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Abstract: The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project has
carried out a range of activities to evaluate and improve the state-of-the-art in ocean color radiometry.
This paper described the results from a ship-based intercomparison conducted on the Atlantic
Meridional Transect 27 from 23rd September to 5th November 2017. Two different radiometric
systems, TriOS-Radiation Measurement Sensor with Enhanced Spectral resolution (RAMSES) and
Seabird-Hyperspectral Surface Acquisition System (HyperSAS), were compared and operated
side-by-side over a wide range of Atlantic provinces and environmental conditions. Both systems
were calibrated for traceability to SI (Système international) units at the same optical laboratory under
uniform conditions before and after the field campaign. The in situ results and their accompanying
uncertainties were evaluated using the same data handling protocols. The field data revealed
variability in the responsivity between TRiOS and Seabird sensors, which is dependent on the ambient
environmental and illumination conditions. The straylight effects for individual sensors were mostly
within ±3%. A near infra-red (NIR) similarity correction changed the water-leaving reflectance
(ρw) and water-leaving radiance (Lw) spectra significantly, bringing also a convergence in outliers.
For improving the estimates of in situ uncertainty, it is recommended that additional characterization
of radiometers and environmental ancillary measurements are undertaken. In general, the comparison
of radiometric systems showed agreement within the evaluated uncertainty limits. Consistency of in
situ results with the available Sentinel-3A Ocean and Land Color Instrument (OLCI) data in the range
from (400 . . . 560) nm was also satisfactory (−8% < Mean Percentage Difference (MPD) < 15%) and
showed good agreement in terms of the shape of the spectra and absolute values.

Keywords: ocean color; remote sensing; radiometry; TriOS RAMSES; Seabird HyperSAS;
measurement uncertainty; validation; Sentinel-3 OLCI; Copernicus

1. Introduction

The European Commission provides daily global ocean color data via the Ocean and Land Color
Instrument (OLCI) on board Sentinel-3 (S-3) satellite in the context of the Copernicus program. The first
Sentinel-3 satellite was launched in 2016. The Sentinel-3 mission will continue for at least two decades
through the sequential launch of a cluster of satellites. These will provide data to Europe’s Copernicus
environmental program to support monitoring, services, decision and policymaking, and climate
change studies.
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Based on the requirements of the Global Climate Observing System (GCOS), there is less than
5% uncertainty level expectation for water-leaving radiance (Lw) data contributing to climate studies.
To reduce the uncertainties in the satellite products, System Vicarious Calibration (SVC) approach
has been undertaken using field data to calibrate the combined system of satellite instrument and the
processing algorithm [1,2]. SVC has been operationally used for previous, e.g., MEdium Resolution
Imaging Spectrometer (MERIS) on board Environmental Satellite (ENVISAT) and on ongoing missions
to meet ocean color mission requirements in open waters. For Sentinel-3 data, the SVC gains have
now been applied to OLCI data on Sentinel-3A but not to Sentinel-3B yet. For S-3 OLCI radiometric
products, Sentinel-3 mission requirements [3] foresee 5% uncertainty for bands (490, 510, 560) nm and
5–10% uncertainty for bands (400, 412, 442) nm depending on water types. To qualify as Fiducial
Reference Measurements (FRM), quantification of the uncertainties in the Earth observation data is
required. This can only be done by quantifying the uncertainties in the field data used to validate
and through rigorous intercomparison exercises to assess differences in radiometer systems used for
such validation.

The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project aimed to
evaluate and improve state of the art in ocean color radiometry through review of commonly used
radiometers [4], SI (Système international) traceable calibrations [5], protocols for the downwelling
irradiance [6] and water-leaving radiance [7], uncertainty evaluation at different stages of the traceability
chain [5,8], and through series of radiometric comparisons [9–12]. These included:

• a comparison of radiance and irradiance sources used for calibration of radiometers National
Physics Laboratory-UK(NPL, UK) [9];

• an indoor comparison of uniformly calibrated radiometers measuring stable radiance and
irradiance sources where the illumination conditions and measurement geometry were strictly
controlled and close to ideal [10];

• an outdoor comparison over a Case 2 water body with the radiometers installed on the fixed
platform (Lake Kääriku, Estonia). The illumination conditions during this experiment were
variable due to the weather, while the measurement geometry resembled as closely as possible to
the realistic field conditions [11];

• a further outdoor comparison with the same instruments a year later on a fixed platform (the Aqua
Alta Oceanographic Tower—AAOT) under near-ideal environmental conditions [12];

• a shipborne campaign on the Atlantic Meridional Transect 27 (AMT27), (the current study).

The indoor exercise consisted of calibration of the instruments at the same laboratory and
demonstrated satisfactory consistency between sensors with a standard deviation within ±1% [10].
The field comparisons had substantially larger variability between the same sensors, implying to the
respective increase of the uncertainty of the field results. At Lake Kääriku, Estonia, there was large
variability between recently calibrated sensors due to high spectral and spatial variability in the targets
and environmental conditions. At the AAOT in the Adriatic Sea off Venice, there was a <5% difference
in normalized water-leaving radiance of both TriOS- Radiation Measurement Sensor with Enhanced
Spectral resolution (RAMSES) and Seabird- Hyperspectral Surface Acquisition System (HyperSAS)
sensors compared to Aerosol Robotic Network for Ocean Color (AERONET-OC) SeaWiFS Photometer
Revision for Incident Surface Measurements (SeaPRiSM) [12]. The reasons for the increase from 1 to
5% are likely to be due to different measurement targets during field measurements and calibration,
both spectrally and spatially; less stable ambient temperatures during the field campaigns, which can
vary, compared to the calibration temperature, by more than ±15 ◦C.

In this study, we analyzed the difference between a TriOS-RAMSES and Seabird-HyperSAS systems
that were used in the indoor laboratory intercomparison and the two field intercomparisons [10–12]
on the 27th Atlantic Meridional Transect (AMT27) cruise, which crossed a range of ocean provinces
and different environmental conditions. The in situ data was also compared to S-3A OLCI
radiometric products.
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The objectives of this work were: (1) to analyze above-water in situ radiometric data measured
using two different systems, both of which used three radiometers each, under variable environmental
conditions, in the context of the previous intercomparisons [10–12]; (2) to specify the uncertainties for
both systems, and to evaluate the consistency of measured in situ data; (3) to evaluate the consistency
of satellite data with the in situ results, accounting for estimated in situ uncertainties.

2. Materials and Methods

2.1. Study Site

The AMT27 field campaign took place from 23rd September to 5th November 2017 from
Southampton, UK to South Georgia and the Falkland Islands on the UK-Natrual Environment Research
Council (NERC) ship Royal Research Ship (RRS) Discovery. The AMT is a multidisciplinary research
program, which undertakes biological, chemical, and physical oceanographic research during an annual
voyage between the UK and destinations in the South Atlantic. The program has been running for 20
years and was established in 1995, in collaboration with National Aeronautics and Space Administration
(NASA), as an independent platform to validate Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)
ocean color data. The transect covered several ocean provinces where key physical and biogeochemical
variables, such as chlorophyll, primary production, nutrients, temperature, salinity, and oxygen,
were measured. The stations sampled were principally in Case 1 waters [13,14]; in the North and
South Atlantic Gyres, but also the productive waters of the Celtic Sea, Patagonian Shelf, and Equatorial
upwelling zone were visited, which, therefore, offered a wide range of variability in which to conduct
field intercomparisons. The measurement stations are listed in Table 1; Sentinel-3A OLCI quality
controlled match-ups were available for station id-s 22, 32, 46, 48, 56.

Table 1. Overview of measurement conditions during the midday station during AMT27.

No Station Id Date Latitude
(Degree)

Longitude
(Degree)

Sun Zenith Angle
(Degree)

Wind Speed
(W, m·s−1)

Temperature
(t, ◦C)

1 1 24.09.2017 48.9 −7.6 52.37 1.48 16.2
2 3 25.09.2017 46.7 −12.0 51.52 7.23 17.3
3 6 27.09.2017 42.2 −18.8 46.31 2.24 19.3
4 8 28.09.2017 39.4 −22.7 45.31 5.94 23.0
5 10 30.09.2017 35.1 −26.3 38.87 1.69 24.3
6 12 01.10.2017 31.8 −27.2 35.84 5.69 23.5
7 16 03.10.2017 25.7 −28.7 30.52 7.15 24.5
8 18 04.10.2017 22.3 −29.5 28.58 1.69 25.7
9 20 05.10.2017 18.8 −29.7 26.4 5.47 26.6
10 22 06.10.2017 15.5 −28.8 23.21 4.31 27.8
11 24 07.10.2017 12.8 −28.2 20.4 8.43 28.0
12 26 08.10.2017 9.9 −27.4 18.38 6.89 28.3
13 28 09.10.2017 6.9 −26.7 15.41 5.13 27.6
14 32 11.10.2017 1.5 −25.4 10.42 6.34 26.0
15 34 12.10.2017 −1.8 −25.0 8.23 8.44 25.9
16 36 13.10.2017 −4.6 −25.0 6.07 10.74 25.7
17 38 14.10.2017 −7.1 −25.0 5.84 6.8 25.5
18 40 15.10.2017 −10.5 −25.1 5.93 6.63 25.1
19 42 16.10.2017 −13.7 −25.1 7.85 8.12 23.8
20 43 17.10.2017 −16.0 −25.1 8.22 8.07 22.9
21 46 19.10.2017 −21.8 −25.1 13 8.76 21.7
22 48 20.10.2017 −25.1 −25.0 15.56 6.26 21.2
23 50 21.10.2017 −27.9 −25.2 17.78 3.88 20.7
24 52 22.10.2017 −31.3 −26.2 21.22 8.74 19.4
25 54 23.10.2017 −33.9 −27.1 26.05 6.17 17.3
26 56 24.10.2017 −37.0 −28.3 28.62 8.12 15.8
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Table 1. Cont.

No Station Id Date Latitude
(Degree)

Longitude
(Degree)

Sun Zenith Angle
(Degree)

Wind Speed
(W, m·s−1)

Temperature
(t, ◦C)

27 59 26.10.2017 −42.1 −30.4 34.22 7.92 10.0
28 61 27.10.2017 −45.2 −31.7 36.15 16.25 8.8
29 62 28.10.2017 −47.1 −32.6 54.53 8.03 6.4
30 64 29.10.2017 −50.4 −34.2 40.23 11.63 1.6
31 66 30.10.2017 −52.9 −35.7 43.25 9.25 0.9
32 67 01.11.2017 −53.7 −38.1 60.54 19.71 2.0

* AMT27—Atlantic Meridional Transect 27.

2.2. In Situ Above-Water Radiometric Data

Stations were sampled daily at 12:00 local time to ensure coincident in situ measurements within
1 h of the S-3 overpass. Radiometric measurements were performed with two sets of above water
hyperspectral radiometers, both consisting of three separate sensors to measure radiance from the water
surface Lu(λ), radiance from the sky Ld(λ), and downwelling solar irradiance Ed(λ). Plymouth Marine
Laboratory (PML) used three Seabird (formerly Satlantic) HyperOCR sensors, while the University of
Tartu (TO) used three TriOS RAMSES sensors. All radiance and irradiance sensors of both radiometric
systems were SI-traceably calibrated at the Tartu Observatory following procedures entirely described
in [10]. To comply with FRM, the sensors were calibrated frequently; in this case, three times: in April
2017 before the second SI-traceable Laboratory inter-comparison experiment (LCE-2) campaign,
just after the AMT-27 campaign in January 2018, and in June 2018 before AAOT. All of these sensors
were involved also in the LCE-2 intercomparisons, and during indoor measurements [10] demonstrated
differences of less than ±1% both for radiance and irradiance results. However, during the outdoor
exercise under cloudy conditions, the PML irradiance sensors did show up to 6% higher values in Ed at
400 nm, and radiance sensors did show up to about 10% higher values in red and IR parts of spectrum
than the respective TO sensors [11]. Technical parameters [15,16] of the applied radiometers are given
in Table 2.

Table 2. Technical parameters of the radiometers.

Parameter RAMSES HyperOCR

Field of View (L/E) 7◦/cos 6◦/cos
Adaptive integration time Yes yes
Min. integration time, ms 4 4
Max. integration time, ms 4096 4096
Min. sampling interval, s 1 0.5

Recording dark signal Opaque pixels Internal shutter
Number of channels 256 256

Wavelength range, nm 320 . . . 1050 320 . . . 1050
Wavelength step, nm 3.3 3.3

Spectral resolution, nm 10 10

The sensors are based on the Carl Zeiss Monolithic Miniature Spectrometer (MMS), incorporating a
256-channel silicon photodiode array. The SI-traceable radiometric calibration covered the wavelength
range of (350 . . . 900) nm. During the field measurements, the integration time was automatically
adjusted to correspond to the measured light intensity. The data acquisition system consisted of power
supplies, RS232 multiplexers, and logging computers. The instruments were mounted on a common
steel frame, which was constructed to perform measurements under identical zenith and viewing
angles (Figure 1). The radiance sensors (Ld(λ)) and (Lu(λ)) were positioned at the very front of the
ship (Figure 1A), with an un-obscured view of the ocean and sky (Figure 1C), side by side at the same
height at 40◦ and 120◦ angles from zenith (Figure 1B), respectively. The colinearity of the radiance
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sensors in the frame was set by visual observation from the side of the frame and was estimated to be
within ±1◦. The downwelling irradiance sensors were positioned on the same steel frame, higher from
other sensors to avoid any ship shadows. A fixed mounting frame of the irradiance sensors ensured
equal height and leveling of the cosine collectors.

2.3. In Situ Data Processing

For both systems, the radiometric raw data were logged through a laptop, which was set up in the
meteorological laboratory, some 50 m away from the setup of the radiometers on the meteorological
platform at the bow of the ship (Figure 1). The HyperOCR instruments produced proprietary binary
data files as standard output from the manufacturer’s software. The TriOS RAMSES spectrometers
were operated by software developed in TO; spectra were stored in the American Standard Code for
Information Interchange (ASCII) datafiles. The three HyperOCR spectrometers were individually
measured in burst mode (i.e., continuously), while the three RAMSES devices performed synchronized
measurement every 10 s. Altogether, five million spectra were collected by PML and 200,000 by TO.
Additionally, ancillary meteorological and positional data were provided by the AMT crew in the
form of Network Common Data Form (NetCDF) files. Particularly, position latitude and longitude,
ship speed and direction, and wind speed and air temperature were used in this study.

A number of computer programs were created for this particular dataset to process the data.
The algorithms were programmed directly without using external libraries. Third-party software was
used to visualize the results and extract data from NetCDF files. Due to a large amount of spectra,
a database was created first for all instruments, containing the filenames and positions within the
data files, which was ordered by timestamps. Then, the database was used to dynamically extract
the individual spectra from the raw data files without creating unnecessary copies of big data for the
HyperOCR spectra, and the closest shutter measurement was subtracted from each field spectrum.
In the case of TRiOS-RAMSES instruments, the average signal over the opaque pixels was used as
a dark reference. In the case of HyperOCR, the Lu spectrum was derived first and then the closest
(within ±3 s) Ld and Ed spectrum in order to form the consistent data triplet. The spectra were derived
according to the cast start and stop timestamps, calibration and all necessary corrections/filtering
applied, after which the output quantities were calculated, and the corresponding uncertainties were
evaluated. The results were stored as ASCII data files, which are convenient to use for post-processing
or spreadsheet programs. The hyperspectral data was convoluted into 19 OLCI channels, from 400 nm
to 885 nm, based on channel definitions from [17].

The corrections and filtering criteria were sequentially applied via command line parameters during
the data processing. The steps included in the processing were: straylight correction, NIR similarity
correction, clear sky, and overcast screening. The straylight removal algorithm was based on [18].
The Line Spread Functions (LSF) have been previously measured at TO. The straylight algorithm
was applied separately to the raw calibration signals and to all the raw field spectra, individually for
the six participating radiometers. NIR similarity correction was based on Formulas (3) and (4).
The clear/overcast condition was based solely on the Ed threshold level and was only used to assess the
cosine error of the Ed sensors (Section 3.2).

The uncertainty of the results was evaluated according to the Guide to the Expression of
Uncertainty in Measurement (GUM) [19]. For each input quantity, a relative standard uncertainty was
estimated. The relative combined standard uncertainty of output quantity was calculated by combining
relative standard uncertainties of all input estimates by using formula (12) of the Joint Committee
for Guides in Metrology (JCGM) [19]. Radiometric calibration of the irradiance and radiance sensors
and respective uncertainty budgets are described in [5]. The properties of the measured and derived
quantities (water-leaving reflectance ρw, downwelling sky irradiance Ed, water-leaving radiance Lw)
and evaluation of related uncertainties can be found in [11,20]. Measurement models for the evaluation
of the uncertainty of ρw and Lw are defined by the Formulas (1), (2), and (5). Type B uncertainty of
results measured by the Ed sensor included the calibration uncertainty and the aging, contribution due
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to the non-cosine response and temperature effects. The calibration uncertainty included the following
components: alignment, repeatability, temporal stability of the calibration source, repeatability of the
calibration and dark signals, thermal effects in the laboratory, polarization sensitivity. The absolute
calibration of the source was excluded from the uncertainty budget of ρw because all the radiometers
were calibrated against the same lamp. Type A uncertainty for ρw, Ed, and Lw was calculated as the
standard deviation of the station average, taking into account the effective degree of freedom based
on the lag1 autocorrelation of the time series [21]. The autocorrelation coefficient varied from 0 to 1,
depending on the station. In the figures, the expanded uncertainties (k = 2) are shown. En numbers [22]
were used to assess the agreement between the results from two radiometric systems.

The water-leaving reflectance spectra were calculated from the synchronized triplets measured
with HyperSAS and TriOS-RAMSES hyperspectral radiometers following MERIS-Regional Validation of
MERIS Chlorophyll Products in North Sea coastal waters (REVAMP) and the National Aeronautics and
Space Administration (NASA) protocols [23,24]. The water-leaving reflectance

⌊
ρw

⌋
N was calculated as

⌊
ρw

⌋
N = π

Lu(λ) − ρ(W)Ld(λ)

Ed(λ)
(1)

where Rrs(λ) is the remote sensing reflectance, Lu(λ) is the upwelling radiance from the sea, Ld(λ) is
the downwelling radiance from the sky, Ed(λ) is the downwelling irradiance, and ρ(W) is the sea
surface reflectance as a function of wind speed (W, m·s−1), calculated as

ρ(W) = 0.0256 + 0.00039W + 0.000034W2 (2)

The NIR similarity correction of the water-leaving reflectance spectra was based on [25,26].
First, the additive correction term for every individual spectrum was found as

ε =
α1,2· ρ′w(λ2) − ρ′w(λ1)

α1,2 − 1
(3)

The constant parameter α1,2 of the NIR similarity correction [25] is determined in [26] and depends
on the choice of wavelengths λ1 and λ2; α1,2 = 2.35 for the λ1 = 720 nm and λ2 = 780 nm. The NIR
similarity-corrected water-leaving reflectance, ρw(λ), was then calculated as:

ρw(λ) = ρ′w(λ) − ε (4)

The NIR-corrected water leaving radiance was calculated from corrected Rrs(λ) as

Lw = Rrs(λ)Ed(λ) (5)

For the output quantities (ρw, Ed, and Lw), the median over the station results was calculated,
and only the spectra within ±10% in respect of the median were included in final averaging.

The evaluation of the agreement between the results from two radiometric systems, En numbers
were calculated following [22] as

En =
x1 − x2√
U2

1 + U2
2

(6)

where x1 and x2 are the independent results subject to comparison; U1 and U2 are the expanded
uncertainties of these results with k = 2, respectively. The agreement between the compared values
was considered satisfactory if |En| ≤ 1 and non-satisfactory if |En| > 1.
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2.4. Sentinel-3A OLCI Data

Sentinel-3A OLCI full resolution level-2 data was downloaded from EUMETSAT (https://eoportal.
eumetsat.int/) from the same day with in situ measurements. OLCI values from the 3 × 3 pixel Region
of Interest (ROI) centered at the coordinates of the in situ stations were extracted for further analyses.

The recommended set of flags (CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, INVALID,
COSMETIC, SATURATED, SUSPECT, HISOLZEN, HIGHGLINT, SNOW_ICE, WHITECAPS,
ANNOT_ABSO_D, ANNOT_MIXR1, ANNOT_TAU06, RWNEG_O2, RWNEG_O3, RWNEG_O4,
RWNEG_O5, RWNEG_O6, RWNEG_O7, RWNEG_O8) was applied on the data to eliminate possible
invalid values. Additionally, quality control was performed by checking the OLCI zenith angle < 60◦

and Sun zenith < 70◦. Then, the mean (µ) and standard deviation (σ) were calculated within the ROI.
Further, pixel outliers were removed if ρw(λ) < (µ − 1.5σ) or ρw(λ) > (µ + 1.5σ). After removing

the outliers, the Coefficient of Variation (CV=σ/ µ) was calculated for the full ROI, and match-ups
with CV > 0.2 at 560 nm were discarded. After these filtering steps, five qualified match-ups were left
corresponding to the in situ stations with station id’s 22, 32, 46, 48, and 56, respectively, from Table 1.

For the match-ups, the Mean Absolute Percentage Difference (MAPD) to investigate dispersion
and MPD to investigate bias were calculated between OLCI and in situ data:

MAPDλ =
n∑

i=1

100

∣∣∣∣∣∣ρw(λ)insitu,i − ρw(λ)olci,i

ρw(λ)insitu,i

∣∣∣∣∣∣ (7)

MPDλ =
n∑

i=1

100
(
ρw(λ)insitu,i − ρw(λ)olci,i

ρw(λ)insitu,i

)
(8)

where ρw(λ)insitu,i and ρw(λ)olci,i are, respectively, in situ and OLCI-derived values for the band λ and
match-up i.

The filtering of satellite and in situ data was done following the EUMETSAT “Recommendations for
Sentinel-3 OLCI ocean color product validations in comparison with in situ measurements—Match-up
Protocols” [27].

2.5. Measurement of Chlorophyll-a

Surface water samples were collected using 20 L Niskin bottles and between 1 and 6 L of seawater
were filtered onto 0.7 µm GF/F filters. Discrete water samples were collected along the transects
from an underway flow-through optical system and from Niskin bottle rosettes deployed with a
Seabird Conductivity-Temperature-Depth sampling device. The water samples were filtered onto
Whatman GF/F filters (nominal pore size of 0.7 µm), transferred to Cryovials and stored immediately
in liquid nitrogen. High Performance Liquid Chromatography (HPLC) was then used to determine
Total Chl a following the methods given in [28]. A WET Labs hyperspectral absorption-attenuation
instrument (AC-S) was coupled to the ship’s clean flow-through system, which continually pumps
seawater from a nominal depth of 5 to 7 m beneath the ship’s hull. The underway spectrophotometric
method of determining Chl a is given in detail in [29]. Chl a concentrations were estimated from the
absorption-attenuation instruments, using the absorption coefficient of particulate matter (ap(λ)) data
at 650, 676 and 715 nm [29].

3. Results

Radiometric measurements were conducted at 32 stations (Figure 2), covering the Solar Zenith
Angle (SZA) range of (6 . . . 60)◦ and ambient temperature range of (1 . . . 30) ◦C. Chlorophyll-a (Chl a)
concentrations varied from (0.05 . . . 1.0) mg·m−3. They were highest on the UK shelf at 48◦N where
they reached 0.8 mg·m−3 and also in the South Atlantic from 33◦S to 49◦S where they were between
0.7 mg·m−3 and >0.9 mg·m−3 (Figure 3). For the results given in Figure 4 data from all stations were
included without screening. In the following text and figures, The Seabird HyperOCR from Plymouth

https://eoportal.eumetsat.int/
https://eoportal.eumetsat.int/
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Marine Laboratory and TriOS RAMSES data from Tartu Observatory are denoted as “PML” and
“TO”, respectively.

The uncorrected Ed and ρw spectra for all 32 stations are shown in Figure 4 together with the
expanded uncertainties. The scatter in Ed at noon was caused by the high Solar Zenith Angle and by
the sky conditions, which varied from overcast to clear. The water type was Case 1 during the whole
campaign with slightly modified short-wavelength reflectance near the coastline in the beginning and
end of the voyage, as characterized by the reflectance spectra (Figure 4, right).

The initial ρw spectra (Figure 4) showed two potential outliers from stations 67 and 50, respectively,
the lowest and highest ρw spectra in Figure 4. While ρw from station 67 could be explained by
poor measurement conditions (Table 1), the measurement conditions were optimal in station 50.
Besides, as both radiometric systems resulted in the closely similar shape and absolute values of
ρw at these stations, these spectra were included in further analyses in order to show the resulting
processing steps.

The uncertainty lower limits (3% for Ed and 5% for ρw, k = 2) were determined by type B
instrumental components and could be reached in the near-ideal measurement conditions.
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3.1. Environmental Effects

The difference in results of downwelling irradiance between PML and TO, as a function of ambient
temperature and as a function of Solar Zenith Angle, is shown in Figure 5. The ratios of Ed(PML)/Ed
(TO) were averaged over all OLCI band values and included all measurement stations.
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Figure 5. The difference in downwelling irradiance between PML (Plymouth Marine Laboratory) and
TO (Tartu Observatory) as a function of ambient temperature (left panel) and function of Solar Zenith
Angle (right panel). Blue color circles represent data without any correction and with green triangles
after straylight correction.

3.2. Comparison Between the In Situ Radiometric Systems

A comparison between the PML and TO radiometric systems is shown in Figure 6. Results are
given as ratios (PML/TO) for ρw(λ), Lw(λ), and Ed(λ), with and without the NIR similarity correction
(not applicable in the case of Ed). The outliers for ρw(λ), Lw(λ) ratios, without any correction (left panel
on Figure 6) and with straylight correction (middle panel in Figure 6), originated from station 67.
After NIR similarity correction, the consistency between TO and PML radiometric data was poorer,
although there were no distinct outliers (Figure 6).Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 29 
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Figure 6. The ratio between PML and TO water-leaving reflectance (ρw) (left), water-leaving radiance
(Lw) (middle), and downwelling solar irradiance (Ed) (right) in terms of different corrections (rows from
top to bottom): no correction; staylight; near infra-red (NIR) similarity; straylight and NIR similarity.



Remote Sens. 2020, 12, 1669 12 of 29

The straylight correction was applied to all data. An example of the straylight and NIR similarity
correction effects on ρw is shown in Figure 7.
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Figure 7. The ratio of uncorrected to straylight corrected ρw (above) and straylight corrected to
straylight and NIR similarity corrected ρw (below) over all stations. Brown line is set to 1 to show the
direction of the correction.

The NIR correction could substantially decrease the ρw values (Figure 7), but also retained the
spectral shape (Figure A1).

In order to compare Ed measured by the RAMSES and HyperOCR instruments, only clear sky
conditions were used (Figure 8, Figure A2). First, individual spectra were screened for the irradiance
threshold of 1200 mW/m2 at 560 nm. The resulting dataset was further reduced by rejecting all stations
with an expanded uncertainty of Ed more than 5%. As a result, 10 stations were included in the
comparison of Ed (Figure 8) from the whole dataset (Figure A3). The average Ed ratio between PML
and TO over all 32 stations, together with the expanded uncertainty, is shown in Figure 9. The median
of En numbers of individual station ratios is shown in Figure 10 as well.
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Figure 9. Mean ratio of Ed between TO and PML (triangles) and agreement between the results from
two radiometric systems, expressed as median En number of the ratio (circles) over all stations.

The agreement between different radiometric systems is shown in Figure 10. The yellow line is
the mean ratio (PML/TO) for ρw(λ) together with uncertainty bars, and the purple line is the respective
median of En number.

Comparison of ρw(λ) values measured by PML and TO, after correcting for straylight only or
after applying both straylight and NIR similarity correction, is shown in Figure 11. For straylight
correction only (Figure A4), the agreement between PML and TO was good overall wavelengths,
whereas for straylight and NIR similarity correction (Figure A5), the agreement became weaker from
510 nm wavelength.

Agreement between Lw values as measured by PML and TO, after correcting for straylight only or
after applying straylight and NIR similarity corrections, is shown in Figures 12 and A6.
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3.3. Consistency between In Situ and OLCI Radiometric Data

After applying the filtering criteria on OLCI’s data as described in Section 2.3, five match-ups
were obtained. Comparison of in situ and OLCI-derived reflectances for all five match-ups is shown in
Figure 13 in the case of different corrections of the in situ results. The corresponding scatterplots are
shown in Figure 14 over all wavelengths and in Figure A7 for the wavelengths up to 560 nm separately.
The statistics describing the agreement between in situ and satellite measurements are concluded in
Table 3. The OLCI to in situ ratios of ρw together with uncertainty limits are shown in Figure 15.
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Figure 13. Comparison of OLCI ρw against TO in situ measured ρw after straylight correction and
after straylight + NIR similarity correction in five match-up stations. The error bars denote respective
uncertainties for in situ data and standard deviation inside the Region of Interest (ROI) for OLCI.
The general information for each station can be found in Table 1.
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Figure 14. Correlation between OLCI-derived and in situ-measured ρw processed with straylight and
NIR similarity correction over five match-ups over all wavelengths. The error bars denote respective
uncertainties for in situ data and standard deviation inside the ROI for OLCI.
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Table 3. The Mean Absolute Percentage Difference (MAPD) and Mean Percentage Difference (MPD) as
calculated between Ocean Land Colour Instrument (OLCI) and in situ ρw data measured by TO or
PML over five match-up stations. Straylight and NIR similarity correction was applied to in situ data.
The mean in situ uncertainty for both radiometers is shown in the right column.

MAPD (%) MPD (%) Mean Uncertainty of In Situ ρw (%)

Band TO PML TO PML TO PML

400 9 9 3 0 6 6
412.5 16 14 15 12 6 6
442.5 12 9 9 3 6 6
490 7 9 2 −5 6 6
510 7 8 7 −6 7 7
560 11 10 11 −8 10 12
620 84 178 84 −53 30 >50
665 77 117 77 109 40 >50

673.75 61 102 61 31 42 >50
681.25 62 123 62 −9 41 >50
708.75 84 1411 84 −903 >50 >50
753.75 60 156 60 156 >50 >50
778.75 110 143 62 143 >50 >50

885 145 116 −72 116 >50 >50Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 29 
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denote the uncertainty for the ratio calculated from in situ and OLCI’s data. 

4. Discussion 

4.1. Data Filtering Procedure 

The aim of the paper was to compare the performance of the two different radiometric systems 
over different environmental conditions and water types. The variable environmental conditions (e.g. 
-53.65 < latitude (°) < 48.93; -38.05 < longitude (°) < -7.62; 5.84 < sun zenith angle (°) < 60.54; 1.48 < wind 
speed (m·s−1) < 19.71; 0.9 < temperature (°C) < 28.3) allowed the comparison of radiometric data 
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Measurement conditions fell into the recommended limits in terms of SZA. Measurement procedures, 
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was no clear reason for removing these stations from the dataset, and, instead, the behavior of data 
was analyzed during the processing. Nevertheless, in order to avoid biased conclusions, we 
acknowledge the need to study the potential outliers and remove them if justified. The uncertainty 

Figure 15. The ratio between mean OLCI ρw against in situ ρw (TO above and PML below) with
straylight and NIR similarity corrections over four match-up stations (22, 32, 48, 56). The error bars
denote the uncertainty for the ratio calculated from in situ and OLCI’s data.
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4. Discussion

4.1. Data Filtering Procedure

The aim of the paper was to compare the performance of the two different radiometric systems
over different environmental conditions and water types. The variable environmental conditions
(e.g., −53.65 < latitude (◦) < 48.93; −38.05 < longitude (◦) < −7.62; 5.84 < sun zenith angle (◦) < 60.54;
1.48 < wind speed (m·s−1) < 19.71; 0.9 < temperature (◦C) < 28.3) allowed the comparison of radiometric
data slightly outside of the strict rules applied to produce validation datasets for satellites. This is
important in order to show the reliability of the in situ measurements. It is likely that the recommended
optimal conditions in satellite validation protocols are associated with the measurement limits of
the radiometers. These do not always correspond to the expectations of the users nor the realistic
measurement conditions. Therefore, to study the behavior of existing radiometers close to (or even
beyond) the specification limits is important, in order to plan the next-generation systems.

Outliers in the datasets are typically caused by: (1) instrumental errors; (2) unsuitable measurement
conditions or natural variations outside the acceptable limits; (3) methodical errors in sampling and
statistical treatment of results [11]. In our dataset, two potential outlier stations were present (Figure 4,
Figure 6, Figure 7). Because two different measurement systems resulted in nearly identical results
over these stations, the instrumental and sampling errors could be excluded. Measurement conditions
fell into the recommended limits in terms of SZA. Measurement procedures, including most aspects
of sampling, were the same for both systems in all stations. Therefore, there was no clear reason for
removing these stations from the dataset, and, instead, the behavior of data was analyzed during the
processing. Nevertheless, in order to avoid biased conclusions, we acknowledge the need to study
the potential outliers and remove them if justified. The uncertainty also needs to be considered as a
criteria for removal of the outliers and further research and analysis is required on this. Moreover,
during the previous phases of the FRM4SOC project, the investigation of the outliers (not caused by
the instrumental errors) helped to reveal errors in the recommended measurement and processing
procedure and in the instrument characterization [9,11]. This would not be possible when the outliers
have been removed from the datasets without identifying the causes for them. As a result, no data
were screened out from the AMT27 dataset, except in the case of clear-sky Ed comparison (Figure 8).
However, the in situ ρw data of the five match-ups used for S-3 OLCI validation agreed well with the
main group of stations and had mean uncertainty (6 . . . 7)% for (400 . . . 510) nm, which increased
towards longer wavelengths (Table 3).

4.2. Comparison of Radiometric Measurement Systems on a Moving Vessel

The intercomparison of simultaneous radiometric measurements on the AMT27 field campaign
allowed us to assess the consistency of data and investigate the uncertainties on a moving vessel.
An intercomparison exercise of optical systems at the stable, AAOT during near-ideal conditions
showed spectrally averaged values of relative differences comprised between −1% and +6% and
spectrally averaged values of absolute differences around 6% for the above-water systems and 9%
for buoy-based systems [30]. As expected for a moving vessel, we found the differences to be
slightly higher, depending both on the corrections and also on varying environmental conditions.
Comparison of the in-water and above-water results of radiometric measurements [31] gave the best
agreement at the 490 nm band, especially in Case 1 waters during cloud-free conditions, highlighting
again that the agreement was better under ideal measurement conditions with minimal impact from
the environmental parameters. Due to the responsivity of the radiometers and the influence of the
environmental conditions on the radiance signal, the reflectance at wavelengths > 650 nm was weak
and noisy, which is characteristic of these Case 1 oligotrophic waters [32]. The results above 650 nm
were included to show the effects of straylight and NIR similarity corrections on the in situ radiometric
data, especially in the context of comparisons with S-3A OLCI data. The signal at 760 nm was further
affected by oxygen absorption, which was clearly sharper than the spectral resolution of the TRiOS and
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Seabird radiometers. The behavior of the corrected signal around this narrow spectral band showed an
improvement using straylight correction and also revealed a possible shift in the wavelength scales of
the radiometers (the wavelength scales of radiometers were not individually tested during this study).
A large increase in the uncertainties above 650 nm was expected and did not limit the use of these
radiometers for Case 2 waters, where reflectance in the red and NIR was substantially higher [11].
Nevertheless, even with the weak signal in Case 1 waters, the comparison showed agreement within
the evaluated uncertainty limits.

Simulations from [26] showed that the NIR similarity spectrum correction applied in this study,
was valid for waters and was ρw(780) > 0.0001. All ρw(780) values, including the type-A uncertainty,
were above the threshold except one data point measured at very high wind speed (19.71 m·s−1,
station id 67 from Table 1). The mean values, both for TO and PML systems were ρw(780) > 0.004 before
the NIR correction. Without the NIR similarity correction, the values for the ρw were too high due to
sunglint. Therefore, the NIR correction was included in the standard data processing scheme, and its
effect were evaluated. The results showed that for clear waters, with a very low radiometric signal
and high noise in the NIR, the NIR similarity correction removed this and gave reasonable results.
Although various corrections exist for Case 1 waters (e.g., [33,34]), due to the low signal/high noise
in the NIR, it is difficult to choose a specific correction as the noise is higher than the signal strength,
and these parameters are evaluated separately in the processing steps. This would require a reference
value to eliminate the effect of wind and then to estimate the most accurate correction factor for
each above-water measurement made. Historically, the scientific community has been encouraged to
develop improved and universal correction methods for waters with very low signal in the NIR. To do
this properly, however, it requires the development of a new instrument with improved signal-to-noise
performance in the NIR spectral range and independent reference methods that are not dependent on
the wind that causes air-water surface effects and artifacts.

4.3. Environmental Effects

The field data revealed variability in the responsivity between TRiOS and Seabird sensors
calibrated at the same laboratory, which depended on the ambient and illumination conditions.
The variability in responsivity of both sensors was likely to be much larger compared to the change
of the signal ratio but was masked by the similar behavior of sensors. The differences in Figure 2
varied from approximately −5% to +5% over the temperature range from 1 ◦C to 30 ◦C, which was a
substantially smaller change than expected temperature effect determined for other TriOS sensors [35].
A slight dependence on the straylight correction was also evident. The irradiance sensors showed the
best agreement at 21 ◦C, which corresponded to the calibration temperature. Thus, the characterization
of thermal effects in the full temperature range of field measurements would improve the traceability
of results to SI considerably. In this study, due to the lack of characterization data, the temperature
correction was not applied.

Differences in downwelling irradiance between PML and TO as a function of SZA showed that
the variation was in agreement with known or expected errors of the cosine collectors of the sensors,
which were within ±3% [11]. The ratio of Lw-s showed no correlation with SZA or temperature,
while the ratio of ρw(λ) showed the opposite pattern compared to the ratio for Ed-s, as expected.
By comparison with the temperature and angle effects, straylight effects were negligible and given in
Figure 5 for reference only.

4.4. Comparison of Water-Leaving Reflectance and Radiance Spectra

Agreement between ρw values measured by TO and PML over all stations and after correcting for
straylight and NIR showed good agreement without any bias over all wavelengths. In general, the TO
measured values were slightly higher than PML data. The best agreement was for bands (400 . . . 442.5)
nm (R2 = 0.99, Figure A5), it was slightly lower for bands (490 . . . 560) nm (R2 decrease 0.96 to 0.82,
respectively, Figure A5), and rapidly decreased towards longer wavelengths, where the signal was
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small and negligible. The agreement between TO and PML for Lw after applying two corrections was
good at all wavelengths (Figure A6), although TO measured values were slightly higher than PML
(Figure 12).

The NIR similarity correction increased both the bias and the scatter between the ρw and Lw ratios,
but this could be expected as the Lw signal levels in the Case 1 waters above 550 nm as a result of this
correction normally would be extremely low (Figure 11, ρw and Lw after straylight and NIR similarity
correction).

The straylight effects for individual sensors, as well as for the derived quantities, were mostly
within ±3%, which was consistent with previous results [10,11,36]. The effect of straylight correction on
the ρw is shown in the upper panel of Figure 7. The straylight correction was applied to all of the data,
regardless of the other corrections. The NIR similarity correction [25,26], on the other hand, changed the
ρw and Lw spectra significantly and converged the outliers closer to 1 (Figures 6 and 7, lower panel).
The NIR similarity correction removed the shift in ρw (and Lw) spectra, which was probably caused by
high tilt, waves, and skyglint. While the agreement between the two in situ radiometric systems could
be satisfactory or even better without the NIR similarity correction (Figures 6 and 7), distortion of the
spectra was evident (Figure 13), and the comparison with satellite data showed significant bias without
the NIR correction (Figure 13).

4.5. Comparison of In Situ and OLCI Radiometric Data

Agreement between OLCI and in situ ρw values, after both straylight and NIR similarity corrections
were applied, was very good in terms of the shape of the spectra and absolute values (Figure 13).
Although a similar shape in the ρw spectrum was obtained using straylight correction only, it was
significantly larger than the OLCI-derived ρw spectrum, especially at longer wavelengths (Figure 13).

Based on the five match-ups available, there was good agreement between OLCI and in situ derived
ρw values for bands (400 . . . 510) nm and respective uncertainties less than 7%. For bands 620 nm
onwards, the signal was very weak, and the relative uncertainties of the in situ data increased (>30%);
the signal to noise ratio of the OLCI’s five cameras was lower than for blue bands [37], which made the
validation of satellite radiometric products over Case 1 waters in this range challenging.

The comparison between OLCI and in situ ρw for both PML and TO from 400 nm to 560 nm
showed comparable results (Figure 14, Table 3), though at 412.5 nm, the dispersion was up to 16%,
and bias was 15%. This was mainly caused by OLCI ρw at stations 22 (Figure A7) and 56 (Figure 13),
which had a steep decrease from 400 nm to 412.5 nm, and was not seen in the field measurements.
The reason could be due to poor characterization of the aerosol load and type in the S-3A OLCI
atmospheric correction [38,39]. Five match-ups, however are too few to make robust conclusions on
the accuracy of S-3A OLCI. In this study, they were used as a preliminary analysis of the potential
difference between using two different above-water systems for the validation of S-3A OLCI. For a
comprehensive accuracy assessment, more match-up data are required.

The estimation of the uncertainty of the ratio of OLCI and in situ ρw was up to 40% (Figure 15).
The combined uncertainty for the ratio of ρw (OLCI) and ρw (in situ) (Figure 15) was within (10 . . . 16)%
for the (400 . . . 510) nm, 39% for 560 nm, and above 100% for longer wavelengths, where the signal
was very small (Figure 15). The contribution from in situ uncertainty was (6 . . . 7)% for bands
(400 . . . 510) nm, about 11% for 560 nm, and 30% for longer wavelengths. The difference in the mean
uncertainty between the TO and PML ρw was within 1% for bands up to 510 nm and increasing towards
longer wavelengths.

S-3 mission requirements [3] specify a 5% uncertainty for bands (490, 510, 560) nm in Case 1
waters and (5 . . . 10)% uncertainty for bands (400, 412, 442) nm depending on the water type. As per
pixel uncertainty estimates on OLCI Level 2 data that do not include the uncertainty estimate from
Level-1B products [40], it was currently not possible to validate the OLCI products against in situ data
using uncertainty estimates for OLCI. The uncertainties for the match-ups were ~6% for the bands
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(400 . . . 510) nm, and based on the limited number of match-ups available, there was a difference of up
to 16% between in situ and OLCI data.

5. Conclusions

The results of the AMT27 field intercomparison are a major international step in assessing
differences in commonly used above-water radiometers under different environmental conditions
on a moving ship. The AMT campaign was also a significant step, in the framework of both the
FRM4SOC project and the international community, in enhancing the confidence in different sources of
radiometric data used for satellite ocean color validation.

In general, the agreement between the two in situ systems during the field campaign was
satisfactory, with up to a 5% difference over visible wavelengths before corrections applied to ρw.
Over the wavelength range from (400 . . . 510) nm, the relative mean uncertainty of in situ data was
close to the S-3 mission requirements of 5%, but with an increase in wavelength beyond 500 nm, the
relative uncertainty also increased mainly due to unstable targets, highly variable environmental
conditions, and the low signal at red bands in oligotrophic waters.

The consistency between the satellite and in situ data for both sets of radiometers was similar.
From 412 nm to 560 nm, the Seabird system showed −8% < MPD < 12% difference and TriOS
2% < MPD < 15% difference compared to OLCI data. The consistency between the in situ and OLCI
radiometric data was good, and the respective uncertainties were less than 7%.

SI traceable calibration of radiometers before or after field campaigns is very important to
ensure traceability. Calibration alone is not sufficient however, and to trace where the variability
between radiometric systems comes from, it is necessary to characterize a number of other parameters,
including temperature dependence, nonlinearity and spectral straylight. In parallel to correction
for instrument bias, and to improve measurement uncertainties, a detailed characterization of
environmental conditions during deployment is required. The effect of different processing corrections
applied to different radiometric sensors, including NIR similarity correction, correction for straylight,
non-linearity, also needs further testing using a simultaneous independent reference instrument that is
less affected by these systematic effects.
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Figure A1. ρw(λ) spectra at each measurement station corrected for straylight (green circles) and after
the straylight and NIR similarity correction (brown triangles). More data from each station can be
found in Table 1.



Remote Sens. 2020, 12, 1669 22 of 29

Remote Sens. 2019, 11, x FOR PEER REVIEW 22 of 29 

 

Figure A1. 𝜌௪(𝜆) spectra at each measurement station corrected for straylight (green circles) and 
after the straylight and NIR similarity correction (brown triangles). More data from each station can 
be found in Table 1. 

 

Figure A2. Comparison between TO and PML 𝐸ௗ(𝜆) after straylight correction at OLCI’s bands. 
Figure A2. Comparison between TO and PML Ed(λ) after straylight correction at OLCI’s bands.



Remote Sens. 2020, 12, 1669 23 of 29Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 29 
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Figure A7. Scatterplots for the validation of OLCI radiometric data for bands 400 to 560 nm using 
PML’s and TO’s in situ data for five data match-ups. 
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