Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum
Abstract
:1. Introduction
- Providing an evaluation framework of predicting the uplink SINR in IoT-over-satellite communication.
- Providing a model for obtaining the aggregated uplink interference of terrestrial shared ISM band users as seen from the satellite’s perspective.
- Providing a model for predicting satellite link-availability based on a given antenna beamwidth.
- Finding the optimal beamwidth of satellite antenna beamwidth to maximize link-availability.
2. Background and Literature Review
2.1. Lower-Power IoT Technologies
2.2. IoT Spectrum Sharing
3. IoT-over-Satellite Performance Modeling
3.1. Orbital Mechanics and Geometric Model
3.2. Satellite Channel Model
3.2.1. Air Absorption
3.2.2. Excessive Path Loss Model
3.3. Terrestrial Interference Model
3.3.1. Use Case Scenarios and Interference Population Thinning
- Class 1 (sea): Interference sources on the sea level and are at least 100 km away from the urban and suburban areas. Class 1 is having the lowest interference since the smallest amount of IoT devices are located in Class 1. Since the focus of the paper is on estimating the terrestrial interference from the land, we assume there are no IoT devices on the sea level.
- Class 2 (remote): Interference sources that score more than 10 in the ARIA (ARIA G5) representing a remote area, which is at least 141 km away from the nearest remote center, 264 km away from the nearest rural center, and 614 km away from the nearest suburban center. Class 2 is likely to have lower interference than Class 3.
- Class 3 (rural): Interference sources that score between 5–10 in the ARIA (ARIA G4) representing a rural area, which is around 217 km away from the nearest suburban center, 134 km away from the nearest rural center. Class 3 is expected to have the highest interference among these classes.
3.3.2. SINR Model and Communication System Model
3.4. Communication System Model
4. SINR Model Approximation and Optimal Parameter of IoT-over-Satellite
4.1. Uplink SINR in Australia
4.2. IoT-over-Satellite Duty Cycle and Optimal Beamwidth Modeling
5. Optimal Operating Parameters
5.1. Optimal Beamwidth of LEO Satellite Antenna
5.2. Finding the Minimum SF in Different Region
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qu, Z.; Zhang, G.; Cao, H.; Xie, J. LEO satellite constellation for Internet of Things. IEEE Access 2017, 5, 18391–18401. [Google Scholar] [CrossRef]
- Sanctis, M.D.; Cianca, E.; Araniti, G.; Bisio, I.; Prasad, R. Satellite Communications Supporting Internet of Remote Things. IEEE Internet Things J. 2016, 3, 113–123. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Nishiyama, H.; Kato, N.; Yoshimura, N.; Yamamoto, S. Internet of things (IoT): Present state and future prospects. IEICE Trans. Inf. Syst. 2014, 97, 2568–2575. [Google Scholar] [CrossRef] [Green Version]
- Hornillo-Mellado, S.; Martín-Clemente, R.; Baena-Lecuyer, V. Prediction of Satellite Shadowing in Smart Cities with Application to IoT. Sensors 2020, 20, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Gu, X.; Guo, Q.; Xiang, W.; Zhang, N. Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G. IEEE Wirel. Commun. 2016, 23, 96–106. [Google Scholar] [CrossRef]
- Kodheli, O.; Guidotti, A.; Vanelli-Coralli, A. Integration of Satellites in 5G through LEO Constellations. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Alliance, L. LoRaWAN® Regional Parameters; LoRa Alliance: Fremont, CA, USA, 2019; Available online: https://lora-alliance.org/sites/default/files/2020-01/rp_2-1.0.0_final_release.pdf (accessed on 21 May 2020).
- 3rd Generation Partnership Project (3GPP). Solutions for NR to Support Non-Terrestrial Networks (NTN). 2019. Available online: http://www.3gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_86/Docs/RP-193062.zip (accessed on 5 April 2020).
- 3rd Generation Partnership Project (3GPP). Study on Architecture Aspects for Using Satellite Access in 5G. 2019. Available online: http://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_86/Docs/SP-191095.zip (accessed on 5 April 2020).
- Roddy, D. Satellite Communications, (Professional Engineering); McGraw-Hill Professional: New York, NY, USA, 2006. [Google Scholar]
- Fairhurst, G.; Caviglione, L.; Collini-Nocker, B. FIRST: Future Internet—A role for satellite technology. In Proceedings of the 2008 IEEE International Workshop on Satellite and Space Communications, Toulouse, France, 1–3 October 2008; pp. 160–164. [Google Scholar]
- Foreman, V.L.; Siddiqi, A.; De Weck, O. Large satellite constellation orbital debris impacts: Case studies of oneweb and spacex proposals. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5200. [Google Scholar]
- Celandroni, N.; Ferro, E.; Gotta, A.; Oligeri, G.; Roseti, C.; Luglio, M.; Bisio, I.; Cello, M.; Davoli, F.; Panagopoulos, A.D.; et al. A survey of architectures and scenarios in satellite-based wireless sensor networks: System design aspects. Int. J. Satell. Commun. Netw. 2013, 31, 1–38. [Google Scholar] [CrossRef]
- Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Marchese, M.; Moheddine, A.; Patrone, F. IoT and UAV Integration in 5G Hybrid Terrestrial-Satellite Networks. Sensors 2019, 19, 3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 3rd Generation Partnership Project (3GPP). Study on Narrow-Band Internet of Things (NB-IoT)/Enhanced Machine Type Communication (eMTC) Support for Non-Terrestrial Networks (NTN). 2019. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3747 (accessed on 5 April 2020).
- Janhunen, J.; Ketonen, J.; Hulkkonen, A.; Ylitalo, J.; Roivainen, A.; Juntti, M. Satellite Uplink Transmission with Terrestrial Network Interference. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Homssi, B.A.; Al-Hourani, A.; Evans, R.J.; Chavez, K.G.; Kandeepan, S.; Rowe, W.S.T.; Loney, M. Free Spectrum for IoT: How Much Can It Take? In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- ITU-R, Rec. P. 676-12: Attenuation by Atmospheric Gases in the Frequency Range 1–350 GHz; Propagat. Radiowave Propagation; Electronic Publication: Geneva, Switzerland, 2019; Available online: https://www.itu.int/rec/R-REC-P.676-12-201908-I/en (accessed on 21 May 2020).
- Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms in urban environments. In Proceedings of the 2014 IEEE Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12 December 2014; pp. 2898–2904. [Google Scholar]
- ITU-R, Rec. P. 1410-5: Propagation Data and Prediction Methods Required for the Design of Terrestrial Broadband Radio Access Systems Operating in a Frequency Range from 3 to 60 GHz; Propagat. Radiowave Propagation; Electronic Publication: Geneva, Switzerland, 2013; Available online: https://www.itu.int/rec/R-REC-P.1410/en (accessed on 21 May 2020).
- Ayele, E.D.; Hakkenberg, C.; Meijers, J.P.; Zhang, K.; Meratnia, N.; Havinga, P.J. Performance analysis of LoRa radio for an indoor IoT applications. In Proceedings of the 2017 International Conference on Internet of Things for the Global Community (IoTGC), Funchal, Portugal, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Schodorf, J.B. Land-Mobile Satellite Communications. In Wiley Encyclopedia of Telecommunications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471219282.eot298 (accessed on 21 May 2020).
- Cakaj, S. Rain attenuation impact on performance of satellite ground stations for low earth orbiting (LEO) satellites in Europe. Int. J. Commun. Netw. Syst. Sci. 2009, 2, 480. [Google Scholar] [CrossRef] [Green Version]
- Australian Communications and Media Authority (ACMA). Short-Range Spread-Spectrum Devices Fact Sheet ACMA. 2019. Available online: https://www.acma.gov.au/Industry/Spectrum/Radiocomms-licensing/Class-licences/shortrange-spreadspectrum-devices-fact-sheet (accessed on 15 December 2019).
- The Internet of Things Alliance Australia (IoTA). Spectrum Available for IoT. 2016. Available online: https://http://www.iot.org.au/wp/wp-content/uploads/2016/12/IoTSpectrumFactSheet.pdf (accessed on 15 December 2019).
- Brouwer, D. Solution of the problem of artificial satellite theory without drag. Astron. J. 1959, 64, 378–430. [Google Scholar] [CrossRef]
- Lane, M.H.; Hoots, F.R. General Perturbations Theories Derived from the 1965 Lane Drag Theory; Project Space Track: New York, NY, USA, 1979; pp. 1–60. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a081264.pdf (accessed on 21 May 2020).
- 3rd Generation Partnership Project (3GPP). Study on New Radio (NR) to Support Non-Terrestrial Networks. 2019. Available online: http://www.3gpp.org/ftp//Specs/archive/38_series/38.811/38811-f20.zip (accessed on 25 April 2020).
- Ericsson. Ericsson Mobility Report. 2019. Available online: https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf (accessed on 15 December 2019).
- Glover, J.D.; Tennant, S.K. Remote Areas Statistical Geography in Australia: Notes on the Accessibility/Remoteness Index for Australia (ARIA+ Version). 2003. Available online: https://www.adelaide.edu.au/hugo-centre/services/aria (accessed on 15 December 2019).
NB-IoT | SigFox | LoRaWAN | Wi-Fi 802.11ah | |
---|---|---|---|---|
Carrier Frequency | LTE bands | 915 MHz | 915 MHz | 2.4 or 5 GHz |
Channel bandwidth | 200 kHz | 100 Hz | ≥125 kHz | 1/2/4/8/16 MHz |
Modulation Scheme | QPSK | BPSK | CSS | N-QAM/NPSK |
Transmit power | 23 dBm | 20 dBm | 30 dBm | 30 dBm |
Access Scheme | SR + ALOHA | ALOHA | ALOHA | CSMA/CA |
Company | Satellite Constellation | Frequency Band | Coverage | Transmit Power [dBm] | Targeting User |
---|---|---|---|---|---|
Iridium | constellation | 1616–1626.5 MHz | worldwide | less than 32 | commercial |
Globalstar | constellation | UHF, SHF | worldwide | 18, 25 | commercial |
Orbcomm | constellation | L-Band | worldwide | less than 37 | commercial |
Myriota | 15 satellites | VHF, UHF, ISM | worldwide | 27, 27, 14 | commercial |
Fossasat | single satellite | ISM 436.7 MHz | an hour per day | 16 | educational |
Parameters | Symbol | Value |
---|---|---|
Number of satellite | - | 1 |
Orbit | - | LEO |
Satellite altitude | d | 300–850 km |
Frequency band | f | 915–928 MHz [7] |
Antenna beamwidth | 10–90 | |
Channel bandwidth | B | 125 KHz [7] |
Available number of channels | - | 64 [7] |
Uplink noise temperature | - | 320 K [24,25] |
Transmission duty cycle | - | 1% [26,27] |
Depression angle | - | |
Elevation angle | - | |
Transmit power | 100 mW [26,27] | |
Uplink Transmitter gain | 0 dBi | |
Number of simulates | N | 7,380,000 |
Latitude range | −43.0031 to −12.4611 | |
Longitude range | 113.6594 to 153.6119 | |
SINR Treshold Range | 10–20 dB |
Spreading Factor | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|
SINR (dB) | −5 | −8 | −10 | −14 | −16 | −18 |
i | 0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
j | ||||||
0 | 3.296 | −0.3102 | 0.01652 | −0.0003975 | 3.57 × 10 | |
1 | −0.2542 | 0.01051 | −0.0001986 | 9.556 × 10 | - | |
2 | 0.01015 | −0.0003013 | 3.305 × 10 | - | - | |
3 | −0.0001688 | 2.166 × 10 | - | - | - | |
4 | 1.115 × 10 | - | - | - | - |
i | 0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
j | ||||||
0 | 5.193 | −0.7377 | 0.04943 | −0.001439 | 1.566 × 10 | |
1 | −0.2536 | 0.01297 | −0.0003978 | 2.702 × 10 | - | |
2 | 0.009473 | −0.0003127 | 6.509 × 10 | - | - | |
3 | −0.0001397 | 9.906 × 10 | - | - | - | |
4 | 9.301 × 10 | - | - | - | - |
i | 0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
j | ||||||
0 | 1.006 | −0.1815 | 0.01493 | −0.0004503 | 4.597 × 10 | |
1 | 0.002753 | −0.003322 | −2.033 × 10 | 1.53 × 10 | - | |
2 | 0.0004753 | 0.0001392 | −1.35 × 10 | - | - | |
3 | −3.165 × 10 | −1.09 × 10 | - | - | - | |
4 | 3.75 × 10 | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.C.; Al-Hourani, A.; Choi, J.; Gomez, K.M.; Kandeepan, S. Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum. Remote Sens. 2020, 12, 1666. https://doi.org/10.3390/rs12101666
Chan CC, Al-Hourani A, Choi J, Gomez KM, Kandeepan S. Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum. Remote Sensing. 2020; 12(10):1666. https://doi.org/10.3390/rs12101666
Chicago/Turabian StyleChan, Chiu Chun, Akram Al-Hourani, Jinho Choi, Karina Mabell Gomez, and Sithamparanathan Kandeepan. 2020. "Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum" Remote Sensing 12, no. 10: 1666. https://doi.org/10.3390/rs12101666
APA StyleChan, C. C., Al-Hourani, A., Choi, J., Gomez, K. M., & Kandeepan, S. (2020). Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum. Remote Sensing, 12(10), 1666. https://doi.org/10.3390/rs12101666