliers prior
to running Hough Transform [28], which is a very important part of our outline. It must be tuned to
achieve high precision and recall, otherwise, as discussed in Section 5, incorrect settings appear to
deteriorate results significantly. Our experiments suggested to use different settings than the default
ones with a step-width of 3 cm in xy-plane, minimum number of 300 votes per line and a maximum
of 80 lines detected per scan, which avoids the exponential complexity in our approach. Moreover,
in our experiments, it was sufficient to use the angle with the highest score and its 180-degrees rotated
pair since the algorithm does not take the orientation of line features into account. The five best scored
translations over the y-axis were propagated to the final stage, where corresponding x-translations
were determined and the one with highest combined score Fx(·)Fy(·) has been chosen as the resulting
alignment. The major difficulty turned out to be determining value σ in the fitness functions given by
Equations (5) and (7), see Section 5.1 for details.

4.3. Experimental Results

The results, both before and after an ICP refinement are plotted in Figure 5 for each of the scan
pairs of our dataset. Correspondingly, Table 3 summarizes the determined parameters of our approach
and the ideal ones estimated by a manual alignment. It can be observed that our implementation
worked for overlap ratios greater than 20%. For the smaller overlaps, one can observe that even
though the resulting match was not accurate, the output was sensible. We believe that upon improving
specific algorithms used in our outline, the approach would generalize over even lower overlapping
ratios. See Section 5 for a general overview of discovered problems and their proposed solutions. Note
that the optimal values of σ used in the fitness functions Fx(·) and Fy(·) had to be experimentally
determined for each point-cloud pair separately (see Table 4). Hence, the current implementation
of our work does not seem to generalize well over various different point-cloud pairs and futher
improvements are required. See Section 5.1 for discussion about this issue and a proposed approach
for the automatization of the process. Observe that the rotation search worked accurately in all
the experiments. However, the accuracy of the search of translations over the y and x-axes is not
satisfactory. The results can be summarized as follows:

Table 3. Parameters obtained by our approach before ICP refinement. Significant errors are colored in
red. Angles are in radians and translation distances are in meters.

Calculated Target

Angle tx ty Angle tx ty
A-B 0.31134 −1.858 −7.347 0.31121 −1.818 −7.496
B-C 3.10700 1.761 −0.698 3.10698 3.531 −0.438
C-D 1.67724 2.840 −2.308 1.67842 3.528 −3.140
D-E 3.81791 0.340 −1.963 3.81785 0.824 −1.890
D-F 5.3178 3.901 −4.450 5.3166 3.892 −4.191

http://docs.point-clouds.org/1.7.1/classpcl_1_1_statistical_outlier_removal.html


Remote Sens. 2020, 12, 61 14 of 20

Table 4. Sigma values used in our experiments

A-B B-C C-D D-E D-F

σΘ 6.6× 10−4 6.6× 10−4 6.6× 10−4 6.6× 10−4 6.6× 10−4

σx 1.5× 10−4 1.5× 10−4 1.0× 10−7 1.5× 10−4 2.5× 10−5
σy 1.5× 10−4 1.5× 10−4 2.1× 10−5 3.95× 10−4 1.5× 10−4

• A–B and B–C: Our algorithm was capable of finding a close approximate alignment, which was
corrected to a perfect fit after ICP refinement on the overlapping area.

• C–D: This pair is an example of failure of our algorithm to provide sufficiently good alignment,
which could be corrected by ICP into a totally satisfactory result. Note, that even though the
algorithm failed for the C-D pair, the result is still a reasonable approximation of the optimal
transformation, suggesting further modifications can fix the issue.

• D–E: Both angle and translation over y-axis were calculated accurately. However, the final search
for x-alignment failed. Exploring the dataset more closely, we found that similar line features
occur periodically over the scan, which confuses the algorithm. Even though our approach is
vulnerable to periodically occurring line features, an improved line detector algorithm can help
to discard the false positive alignments.

• D–F: Another match that could be successfully refined by ICP into a correct alignment has been
found. However, observe a large misalignment over y-axis prior to ICP correction which confirms
that further modifications need to done. Also note that the σy value which resulted in correct
match in this case is the same used for pairs A–B and B–C and resulted in accurate results (Table 4),
suggesting that it is possible to improve our method to infer it automatically, as discussed in
Section 5.1.

5. Discussion

In this section we discuss the shortcomings of our approach and their possible solutions. We are of
the opinion that upon solving these individual problems the algorithm can be generalized for different
types of data and provide reliable results such as in cases a) and b) of Figure 5.

5.1. Determining the Parameter σ

As pointed out in Section 4.2.1 the value of σ has a significant influence on the accuracy of the
result. Assuming an ideal result of a line detector in both scans A and B, the value of σ > 0 can be
theoretically set as close to zero as possible and hence, providing larger accuracy and reliability by
successfully ignoring all the false line matches. By ideal result of a line detector, we mean extraction of all
significant line features in scans with no inaccuracy in line position and direction. However, since the
ideal result is very unlikely to be achieved, the value of σ should be large enough to accommodate the
inaccuracies between positive matching pairs of lines, but at the same time small enough to ignore most
of the false matches. Hence, we believe that a highly accurate line detector algorithm is an essential
step to reduce the problem of determination of the σ parameter and, hence, generalize over wider
variety of data. Moreover, as demonstrated in Equations (5) and (7) we used dynamic σ adjustment for
each of the line pair by taking into account the distance from origins of the lines to their intersections on
the quadratic surface constructed around A. This is a naive approach that we did not test extensively,
but we empirically observed improvements in our results. As discussed earlier, right value of σ has a
crucial impact on the algorithm and, hence, this adjustment requires more serious attention.

5.2. Determining the Shape of the Geometrical Object Wrapped around A

This work proposes to construct a geometrical object O and then search for a transformation
that best matches intersections of detected lines in scans A and B with the object. This significantly
improves efficiency as evaluation of pair-wise matches given by a Cartesian product (Equation (1))
is not generally required and it should be sufficient to consider only its nearest neighbor on the 2D



Remote Sens. 2020, 12, 61 15 of 20

surface of the object. This can be found more efficiently using a binary search tree (see Appendix B).
Our first try was to consider a plane as an object O, but in the experiments, we found that the number
of lines that had to be filtered out, i.e., those which were approximately parallel to the plane, was too
large and resulting in poor results. Moreover, the issue of inaccuracy demonstrated to be amplified
seriously in this case, i.e., a small difference in the line angle determined by line detection algorithm
results in a large distance between corresponding intersection points if the lines are not approximately
orthogonal to the plane.

Hence, the object should ideally wrap the point-clouds closely from each side (e.g., ideally
a sphere), but should also allow efficient calculation of intersection points as in Appendix A.1.
Furthermore, the object should enable the pruning of the search space by allowing to fix a translation
over one particular axis, and once it has been found to proceed to the second one. This issue turned out
to be complicated to overcome using a sphere due to complexity of mathematical formulas, although
certainly not impossible. Using a parabolic cylinder we found a sufficient compromise that is easy
to express mathematically despite its drawback that the lines parallel to it must be discarded from
computation, although this is not so problematic to the extent as when a plane is being used.

We believe that the choice of a right shape not only minimizes the number of lines that need to be
discarded but also most likely affects the way the value of σ (see Section 5.1) needs to be calculated,
hence a wise choice of the object O is another aspect of the work to be explored in more details.

5.3. Determining the Parameters of the Geometrical Object Wrapped around A

As already pointed out, discarding lines due to not having an intersection point with the object
O deteriorates the results and should be avoided. Hence the size of O needs to be large enough to
minimize this effect, but at the same time small enough to minimize the aforementioned problem of
inaccuracy amplification. See Appendix A.2 for our solution to this issue in case a parabolic cylinder
is used.

Finding the ideal orientation of O seems to be more problematic. In addition to the constraints
mentioned above, it is desirable that O is oriented in a way that the search ranges over both the y-axis
and x-axis are approximately equal. If this is not the case, a search over a short range is less sensitive
than the search over the larger one and these subsequent searches do not appear to fit well with each
other during our experiments. We use a naive approach using Principal Component Analysis, in which
we find eigenvectors of covariance matrices of the scans A and B . When projected on the xy-plane,
we orientate the parabolic cylinder in a way that it is parallel to sum of the projected eigenvectors with
the least eigenvalues. This method is also expected to minimize the number of discarded vectors in
scans if they are parallel or orthogonal to the scanning direction. However, this assumption might not
generalize well and we believe that more sophisticated methods are needed to improve the approach.

6. Conclusions and Future Work

This work introduces a novel method for point-cloud data registration with small overlapping
regions. It suggests a different approach rather than modifying existing methods on matching detected
keypoints by the ICP algorithm. Although such methods have demonstrated to work well with
almost totally overlapping scans, they are not effective in case of the problem of low overlapping
scans. The key concept adopted by this work is to reduce the representation of scans by detecting line
features in them and to perform a search to match the largest number of lines. In order to prune a large
transformation parameter space, the parameters are found one by one with the resultant fitness being
a combination of fitness functions of its individual parameters. A quadratic surface fitting around the
scans is suggested as a new search space for the parameters, where feature coordinates correspond to
the intersections of lines and the surface. This achieves an effective evaluation of the pairwise matches
between detected lines. The results suggest the rationality of our approach, as correct transformations
amongst a subset of our dataset pairs were approximately determined. Running a subsequent ICP
algorithm to refine them could find the exact optimal alignments down to a 20% overlapping area



Remote Sens. 2020, 12, 61 16 of 20

ratio and to the best of our knowledge, this is the least overlapping ratio for which a point-cloud
registration technique has demonstrated to work. An interesting feature of the algorithm is that it
has a bounded computational time of transformation search, provided that we bound the number
of features detected in the scans. This is a reasonable relaxation if we can guarantee that they are
evenly distributed over the scans. Hence, if such an efficient feature detector is designed, the approach
scales with the same rate as the feature detector. Moreover, the method is very straightforward,
i.e., it consists of subsequent steps independent of each other and, hence, it is easy to improve as
modifying any of its components are expected to result in an overall increase in accuracy and/or
performance. Therefore, we believe that despite the current instability of the approach, improving
its individual components has a great potential to produce a fast, simple and reliable approach for
partially overlapping point-cloud registration.

Our work can be extended by addressing its shortcomings discussed in detail in the discussion
section. Our approach relies strongly on the preprocessing steps and the line detection algorithm.
These steps not only influence accuracy of results of our proposed method of transformation search,
but also make up to 75% of algorithm runtime, suggesting that using a more sophisticated method
for line detection in terms of both speed and accuracy is a key step to make our method effective and
applicable in real-world settings even without further ICP refinement. Secondly, our approach requires
a large number of hyperparameters which must be tuned to get accurate results across different input
pairs. This forced us to use different sensitivity values (σ) in fitness functions for each dataset pair,
hence, losing the generalization. Hence, the detection of parameter (σ) is another important and
interesting future research direction.

Author Contributions: Conceptualization, M.P., S.A.S. and K.-S.K.; methodology, M.P. and S.A.S.; software, M.P.;
validation, M.P. and S.A.S.; formal analysis, M.P.; investigation, M.P. and S.A.S.; resources, M.P. and S.A.S.; data
curation, M.P.; writing—original draft preparation, M.P. and S.A.S.; writing—review and editing, M.P. and S.A.S.;
visualization, M.P.; supervision, S.A.S. and K.-S.K.; project administration, S.A.S. and K.-S.K.; funding acquisition,
K.-S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the project commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Parabolic Cylinder

Let
z = −(Ky)2 + H (A1)

be an equation of a parabolic cylinder C in a three dimensional space, where K, H ∈ R. In this appendix
we propose a way to find its parameters K and H and derive an equation used in Algorithms 2 and 3
under its name calculateCoe f f icients(·, ·), which calculates coefficients useful for fast determination
of intersection points of lines and the parabolic cylinder in a program loop cycle.

Appendix A.1. Finding Intersection of Lines and Parabolic Cylinder

Suppose S = {(oi, di)|i = 0, 1, ...} is set of lines for which we are interested to find points of
intersection with C and let

s = (o, d) ∈ S

with o = oxi + oyj + ozk being position vector of s and d = dxi + dyj + dzk its direction vector.
As depicted in (Algorithm 2), we keep increasing oy by small steps in a loop cycle and hence we are
interesting to express the formula for t in terms of ty, where oy = o′y + ty with o′y being the original
alignment of s without any shift along y-axis. s has an intersection with C of the form

o + td ∈ C



Remote Sens. 2020, 12, 61 17 of 20

if and only if
oz + tdz = −(K((o′y + ty) + tdy))

2 + H

Solving for t we derive a quadratic equation

t =
−ty

dy
−

o′y
dy
− dz

2K2d2
y
±
√

ty
dz

K2d3
y
+

o′ydz

K2d3
y
+

d2
z

4K4d4
y
+

H − oz

K2d2
y

which can be simplified into a form

t = Aty + B±
√

Cty + D (A2)

where
A = − 1

dy

B = o′y A− 1
2

dz

K2d2
y

C = −A
dz

K2d2
y

D = o′yC +
1
4

(
dz

K2d2
y

)2

+
H − oz

K2d2
y

Since calculation of A, B, C, D does not involve parameter ty, they can be calculated prior to
executing a loop cycle, where only (A2) gets evaluated.

Appendix A.2. Determining Parameters of Parabolic Cylinder

When determining parameters H and K of parabolic cylinder C, we should not aim for high
parameters in order to minimize mean distance from origins of lines to their intersection points
with C so that the inaccuracies in line directions returned by LineDetector algorithm (Section 3.1) do
not amplify significantly. At the same time no vector from a set of lines should be discarded from
our outline due to having no intersection point with C unless it is parallel to it, i.e., unless dy = 0.
The parabolic cylinder is being constructed around point-cloud A , see (Algorithm 1). Since A is static
and only B is shifted during our algorithm, when determining an intersection of a ∈ SA with C it is
sufficient to set ty = 0 and evaluate

ta = Ba ±
√

Da

hence
∀a ∈ SA : (A2) has solution ⇐⇒ Da ≥ 0

⇐⇒ oyCa +
1
4

(
dz

K2d2
y

)2

+
H − oz

K2d2
y
≥ 0

⇐⇒ 1
K2d2

y

[
dz

dy
+

d2
z

K2d2
y
+ H − oz

]
≥ 0

Suppose without loss of generality, that dz
dy
≥ 0. If this is not the case, just multiply direction vector

of a by −1 getting a modified expression of the same line. Hence H ≥ Oz is a sufficient condition for a
to have an itersection with C, or more generally, letting

H ≥ max(o,d)∈SA(dz)



Remote Sens. 2020, 12, 61 18 of 20

ensures all vectors of SA have common solution with C unless they are parallel to it and discarded
from computational baseline. Accordingly, K > 0 may be arbitrary in ideal case, where no inaccuracies
are propagated in the computation. However, finding an optimal value of K helps to leverage the
aforementioned problem of amplifying inaccuracies. In our experiments the best value that seemed to
work reasonably well was setting it such that the distance between intersection lines of C and xy-plane
was approximately similar to length of bounding box of ζA (see Algorithm 1) in y-axis direction maxY.
Following this reasoning, let z = 0 in and y = maxY in Equation (3) to achieve the desired setting.
In this case, the value of K is obtained as

K =

√
H

maxY

Algorithm A1: Construction of binary search tree used in our implementation.

Input: IA := {ci, ti|i = 0, 1, ...} ≈ tuples of intersections of lines in SA and C in direction κ and their
distance from line origins

Output: βκ := binary search tree used by nnk
1 Function ConstructBinaryTree(IA):
2 sorted← sortByAscendingOrder(IA)
3 leftHalf← filter(sorted ≤ 0)
4 rightHalf← filter(sorted > 0)
5 leftTree← AVLTree(leftHalf)
6 rightTree← AVLTree(rightHalf)
7 return leftTree ◦ rightTree
8 End Function

Appendix B. Binary Nearest Neighbor Search

This appendix section discusses details about functions nny(·) and nnx(·) used in fitness
functions (5) and (7) with the purpose of finding nearest neighboring intersection point on C in
y and x directions respectively. Because of their usage in loop cycles, their implementation is critical
for the overall speed of the algorithm. For the sake of discussion, let κ denote any of y or x direction.
In addition to returning a nearest neighbor, also its direction from corresponding line origin is returned
and used as a scaling factor of standard deviation σ (see Equations (5) and (7)) to tackle the issue of
inaccuracy amplification. The construction of the binary search tree (see Algorithm A1) is rather a
standard one, with a minor modification, that a condition at the root node selects between two halves of
the quadratic cylinder bisected by a line passing through all the points with the highest coordinates in
z-axis (i.e., on the top of it in a parallel direction) to distinguish what side of the cylinder is used for
neighborhood search.

References

1. Fraeman, A.A.; Castillo-Rogez, J.C.; Wyatt, E.J.; Chien, S.A.; Herzig, S.J.; Gao, J.L.; Troesch, M.; Vaquero, T.S.;
Walsh, W.B.; Belov, K.V.; et al. Assessing Martian Cave Exploration for the Next Decadal Survey; Mars Exploration
Program Analysis Group (MEPAG): Washington, DC, USA, 2018.

2. Troesch, M.; Vaquero, T.; Byon, A.; Chien, S. A Journey Through an Autonomous Multi-rover
Coordination Scenario in Mars Cave Exploration. In Proceedings of the International Conference on
Planning and Scheduling (ICAPS 2018) System Demonstrations and Exhibits Track, Delft, The Netherlands,
24–29 June 2018.

3. Hörner, J. Automatic Point Clouds Merging. Master’s Thesis, Charles University, Faculty of Mathematics
and Physics, Prague, Czech Republic, 2018.

4. Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics.
NOW 2015, 4, 1–104. [CrossRef]

http://dx.doi.org/10.1561/2300000035


Remote Sens. 2020, 12, 61 19 of 20

5. Meng, J.; Li, J.; Gao, X. An accelerated ICP registration algorithm for 3D point cloud data. Proc. SPIE 2019,
10839. doi:10.1117/12.2504772. [CrossRef]

6. Kamencay, P.; Sinko, M.; Hudec, R.; Benco, M.; Radil, R. Improved Feature Point Algorithm for 3D Point
Cloud Registration. In Proceedings of the 2019 42nd International Conference on Telecommunications and
Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 517–520. doi:10.1109/TSP.2019.8769057.
[CrossRef]

7. Prakhya, S.M.; Liu, B.; Lin, W. Detecting keypoint sets on 3D point clouds via Histogram of Normal
Orientations. Pattern Recognit. Lett. 2016, 83, 42–48. doi:10.1016/j.patrec.2016.06.002. [CrossRef]

8. Li, J.; Lee, G.H. USIP: Unsupervised Stable Interest Point Detection from 3D Point Clouds. arXiv 2019,
arXiv:1904.00229.

9. Tonioni, A.; Salti, S.; Tombari, F.; Spezialetti, R.; Stefano, L.D. Learning to Detect Good 3D Keypoints. Int. J.
Comput. Vis. 2018, 126, 1–20. doi:10.1007/s11263-017-1037-3. [CrossRef]

10. Prakhya, S.; Lin, J.; Chandrasekhar, V.; Lin, W.; Liu, B. 3DHoPD: A Fast Low Dimensional 3D Descriptor.
IEEE Robot. Autom. Lett. 2017, 2, 1472–1479. doi:10.1109/LRA.2017.2667721. [CrossRef]

11. Seo, J.H.; Kwon, D.S. Learning 3D local surface descriptor for point cloud images of objects in the real-world.
Robot. Auton. Syst. 2019, 116, 64–79. doi:10.1016/j.robot.2019.03.009. [CrossRef]

12. Prakhya, S.M.; Liu, B.; Lin, W. B-SHOT: A binary feature descriptor for fast and efficient keypoint matching
on 3D point clouds. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1929–1934.

13. Sharp, G.C.; Lee, S.W.; Wehe, D.K. ICP registration using invariant features. IEEE Trans. Pattern Anal. Mach.
Intell. 2002, 24, 90–102. doi:10.1109/34.982886. [CrossRef]

14. He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser
Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. doi:10.3390/s17081862. [CrossRef]
[PubMed]

15. Salvi, J.; Matabosch, C.; Fofi, D.; Forest, J. A review of recent range image registration methods with accuracy
evaluation. Image Vis. Comput. 2007, 25, 578–596. doi:10.1016/j.imavis.2006.05.012. [CrossRef]

16. Makadia, A.; Patterson, A.; Daniilidis, K. Fully Automatic Registration of 3D Point Clouds. In Proceedings
of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),
New York, NY, USA, 17–22 June 2006; Volume 1, pp. 1297–1304. doi:10.1109/CVPR.2006.122. [CrossRef]

17. Horn, B.K.P. Extended Gaussian images. Proc. IEEE J. 1984, 72, 1671–1686. doi:10.1109/PROC.1984.13073.
[CrossRef]

18. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration.
arXiv 2016, arXiv:1605.03344.

19. Stechschulte, J.; Ahmed, N.; Heckman, C. Robust low-overlap 3-D point cloud registration for outlier
rejection. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 20–24 May 2019; pp. 7143–7149. doi:10.1109/ICRA.2019.8793857. [CrossRef]

20. Mellado, N.; Mitra, N.; Aiger, D. Super 4PCS Fast Global Pointcloud Registration via Smart Indexing.
Comput. Graph. Forum 2014, 33. doi:10.1111/cgf.12446. [CrossRef]

21. Torres, D.; Cuevas, F. Three-dimensional Point-cloud Registration using a Genetic Algorithm and the Iterative
Closest Point Algorithm. In Proceedings of the International Conference on Evolutionary Computation
Theory and Applications (FEC-2011), Paris, France, 24–26 October 2011; pp. 547–552.

22. Zhang, X.; Yang, B.; Li, Y.; Zuo, C.; Wang, X.; Zhang, W. A method of partially overlapping
point clouds registration based on differential evolution algorithm. PLoS ONE 2018, 13, e0209227.
doi:10.1371/journal.pone.0209227. [CrossRef] [PubMed]

23. Silva, L.; Bellon, O.R.P.; Boyer, K.L. Precision Range Image Registration Using a Robust Surface
Interpenetration Measure and Enhanced Genetic Algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
2005, 27, 762–776. doi:10.1109/TPAMI.2005.108. [CrossRef] [PubMed]

24. Theiler, P.; Schindler, K. Automatic registration of terrestrial laser scanner point clouds using natural
planar surfaces. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 3, 173–178.
doi:10.5194/isprsannals-I-3-173-2012. [CrossRef]

25. Eckart, B.; Kim, K.; Kautz, J. EOE: Expected Overlap Estimation over Unstructured Point Cloud Data.
In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018;
pp. 747–755. doi:10.1109/3DV.2018.00090. [CrossRef]

https://doi.org/10.1117/12.2504772
http://dx.doi.org/10.1117/12.2504772
https://doi.org/10.1109/TSP.2019.8769057
http://dx.doi.org/10.1109/TSP.2019.8769057
https://doi.org/https://doi.org/10.1016/j.patrec.2016.06.002
http://dx.doi.org/10.1016/j.patrec.2016.06.002
https://doi.org/10.1007/s11263-017-1037-3
http://dx.doi.org/10.1007/s11263-017-1037-3
https://doi.org/10.1109/LRA.2017.2667721
http://dx.doi.org/10.1109/LRA.2017.2667721
https://doi.org/https://doi.org/10.1016/j.robot.2019.03.009
http://dx.doi.org/10.1016/j.robot.2019.03.009
https://doi.org/10.1109/34.982886
http://dx.doi.org/10.1109/34.982886
https://doi.org/10.3390/s17081862
http://dx.doi.org/10.3390/s17081862
http://www.ncbi.nlm.nih.gov/pubmed/28800096
https://doi.org/https://doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1016/j.imavis.2006.05.012
https://doi.org/10.1109/CVPR.2006.122
http://dx.doi.org/10.1109/CVPR.2006.122
https://doi.org/10.1109/PROC.1984.13073
http://dx.doi.org/10.1109/PROC.1984.13073
https://doi.org/10.1109/ICRA.2019.8793857
http://dx.doi.org/10.1109/ICRA.2019.8793857
https://doi.org/10.1111/cgf.12446
http://dx.doi.org/10.1111/cgf.12446
https://doi.org/10.1371/journal.pone.0209227
http://dx.doi.org/10.1371/journal.pone.0209227
http://www.ncbi.nlm.nih.gov/pubmed/30576346
https://doi.org/10.1109/TPAMI.2005.108
http://dx.doi.org/10.1109/TPAMI.2005.108
http://www.ncbi.nlm.nih.gov/pubmed/15875797
https://doi.org/10.5194/isprsannals-I-3-173-2012
http://dx.doi.org/10.5194/isprsannals-I-3-173-2012
https://doi.org/10.1109/3DV.2018.00090
http://dx.doi.org/10.1109/3DV.2018.00090


Remote Sens. 2020, 12, 61 20 of 20

26. Bazazian, D.; Casas, J.R.; Ruiz-Hidalgo, J. Fast and Robust Edge Extraction in Unorganized
Point Clouds. In Proceedings of the 2015 International Conference on Digital Image Computing:
Techniques and Applications (DICTA), Adelaide, SA, Australia, 23–25 November 2015; pp. 1–8.
doi:10.1109/DICTA.2015.7371262. [CrossRef]

27. Pauly, M.; Gross, M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. In Proceedings
of the IEEE Visualization (VIS 2002), Boston, MA, USA, 27 October–1 November 2002; pp. 163–170.
doi:10.1109/VISUAL.2002.1183771. [CrossRef]

28. Dalitz, C.; Schramke, T.; Jeltsch, M. Iterative Hough Transform for Line Detection in 3D Point Clouds.
Image Process. Line 2017, 7, 184–196. doi:10.5201/ipol.2017.208. [CrossRef]

29. Han, X.F.; Jin, J.; Wang, M.J.; Jiang, W.; Gao, L.; Xiao, L. A review of algorithms for filtering the 3D point
cloud. Signal Process. Image Commun. 2017, 57. doi:10.1016/j.image.2017.05.009. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/DICTA.2015.7371262
http://dx.doi.org/10.1109/DICTA.2015.7371262
https://doi.org/10.1109/VISUAL.2002.1183771
http://dx.doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.5201/ipol.2017.208
http://dx.doi.org/10.5201/ipol.2017.208
https://doi.org/10.1016/j.image.2017.05.009
http://dx.doi.org/10.1016/j.image.2017.05.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Point Cloud Registration Using Line Features Detection
	Line Detection
	Sharp Features Detection
	Line Features Detection

	Transformation Search
	Determining Rotation between Point-Clouds
	Constructing a New Search Space
	Object Shape Selection
	Fitting a Parabolic Cylinder

	Translation Search Using Parabolic Cylinder Approach
	Finding First Translational Parameter
	Determining Second Translational Parameter


	Experimental Evaluation
	Dataset Description
	Experimental Settings
	Parameter Tuning

	Experimental Results

	Discussion
	Determining the Parameter 
	Determining the Shape of the Geometrical Object Wrapped around A
	Determining the Parameters of the Geometrical Object Wrapped around A

	Conclusions and Future Work
	Parabolic Cylinder
	Finding Intersection of Lines and Parabolic Cylinder
	Determining Parameters of Parabolic Cylinder

	Binary Nearest Neighbor Search
	References

