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Abstract: Compared to conventional laboratory testing methods, crop nitrogen estimation methods
based on canopy spectral characteristics have advantages in terms of timeliness, cost, and practicality.
A variety of rapid and non-destructive estimation methods based on the canopy spectrum have
been developed on the scale of space, sky, and ground. In order to understand the differences in
estimation accuracy and applicability of these methods, as well as for the convenience of users
to select the suitable technology, models for estimation of nitrogen status of winter wheat were
developed and compared for three methods: drone equipped with a multispectral camera, soil
plant analysis development (SPAD) chlorophyll meter, and smartphone photography. Based on the
correlations between observed nitrogen status in winter wheat and related vegetation indices, green
normalized difference vegetation index (GNDVI) and visible atmospherically resistant index (VARI)
were selected as the sensitive vegetation indices for the drone equipped with a multispectral camera
and smartphone photography methods, respectively. The correlation coefficients between GNDVI,
SPAD, and VARI were 0.92 ** and 0.89 **, and that between SPAD and VARI was 0.90 **, which
indicated that three vegetation indices for these three estimation methods were significantly related
to each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content estimation
models for the drone equipped with a multispectral camera, SPAD, and smartphone photography
methods were 0.63, 0.54, and 0.81, respectively. In the estimation accuracy evaluation, the method of
smartphone photography had the smallest root mean square error (RMSE = 9.80 mg/kg). The accuracy
of the smartphone photography method was slightly higher than the other two methods. Due to the
limitations of these models, it was found that the crop nitrogen estimation methods based on canopy
spectrum were not suitable for the crops under severe phosphate deficiency. In addition, in estimation
of soil nitrate nitrogen content, there were saturation responses in the estimation indicators of the
three methods. In order to introduce these three methods in the precise management of nitrogen
fertilizer, it is necessary to further improve their estimation models.

Keywords: canopy spectrum; non-destructive nitrogen status diagnosis; drone; multispectral camera;
SPAD; smartphone photography

1. Introduction

Since the Green Revolution, chemical fertilizers have been widely applied in agricultural
production to greatly increase the crop yield [1]. Nowadays, about half of the crop growth depends
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on nitrogen (N) fertilizer, and global agriculture consumes more than 50% of the total chemical N
fixation each year [2]. However, the N use efficiency (NUE, the ratio of output N in yield to input N in
fertilizers) in agriculture is generally low, and the NUEs of cereal crops are only about 33% [3]. This
leads to an increased production cost. Furthermore, agricultural N pollution becomes a major problem
and threatens the environment and human health [4].

As a management model of modern agriculture and an effective way for sustainable development
of agriculture, precision agriculture has high potential in economic and ecological benefits of agricultural
production through specific inputs of various elements, such as water, fertilizers, and pesticides. In order
to implement precise management of N fertilizer, field sampling and laboratory testing methods are
often adopted to determine the content of various forms of N in plants and soil, so that the amount of
N fertilizer is recommended accordingly [5,6]. Although the laboratory testing methods are accurate,
they are time-consuming, labor-intensive, and costly. It is a challenge to conduct large-scale sample
monitoring while it is especially necessary for areas where farmland has large spatial variability [7].
Therefore, there is an urgent need to develop rapid, non-destructive, simple, and low-cost N estimation
techniques to meet the demands for agricultural production.

When a crop is subjected to N deficiency stress, its canopy reflectance spectrum will change in
certain bands. Consequently, using spectral diagnostic techniques, researchers have developed a
variety of rapid and non-destructive methods to estimate N status of crops on three scales: space,
sky, and ground. In space, satellite remote sensing can obtain spectral information of crops on a
relatively extensive area. Satellites with high spatial resolution, such as QuickBird, IKONOS, and
RapidEye, improved the ability to identify spatial heterogeneity of crop N status (CNS) [8,9]. It was
found that the green normalized difference vegetation index (GNDVI) of wheat (Triticum aestivum L.)
obtained by QuickBird image was significantly correlated with the N concentration of its flag leaves,
and GNDVI can be used to monitor the N status of wheat [10]. Eitel et al. [11] verified the ability of
RapidEye in wheat N estimation based on ground-based spectral observations. However, affected
by various factors such as the temporal resolution of remote sensing, cloud interference, and the cost
of commercial remote sensing images, satellite remote sensing often fails to meet the data needs for
N fertilizer management. In the sky, high-resolution ground information can be quickly obtained
at low cost and in real-time by using a multi-channel spectrometer or digital camera mounted on a
drone, which compensates for the shortcomings of the satellite remote sensing [12–14]. Using the
multispectral image or color image obtained by aerial photography, many vegetation indices (VIs)
can be calculated. Using these VIs, the N status of the crop can be estimated [15,16]. On the ground,
portable hyperspectral instruments and the soil plant analysis development (SPAD) chlorophyll meter
are widely used in crop N diagnosis and yield prediction by monitoring the spectral characteristics of
crops [17–20]. In recent years, digital cameras and smartphones have also been used in the research and
application for the crop N status estimation [21,22]. By combining the camera function of a smartphone
with the image analysis software installed on the smartphone, estimation of the crop N status and
fertilization recommendation can be implemented on-site. The convenience of the smartphone gives
this method a good application prospect [23,24].

The development of non-destructive estimation methods for CNS provides producers with a
variety of techniques to choose from in implementing precise management for N fertilizer. However,
these estimation methods differ in terms of equipment requirements, estimation accuracy, and
application limitations. Studies have reported that some kinds of VI (e.g., normalized difference
vegetation index, NDVI) can reach saturation in dense vegetation canopy, and the SPAD chlorophyll
meter has a saturation response at higher leaf chlorophyll content [25]. Facing different non-destructive
estimation methods, producers need to know how to make a smart choice suitable for a particular crop.
In addition, the comparison of various non-destructive estimation methods is beneficial to know their
limitations and meet different production demands through technical complementarity. Therefore,
the objective of this research was to compare the three methods of non-destructive estimation of
winter wheat N status, namely, a drone equipped with a multispectral camera (hereinafter referred
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to as UAVMC), SPAD, and smartphone photography (hereinafter referred to as PHONEP) methods.
By performing this inter-comparison, it is expected to clarify the applicability and limitations of these
three methods in the precision management of N fertilizer for winter wheat and provide a basis for the
improvement for these methods and simplify the selection of estimation methods for the producer.

2. Materials and methods

2.1. Field Experiments

The fertilizer level experiment was conducted at the Luancheng Agro-Ecosystem Experimental
Station (37.8897◦N, 114.6935◦E) of the Chinese Academy of Sciences. This area has loam soil and is
situated in the temperate semi-humid monsoon climate. The main crop rotation system is winter wheat
and maize (Zea mays L.), and all their straws after harvest are returned to the field. The experiment
has been established since 1997. There were 4 levels of N fertilizer applications: 0, 200, 400, and
600 kg(N)·ha−1

·a−1 (marked as N0, N1, N2, and N3, respectively), 3 levels of phosphorus (P): 0, 32.5,
and 64 kg(P)·ha−1

·a−1 (marked as P0, P1, and P2, respectively), and 2 levels of potassium (K): 0 and
50 kg(K)·ha−1

·a−1 (marked as K0 and K2, respectively). 1/4 of the total amount of N fertilizer was
applied as winter wheat base fertilizer, and 1/4 was applied as a top dressing at the jointing stage of
winter wheat, with the other 1/2 being applied as a top dressing for maize. 1/2 of the total K fertilizer
was applied as the base fertilizer for winter wheat, and the other 1/2 was applied as the top dressing
for maize. All P fertilizers were applied as base fertilizer for winter wheat. A total of 16 treatments
were selected from the orthogonal incomplete design. A randomized 48 plots (8 × 14 m2 each) with
3 replications of each treatment were arranged (as shown in Figure 1 and Table 1). The variety of the
winter wheat used was “Kelong199”.
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Figure 1. The arrangement of the fertilizer level experiment (aerial photography on 4 April 2019).

Table 1. The treatments of N, P, and K.

Treatment Plot Number
in Figure 1 Treatment Plot Number

in Figure 1 Treatment Plot Number
in Figure 1 Treatment Plot Number

in Figure 1

N3P1K1 1, 2, 3 N2P2K1 4, 5, 6 N1P1K1 7, 8, 9 N0P0K1 10, 11, 12
N3P0K0 22, 23, 24 N2P0K0 19, 20, 21 N1P0K0 16, 17, 18 N0P0K0 13, 14, 15
N3P1K0 25, 26, 27 N2P1K0 28, 29, 30 N1P1K0 31, 32, 33 N0P1K0 34, 35, 36
N3P2K0 46, 47, 48 N2P2K0 43, 44, 45 N1P2K0 40, 41, 42 N0P2K0 37, 38, 39

2.2. Aerial Photography of UAVMC and the Reference VIs

All of the experimental campaigns were conducted during the standing stage of the winter wheat
on 12 April 2018 and 4 April 2019, before topdressing in the jointing stage. The weather conditions were
all suitable for acquiring aerial photography (cloud-free without strong winds). Time was selected from
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10:00 a.m. to 2:00 p.m. with a relatively high solar altitude. Parrot Sequoia was used as a multispectral
camera in this study, which had two sensors: a multispectral sensor and a sunlight sensor, with a total
weight of 105 g. Spectral band parameters of the Parrot Sequoia are shown in Table 2. The sensors were
mounted on an unmanned aerial vehicle DJI Phantom 4 quadrotor drone to acquire aerial photography.

In order to cover all the experimental area with enough overlaps, the aerial routes were
programmed by the drone ground station software (DJI Ground Station Pro, an iPad app). The flight
altitude was set to 50 m, and the frontal and side overlaps were all set to 80%. Before each flight,
the multispectral images of a calibration target provided by the manufacturer were recorded for the
radiometric calibration in post-processing. After uploading the aerial route to the drone, the drone
completed the programmed flight and the spectrum camera took the images automatically. Pix4D
software was used for the post-processing of the multispectral images to obtain an entire image of
the experimental area and its reflectance data for the 4 bands. Figure 2 shows the pseudo color
multispectral image of the experimental area.

Table 2. Specification of the Sequoia multispectral sensor used in this study.

Band Band Width(nm) Wave Width(nm) Image Resolution Field of ViewH◦ × V◦

Green 40 550 1280 × 960 62.2 × 48.7
Red 40 660 1280 × 960 62.2 × 48.7

Red edge 40 735 1280 × 960 62.2 × 48.7
Near Infrared 40 790 1280 × 960 62.2 × 48.7
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Infrared).

Referring to the related research in remote sensing monitoring of CNS, 11 commonly used VIs
(see Table 3) that can be retrieved using the multispectral image were selected as reference VIs. The most
sensitive VI will be selected from them to establish the estimation models for N status for winter wheat.

Table 3. VIs derived from the multispectral image used in this study.

Name of VI Abbreviation Equation Reference

Difference vegetation index DVI DVI = RNIR −RRED [26]
Green normalized difference

vegetation index GNDVI GNDVI = (RNIR −RGRE)/(RNIR + RGRE) [27]

Modified non-linear vegetation
index MNLI MNLI =

(
1.5R2

NIR − 1.5RGRE
)
/
(
R2

NIR + RRED + 0.5
)

[28]

The second modified
soil-adjusted vegetation index MSAVI2 MSAVI2 =

2RNIR+1−
√
(2RNIR+2)2

−8(RNIR−RRED)

2
[29]

Modified simple ratio MSR MSR =

(
RNIR
RRED

−1
)

(√
RNIR
RRED

+1
) [30]
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Table 3. Cont.

Name of VI Abbreviation Equation Reference

Normalized vegetation index NDVI NDVI = (RNIR −RRED)/(RNIR + RRED) [31]
Non-linear vegetation index NLI NLI =

(
R2

NIR −RRED
)
/
(
R2

NIR + RRED
)

[32]
Optimized soil-adjusted

vegetation index OSAVI OSAVI = (RNIR −RRED)/(RNIR + RRED + 0.16) [33]

Renormalized difference
vegetation index RDVI RNDVI = (RNIR −RRED)/

√
(RNIR + RRED) [34]

Ratio vegetation index RVI RVI = RNIR/RRED [35]
Soil-adjusted vegetation index SAVI SAVI = 1.5(RNIR −RRED)/(RNIR + RRED + 0.5) [36]

Where RRED, RGRE, and RNIR are reflectances of the red, green, and near-infrared bands, respectively.

2.3. Taking Photos of Winter Wheat with a Smartphone and the Reference Color-Based VIs

Studies have shown that there were no significant differences in the color parameters of the canopy
photos obtained by different mobile phones [22]. Based on the previous research on the changes in
canopy color parameters caused by different photographing methods, winter wheat was photographed
by a smartphone at a height of 1 meter above the canopy and a 60◦ angle to the ground [22]. Using
automatic exposure mode, photos were taken at three different locations in each plot and saved as JPG
format. Figure 3 shows the winter wheat canopy photos from plots with different N fertilizer levels.
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Figure 3. Winter wheat canopy photos. (a–d) Are from the plots with N3, N2, N1, and N0, respectively.

A variety of color-based VIs can be obtained by combining calculations using the Red (R), Green
(G), and Blue (B) color channel values of the crop canopy photo. Referring to the related research on
the estimation of CNS using canopy photo, 10 color-based VIs were selected as reference VIs for the
establishment of estimation models (Table 4).
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Since the photos of winter wheat in the field were taken at different time points, the values of the
R, G, and B channels were susceptible to the intensity of the sun’s illumination, suggesting that the
absolute values of the single-color channels of the photos were not suitable for the estimation of CNS.
To eliminate the effects of solar illumination changes, color-based VIs are often calculated using the
ratio of different color channels or standardized form [37,38]. Therefore, this study normalized the
original calculation equations of EXG and GMR in Table 4 by dividing (2G − R − B) and (G − R) by
(R + G + B), respectively, in order to eliminate the influence of solar illumination changes.

Table 4. Color-based VIs used in this study.

Name of VI Abbreviation Equation Reference

The dark green color index DGCI DGCI = ((H− 60)/60 + (1− S) + (1− B))/3 [39]
Excess green index EXG EXG = (2G−R− B)/(R + G + B) [40]

Green leaf index GLI GLI = (2G−R− B)/(2G + R + G) [41]
The difference between green and red GMR GMR = (G−R)/(R + G + B) [42,43]

Green-red vegetation index GRVI GRVI = (G−R)/(G + R) [41]
Normalized blueness intensity NBI NBI = B/(R + G + B) [44]

Normalized greenness intensity NGI NGI = G/(R + G + B) [44]
Normalized redness intensity NRI NRI = R/(R + G + B) [44]

SAVI green SAVIGreen SAVIGreen = 1.5(G−R)/((G + R + 0.5)) [45]
Visible atmospherically resistant index VARI VARI = (G−R)/(R + G− B) [46]

The dark green color index DGCI DGCI = ((H− 60)/60 + (1− S) + (1− B))/3 [39]

Where, R, G, and B are the values of the red, green, and blue channels, respectively.

2.4. Measurements of Nitrogen (N) Status of Winter Wheat

Conventional laboratory testing methods were adopted to measure the N status of winter wheat
on 12 April 2018 and 4 April 2019. The above-ground part of winter wheat was sampled from 1 m2 in
each plot, and total N (TN) was measured using the Kjeldahl method. Winter wheat root zone soil
layers in each plot were collected at the depths of 0–30 cm, 30–60 cm, and 60–90 cm, respectively. These
soil samples were extracted with 1 mol·L−1 KCl and the nitrate nitrogen content was measured using
the ultraviolet (UV) spectrometry method. 30 winter wheat samples were randomly selected in each
plot. The SPAD value of the first fully expanded leaf of each sample was measured in the field with a
SPAD-502 chlorophyll meter, and the average value was recorded as the SPAD value for this plot.

2.5. Analytical Methods

Considering the wide application of soil testing and formula fertilization technology in precision
agriculture, the estimation models for soil nitrate nitrogen content were developed for the methods of
UAVMC, SPAD, and PHONEP in this study respectively, with the nitrate nitrogen content of winter
wheat root zone soil layers being the inversion targets.

For the UAVMC method, the first step was to remove pixels of bare soil from the multispectral
images to avoid the contamination of bare ground on the analysis. To achieve this goal, the NDVI
of this area was calculated using the multispectral image according to the equation listed in Table 3.
Winter wheat and bare soil were distinguished to obtain the mask files for winter wheat in 2018 and
2019 based on the threshold for bare soil NDVI. The 11 VIs of winter wheat listed in Table 3 were
calculated using multispectral images and the mask files for winter wheat. Correspondingly, the
average value of these VIs for each plot was obtained using the map for the 48 plots. Based on the
correlation analysis between the 11 VIs, TN of winter wheat, and the soil nitrate nitrogen content of
each layer (excluding the data for the P0 plots, as for the other two methods), the VI with the largest
correlation coefficient was selected to establish the estimation models for the inversion of soil nitrate
nitrogen content in root layers.

For the SPAD method, the correlations between SPAD values, TN of winter wheat, and the soil
nitrate nitrogen content of each layer were analyzed. Then, the estimation models were established
based on the regression equations of SPAD values and soil nitrate nitrogen content in root layers.
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For the method of PHONEP, the analysis procedures were similar to the UAVMC method.
To remove the non-vegetation pixels in each photo, SAVIGreen and GMR were calculated using the R,
G, and B of the winter wheat canopy photos referring to the equations in Table 4. According to the
threshold (SAVIGreen > 0 and GMR > 0), the leaf mask for each photo was obtained [44,45]. Using
the corresponding leaf mask, the average values of 10 VIs of winter wheat in Table 4 were calculated
for each canopy photo. There were 3 photos for each plot, and the average value of the 10 VIs in the
3 photos was taken as the value for this plot. Similarly, based on the correlations between the 10 VIs,
the TN of winter wheat, and the soil nitrate nitrogen content for each layer, the VI with the largest
correlation coefficient was selected to establish estimation models of soil nitrate nitrogen content in
root layers.

All the data from 2018 and half of the data from 2019 (data of plots numbered 1 to 24 as shown
in Figure 1) were used for the development of estimation models. The remaining data (data of plots
numbered 25 to 48 in 2019) were used to evaluate the estimation accuracy of the three methods by
the parameters of determination coefficient (R2) and root mean square error (RMSE). The RMSE was
calculated from:

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (1)

where n was the number of plots, and ŷ, yi were the estimated and measured values, respectively. The
correlations between the measured CNS (TN and nitrate nitrogen content at different soil layers) and
reference VIs were analyzed using SPSS software. The calculation and spatial statistics of the VIs using
multispectral images and canopy photos were implemented by the ERDAS IMAGINE software.

3. Results

3.1. Variation of CNS in the Fertilizer Level Experiment

The N supply for winter wheat was routinely determined by the nitrate content in root zone soil
from the jointing stage to the harvest of winter wheat (0–90 cm) [47]. This practice was usually used in
order to determine the amount of N fertilizer needed. The level of TN for winter wheat could also
reflect the N status of the crop and was closely related to the N supply capacity of the root zone soil.
Therefore, the nitrate nitrogen content in the 0–90 cm soil layer and the TN of winter wheat were
measured in this study. As shown in Figure 4, due to the water, fertilizer, and other managements
that were identical every year in the variable fertilizer level experiment, the two parameters measured
during the same period in 2018 and 2019 were very close to each other. The biggest inter-annual
differences of the nitrate nitrogen content of 0–90 cm soil and the TN of winter wheat were 28.20 mg/kg
and 0.52%, respectively.

The distributions of the two parameters were consistent with the setting of the N fertilizer levels.
With the increase of N fertilizer application, both parameters showed an upward trend. It is worth
noting that the two parameters for the plots where P was 0 (numbered 10 to 24 in Figure 1). The content
of soil nitrate nitrogen showed a rapid increase, while the TN of winter wheat in plots 16 to 24 stayed
at around 3.05%. The severe shortage of P fertilizer inhibited the absorption of N fertilizer by winter
wheat, and the accumulation of N fertilizer in the soil made the content of nitrate nitrogen of these plots
significantly higher than that of other plots. Therefore, the data from these P0 plots were excluded
during analysis.
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Figure 4. The distribution of TN of winter wheat and 0–90 cm soil nitrate nitrogen content in different
fertilizer level experimental plots (2018 and 2019).

3.2. Estimation Models for the Method of UAVMC

The correlations between the 11 spectral VIs of winter wheat, TN of plant, and the nitrate nitrogen
content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers were analyzed, and all the correlation
coefficients are listed in Table 5. All the 11 spectral VIs of winter wheat were significantly and positively
correlated to the TN of their plants. Among these VIs, the correlation coefficient between GNDVI and
TN of plants was the highest, reaching to 0.90 **. Although the correlation coefficient between RVI and
TN of plants was the lowest, it still reached to 0.83 **. The N status of winter wheat was closely related
to its spectral characteristics.

During the standing stage of winter wheat, 92.7% of its total root length was concentrated in the
soil root layer of 0–40 cm [48]. Therefore, the N status of winter wheat should be closely related to
the N supply capacity of the upper soil layer. The correlation coefficients between 11 spectral VIs
and the 0–30 cm soil nitrate nitrogen content were the highest. With the increase of soil depth, the
correlation coefficients decreased gradually. Among all the spectral VIs, the correlation coefficients
between GNDVI and soil nitrate nitrogen content of the three layers were the highest. They were
0.52 **, 0.48 **, and 0.42 ** from the top to bottom layers. For the whole soil layer (0–90 cm), the
correlation coefficient was 0.52 **.

Table 5. Correlation coefficients between spectral VIs and nitrogen status of plant and soil.

Spectral VIs With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 cm 60–90 cm 0–90 cm

DVI 0.88 ** 0.49 ** 0.46 * 0.38 * 0.50 **
GNDVI 0.90 ** 0.52 ** 0.48 ** 0.42 ** 0.52 **
MNLI 0.87 ** 0.51 ** 0.47 ** 0.38 * 0.51 **

MSAVI2 0.87 ** 0.50 ** 0.46 ** 0.37 * 0.51 **
MSR 0.89 ** 0.51 ** 0.48 ** 0.39 ** 0.52 **

NDVI 0.88 ** 0.47 ** 0.43 ** 0.37 * 0.48 **
NLI 0.89 ** 0.44 ** 0.39 * 0.34 * 0.44 **

OSAVI 0.89 ** 0.45 ** 0.39 * 0.34 * 0.45 **
RDVI 0.89 ** 0.51 ** 0.43 ** 0.37 * 0.50 **
RVI 0.83 ** 0.50 ** 0.38 * 0.26 * 0.46 **

SAVI 0.88 ** 0.45 ** 0.40 ** 0.35 * 0.45 **

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level. (Data from 2018 and 2019).
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Correlation analysis showed that GNDVI was the most sensitive spectral VI with N status of
winter wheat. Therefore, GNDVI was selected as the estimation indicator, and the estimation models
were established for the inversion of soil nitrate nitrogen content in different root depths of winter
wheat. The models were:

Estimation model for 0–30 cm:

Y0–30 = 659.65GNDVI4.667 R2 = 0.61 (2)

Estimation model for 30–60 cm:

Y30–60 = 218.88GNDVI5.033 R2 = 0.60 (3)

Estimation model for 60–90 cm:

Y60–90 = 782.74GNDVI7.747 R2 = 0.54 (4)

Estimation model for 0–90 cm:

Y0–90 = 415.16GNDVI4.984 R2 = 0.63 (5)

3.3. Estimation Models for the SPAD Method

The correlation coefficients between the SPAD value of winter wheat leaves and TN of plants,
nitrate nitrogen content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers are shown in
Table 6. SPAD and all winter wheat N status parameters were significantly correlated. The correlation
coefficients between the SPAD value and soil nitrate nitrogen content decreased gradually with the
increase of soil depth.

Table 6. Correlation coefficients between SPAD value and N status of plant and soil.

With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 m 60–90 cm 0–90 cm

SPAD 0.85 ** 0.57 ** 0.50 ** 0.43 ** 0.55 **

** Correlation is significant at the 0.01 level (Data from 2018 and 2019).

Taking the SPAD value as the estimation indicator, the estimation models for soil nitrate nitrogen
content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm layers were:

Estimation model for 0–30 cm:

Y0–30 = 3.79 ∗ 10−5SPAD3.530 R2 = 0.55 (6)

Estimation model for 60–30 cm:

Y30–60 = 6.52 ∗ 10−6SPAD3.639 R2 = 0.45 (7)

Estimation model for 60–90 cm:

Y60–90 = 5.19 ∗ 10−9SPAD5.360 R2 = 0.45 (8)

Estimation model for 0–90 cm:

Y0–90 = 1.11 ∗ 10−5SPAD3.676 R2 = 0.54 (9)
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3.4. Estimation Models for the PHONEP Method

The correlation coefficients between 10 color-based VIs of winter wheat, TN of plants, and the
nitrate nitrogen content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers are shown in Table 7.
All the color-based VIs were significantly correlated with the TN of the plants. Among them, EXG,
GLI, NGI, and NRI were negatively correlated, and the rest were positively correlated. Affected by
the distribution characteristics of winter wheat roots, the correlation coefficients between color-based
VIs and soil nitrate nitrogen content decreased with the increase of depth. Among the 10 color-based
VIs, VARI had the best correlation with TN of plants, and its correlation coefficient was 0.91 **. The
correlation coefficients between VARI and the soil nitrate content in 0–30 cm, 30–60 cm, and 0–90 cm
soil layers were the largest. In the soil layers 60–90 cm, the correlation coefficient of VARI was slightly
lower than that of DGCI. Considering that the correlation coefficients between VARI and TN of plant,
0–30 cm, 30–60 cm, and 0–90 cm soil nitrate nitrogen content were the largest, VARI was selected as the
most sensitive color-based VI to establish the estimation model. Similarly, VARI was also selected by
other researchers to develop the crop N estimation models [22,48].

Table 7. Correlation coefficients between color-based VIs and nitrogen status of plant and soil.

Color-Based VIs With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 cm 60–90 cm 0–90 cm

DGCI 0.70 ** 0.64 ** 0.63 ** 0.62 ** 0.66 **
EXG −0.71 ** −0.65 ** −0.64 ** −0.59 ** −0.64 **
GLI −0.54 ** −0.64 ** −0.61 ** −0.56 ** −0.61 **

GMR 0.68 ** 0.45 ** 0.33 * 0.21 * 0.40 **
GRVI 0.83 ** 0.55 ** 0.55 ** 0.53 ** 0.57 **
NBI 0.65 ** 0.67 ** 0.60 ** 0.60 ** 0.64 **
NGI −0.49 ** −0.57 ** −0.54 ** −0.50 ** 0.54 **
NRI −0.77 ** −0.64 ** −0.62 ** −0.54 ** 0.65 **

SAVIGreen 0.68 ** 0.54 ** 0.48 ** 0.38 * 0.52 **
VARI 0.91 ** 0.72 ** 0.67 ** 0.60 ** 0.72 **

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level (Data from 2018 and 2019).

Taking the VARI as the estimation indicator, the estimation models for soil nitrate nitrogen content
in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm layers were:

Estimation model for 0–30 cm:

Y0–30 = 4311.7VARI2.1796 R2 = 0.82 (10)

Estimation model for 30–60 cm:

Y30–60 = 2580.3VARI2.4889 R2 = 0.71 (11)

Estimation model for 60–90 cm:

Y60–90 = 6750.4VARI3.286 R2 = 0.67 (12)

Estimation model for 0–90 cm:

Y0–90 = 2904.2VARI2.3097 R2 = 0.81 (13)

3.5. Validation

In view of the guiding role of root zone soil nitrate nitrogen content in the precise management
of N fertilizer, the accuracy of the estimation models for the 0–90 cm soil nitrate nitrogen content
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by using the methods of UAVMC, SPAD, and PHONEP were evaluated. Figure 5 shows the linear
correlations between nitrate nitrogen content in the 0–90 cm soil obtained by the laboratory testing
method and that estimated by the three methods. The PHONEP method had the best estimation
accuracy (R2 = 0.93 and RMSE = 9.80 mg/kg). The SPAD method had the lowest estimation accuracy
(R2 = 0.61 and RMSE = 19.80 mg/kg). For the method of UAVMC, R2 is 0.86 and RMSE is 12.40 mg/kg.
As shown in Figure 5, all three methods had relatively high estimation accuracy in the low-value
areas of soil nitrate nitrogen content. While in the high-value areas of soil nitrate nitrogen content, the
estimated values of the three methods were significantly lower than the measured values.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 5. Correlations between nitrate nitrogen content in the 0–90 cm soil layers (mg/kg) obtained by
the laboratory testing method and estimated by the methods of UAVMC, SPAD, and PHONEP.

4. Discussion

4.1. Comparison of the Three Estimation Methods

In this study, GNDVI, SPAD, and VARI were selected as estimation indicators for the three
methods to establish estimation models for soil nitrate nitrogen content. The correlation coefficients
between GNDVI, SPAD, and VARI were 0.92 ** and 0.89 ** respectively, and that between SPAD and
VARI was 0.90 **. The significant correlation between these three indicators showed a high similarity
of the three methods in the estimation of soil nitrate nitrogen content.

For the estimation models, the determination coefficients of the estimation equations for the
PHONEP method were 0.82, 0.71, 0.67, and 0.81 for the soil layers of 0–30 cm, 30–60 cm, 60–90 cm, and
0–90 cm respectively, which were all slightly higher than the other two methods. The determination
coefficients and RMSEs in the estimation accuracy evaluation indicated that the PHONEP method was
the best, while the SPAD method was the worst method in terms of the estimation accuracy.

4.2. Effect of P Fertilizer Shortage on CNS Estimation

Considering the synergistic effects of N, P, and K in the nutrient intake of crops, the severe shortage
of P fertilizer could inhibit the absorption of N by crops, and therefore, the P0 plots were excluded from
the analyses. In order to analyze the impact of P fertilizer shortage on the diagnosis of CNS, taking
VARI as an example, the estimation models with and without the data from P0 plots were compared.

In the fertilizer level experiment, plots with P0 contained four levels of N fertilizer, N0, N1, N2,
and N3. As shown in Figure 6a, the points with P0 are concentrated at the lower left of the figure. This
finding indicated that even if the N fertilizer was sufficient (such as N3), the TN of winter wheat plant
was still generally low. If the points with P0 were removed, the correlation between VARI and TN of
winter wheat plants was significantly improved (Figure 6b). The smaller VARI was correlated with
the lower nitrate nitrogen content in the soil layer of 0–90 cm as shown in Equation (13). However,
in Figure 6c, there were some points with low VARI and high soil nitrate nitrogen content in the
0–90 cm soil layer. This could be attributed to the shortage of P fertilizer. When this happened, the
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NUE of winter wheat was reduced, leading to the retention of applied N in the soil. If these P0 points
were excluded, the determination coefficient of the fitted equation for VARI and the 0–90 cm soil
nitrate nitrogen content was significantly increased (Figure 6d). Results showed that the estimation
method based on the canopy spectrum of winter wheat was not suitable for the estimation of N status
of crops under a severe P fertilizer shortage. In actual production, the amount of P fertilizer applied
was generally not too low to affect the absorption of N fertilizer by crops. Nevertheless, we should pay
attention to the existence of this phenomenon.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 16 
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Figure 6. The impacts of P fertilizer shortage on N estimation model for the PHONEP method.
(a,b) Are the distributions between VARI and TN of plant for the data including and excluding P0 plots,
respectively. (c,d) Are the distributions between VARI and nitrate nitrogen content in the 0–90 cm soil
layer for the data including and excluding P0 plots, respectively.

Due to the fact that more than 80% of the K absorbed by crops was stored in its straw, these K
could be quickly released into the soil by straw returning [49]. In this way, plots with K0 in the fertilizer
level experiment could get enough K to support the growth of winter wheat. Therefore, data from
plots with K0 were involved in the development of estimation models.

4.3. The Saturation Response of the Estimation Indices

Some VIs (such as NDVI) might reach saturation in high-density vegetation areas [50], and the
SPAD method had this limitation when N supply was sufficient for the crop as well [51]. Taking
the measurements in this study as an example (excluding P0 plots), the saturation response of the
estimation VIs (GNDVI, SPAD, and VARI) of the three methods in inversion of the 0–90 cm soil nitrate
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nitrogen content was analyzed and is shown in Figure 7. The distributions of the three VIs were similar
to each other. In the low-value region of soil nitrate nitrogen content in the 0–90 cm depth, all the
three VIs and the soil nitrate nitrogen content showed the quadratic polynomial correlations. With the
increase of soil nitrate nitrogen content, the three VIs rapidly increased and reached their maximum
values, i.e., their saturation points. After the saturation points, the three VIs did not significantly
increase with the increase of nitrate nitrogen content in the soil. As shown in Figure 7a,b, the values
of GNDVI and SPAD were hardly changed after their saturation points. Figure 7c showed that the
value of soil nitrate nitrogen content at the saturation point of VARI was greater than that of GNDVI
and SPAD. Moreover, after its saturation point, with the increase of soil nitrate nitrogen content, VARI
tended to increase slowly. This indicated that the PHONEP method was relatively better than the
other two methods. Therefore, it is necessary to pay attention to the saturation response of VIs for the
estimation of CNS, or to improve the estimation accuracy by using the method of segmentation.
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Figure 7. Analyses of the saturation response of GNDVI, SPAD, and VARI. (a–c) Show the saturation
response for the method of GNDVI, SPAD, and VARI, respectively.
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5. Conclusions

Fertilizers play irreplaceable roles in agricultural production, making it possible to provide more
food from limited arable land for a growing population. However, excessive application for fertilizers
and low use efficiency have increased the production cost and environmental pollution. It is crucial to
implement rational use of chemical fertilizers under the premise of ensuring substantial grain yields.
In order to achieve this goal, practical crop nutrient estimation methods and fertilization techniques
are needed, especially for the N fertilizer that has the largest application amount. Compared to the
laboratory testing method, rapid non-destructive estimation methods of CNS based on the canopy
spectrum have more advantages in terms of timeliness, cost, practicality, and thus, have received
extensive attention and research.

Based on the fertilizer level experiment conducted during 2018 and 2019, GNDVI and VARI were
selected as the sensitive VIs for the methods UAVMC and PHONEP, respectively. The correlation
coefficients between GNDVI and SPAD, VARI were 0.92 ** and 0.89 **, and the correlation coefficient
between SPAD and VARI was 0.90 **. The estimation VIs for the three methods were significantly
correlated with each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content
estimation models for the UAVMC, SPAD, and PHONEP methods were 0.63, 0.54, and 0.81, respectively.
Moreover, the PHONEP method had the smallest RMSE (9.8 mg/kg) in the estimation accuracy
evaluation. Therefore, in terms of estimation accuracy, the PHONEP method was slightly higher than
the other two methods. In addition, it was found that CNS estimation methods based on canopy
spectrum were not suitable for crops under severe P deficiency due to the synergistic effects between
different nutrients. At the same time, the estimation VIs of the three methods had a saturation response
in the estimation of soil nitrate nitrogen content. The method of UAVMC is suitable for rapid CNS
estimation for large-area crops, and SPAD and PHONEP are convenient for the random sampling and
monitoring of crops. All three methods have good application prospects, but their estimation models
still need to be further improved in order to achieve an efficient application in the precise management
of N fertilizer.
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