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Abstract: Zero-shot learning (ZSL) is an approach to classify objects unseen during the training
phase and shown to be useful for real-world applications, especially when there is a lack of sufficient
training data. Only a limited amount of works has been carried out on ZSL, especially in the field
of remote sensing. This research investigates the use of a convolutional neural network (CNN)
as a feature extraction and classification method for land cover mapping using high-resolution
orthophotos. In the feature extraction phase, we used a CNN model with a single convolutional
layer to extract discriminative features. In the second phase, we used class attributes learned from
the Word2Vec model (pre-trained by Google News) to train a second CNN model that performed
class signature prediction by using both the features extracted by the first CNN and class attributes
during training and only the features during prediction. We trained and tested our models on
datasets collected over two subareas in the Cameron Highlands (training dataset, first test dataset)
and Ipoh (second test dataset) in Malaysia. Several experiments have been conducted on the feature
extraction and classification models regarding the main parameters, such as the network’s layers
and depth, number of filters, and the impact of Gaussian noise. As a result, the best models were
selected using various accuracy metrics such as top-k categorical accuracy for k = [1,2,3], Recall,
Precision, and F1-score. The best model for feature extraction achieved 0.953 F1-score, 0.941 precision,
0.882 recall for the training dataset and 0.904 F1-score, 0.869 precision, 0.949 recall for the first test
dataset, and 0.898 F1-score, 0.870 precision, 0.838 recall for the second test dataset. The best model
for classification achieved an average of 0.778 top-one, 0.890 top-two and 0.942 top-three accuracy,
0.798 F1-score, 0.766 recall and 0.838 precision for the first test dataset and 0.737 top-one, 0.906
top-two, 0.924 top-three, 0.729 F1-score, 0.676 recall and 0.790 precision for the second test dataset.
The results demonstrated that the proposed ZSL is a promising tool for land cover mapping based on
high-resolution photos.
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1. Introduction

Remote sensing has been a standard tool for producing land use and land cover maps for
decades [1]. These products play an important role in various applications, such as natural disaster
management [2,3], environmental monitoring [4,5], urban planning [6,7] precision farming [8–11] and
vegetation monitoring [12]. With advances in sensor engineering science, a deluge of high-resolution
image data has been generated using various sensing technologies [13]. However, processing such a
huge amount of data requires extensive training samples and advanced image-processing techniques,
which are not always accessible [14]. One approach to overcome this problem is the use of classification
models based on Zero-Shot Learning (ZSL). Such an approach is used to construct classification
models for unseen classes that have not been labelled for training. It uses a semantic representation of
classes (e.g., attributes, word vectors) as aside information and transfers knowledge from source (seen)
classes to unseen classes. The applications of ZSL are becoming popular among researchers, both for
classification and object recognition problems, and recently have received attention from the remote
sensing community.

Before ZSL, a wide range of object recognition and classification models have been proposed
and implemented, such as pixel-based and object-based approaches. Nevertheless, these common
classification models can only classify objects that are seen during the training stage. These methods,
for example, object-based image analysis (OBIA), have a powerful ability of classification, but they
failed to detect and classify new (unseen) objects. In addition, they have their limitations such as
finding an ideal segmentation scale, complex workflow, and carefully optimisation process [15–19].
Convolutional Neural Networks (CNNs) have also shown to be successful for land cover classification
and other related applications [20]. Zhang et al. [20] used CNNs for high-resolution image classification
with different feature learning strategies. Sumbul et al. [21] presented a CNN model to classify
high-resolution aerial photographs for land cover classification. Al-Najjar et al. [1] used CNN for land
use mapping from drone images. Chen et al. [22] detected various species of forest mangrove with
a patch-based CNN and found that CNN is superior to support vector machine (SVM). However,
these models are only successful if the test images do not contain unseen classes in the training
stage [14]. Other limitations of these methods include the requirement of a large number of labelled
samples to train the models efficiently and over-fitting issues. Considering that sufficient training
samples with labels are expensive to collect, these traditional classification models are still inefficient
for many real-world applications, including remote sensing image classifications.

To overcome these limitations, the present study proposes a classification framework based on ZSL
for unseen land cover classes from high-resolution orthophotos. ZSL is a classification approach that
employs the semantic word vector of each class as a bridge to the semantic word vector of the nearest
class name, to learn the model from known samples to obtain unknown (unseen) classes. This technique
has recently been applied to a few remote sensing applications such as scene classification [14], street tree
classification [21], vehicle recognition [22], and land cover mapping [23,24]. Further explanation will
be presented in the following section of related studies.

The current framework consists of (i) a Word2Vec model [25] for label embedding, (ii) a CNN
model for image feature learning, and (iii) a K-nearest neighbour (KNN) model that provides label
predictions for unseen classes that are not included in the training data.

In summary, although numerous ZSL works have been carried out in the field of computer
vision, only a few works have been implemented in the remote sensing domain. Therefore, the main
contribution of this research is to integrate the recent techniques in computer vision such as ZSL,
Word2Vec models and CNN to address the existing problem of traditional classification systems in the
field of remote sensing, such as the lack of sufficient training data for every class. The remainder of
this article is organised as follows: Section 2 summarises the related work. Section 3 describes the
proposed framework and methods. Section 4 presents the experiments and results. Section 5 provides
the discussion. Lastly, Section 6 explains the conclusion and future works.
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2. Related Studies

This section presents a summary of the previous works on ZSL, followed by a review of ZSL
exclusively to remote sensing field applications.

2.1. Zero-Shot Learning (ZSL)

ZSL has progressed positively over the past few years due to its capability to recognise unseen
classes with no training samples by transferring knowledge from seen classes to unseen classes [24].
Both seen and unseen classes are related in a high dimensional vector space, called semantic space,
where the knowledge from seen classes can be transferred to unseen classes. In ZSL, the set of seen
and unseen classes are disjointed, and it is assumed that the semantic representations are class specific.
The relationship between the seen and unseen classes is often established by using semantic spaces.
Examples of semantic representations used in ZSL studies include attributes, word vector, and text
description. As traditional machine learning, ZSL consists of training and inference stages. In the
training stage, the relationship between seen data and its corresponding semantic representation
(attributes, word vectors) are learned. In the inference stage, the target image is parsed from an unseen
class into its semantic representation to predict the corresponding label. The classification is simply
performed via the nearest neighbour or via a more elaborate scheme like label propagation. This phase
recognises new inputs and again leads to newer classes, regardless of the training data.

The common ZSL methods comprise three main stages, including extraction of visual instances
(features), middle-class semantic information retrieval from training and testing classes by word
embedding, which is a geometric approach for extraction of the semantic meaning using vectors, and
a model that maps the features to the semantic meaning of the class labels (vectors) [14]. For the
extraction of visual instances (features), models such as CNNs or morphological profiles are often
used. These models extract more abstract features from the image pixels [20]. From the class labels,
the semantic information is often retrieved as vectors using models like Word2Vec. This step is
important as it provides a way to link the image features with their corresponding class semantic
information statistically. Finally, any machine learning or statistical models can be applied to establish
the relationship between the image features and the class vectors. This will enable the prediction of
novel class labels for the new images, as the model requires only image features as input [15].

In recent work, the authors in [26] introduced an attribute-based ZSL technique to identify
different types of animal image recognition. The experimental results on a different dataset showed
that the model can recognise images without training samples of the target class. The authors in [27]
proposed a visual abstraction ZSL technique to learn the concept of humans and their interactions.
The experimental results unveiled a reasonable recognition of the human pose dataset. The authors
in [28] introduced linearly combining classifiers for seen objects. To solve the problem due to a
mixture of seen class proportions, the paper [16] introduced a semantic similarity embedding for the
ZSL approach and obtained satisfactory results based on five datasets. In paper [29], the authors
developed a hybrid relative attribute-based ZSL approach based on sparse coding to recognise images
of faces and natural scenes. The model had strong grading and classification capability along the
distinguishability of the non-semantic relative attributes in classification. The authors in [17] proposed
a framework for zero-shot classification based on higher relations of multi-task mixed attributes and
specific features of attributes. The authors utilised the AWA and PubFig dataset for their study and
could achieve a robust accuracy over the traditional MTL attribute learning. However, they did not
employ deep learning methods in their research due to the presence of low-level features in their
case study. In another study [18], the concept of ZSL was utilised in the prediction for transportation
networks utilising a fixed set of trains and unknown trains by employing knowledge transferring.
The authors in [16] proposed semantic similarity embedding learning for zero-shot unseen objects using
CNN for five benchmarks including SUN, CIFAR-10, aPascal and aYahoo, animals with attributes,
and Caltech-UCSD Birds-200-2011 dataset. They labelled the semantics in a way that the empirical
mean embeddings of the seen class data distributions are aligned with their corresponding source
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domain embeddings. Considering the good performance of their method, they suggested using it for
person recognition. In another study, the authors in [19] combined image matching, object detection,
image retrieval and ZSL to overcome the semantic matching problem. They utilised the ILSVRC
2014 dataset for a single-shot semantic matcher with CNN architecture based on GoogleNet and
YOLO/DetectNet architectures. They concluded that their semantic matcher approach is beneficial for
real-time multi-class object recognition.

Despite the success of the previous ZSL models using standard datasets, most of these models
performed the prediction by the absence of the seen label in the testing stage [24,30]. In these
ZSL models, the research gap of the unseen class was exclusively narrow to the test label, whereas
the problem sets wherein both train and test labels are concurrent, which is called transductive or
generalised ZSL (GZSL), that is more challenging [24]. Additional details on this approach, including
the positive and negative sides, can be found in the reference [15].

2.2. Transductive or GZSL

ZSL assumes that only the classes from testing samples are categorised into potential unseen
classes. This assumption is invalid in the real-world because the samples from seen classes could be
present in the testing set [15]. Nevertheless, GZSL can allocate (classify) the testing samples whether
into seen and unseen classes [15,30]. Alternatively, GZSL is more complicated than ZSL because the
information must be relocated from the main domain to the target. In addition, GZSL should be able
to differentiate between seen and unseen classes. This is challenging as the majority of testing samples
can be classified into a seen family, not a true unseen family. ZSL techniques can be used in GZSL,
but they have a considerably lower accuracy [31]. Few studies have established a standard guideline
for GZSL [32].

2.3. ZSL on Remote Sensing Data

Although notable developments of ZSL models have been published for various computer
vision tasks, these models are rarely applied to remote sensing applications. The authors in [14]
developed a novel zero-shot scene classification approach to recognise images from unseen scene classes.
The authors used the Word2Vec model to map labels of seen/unseen scene classes to semantic vectors for
describing the relationships between seen and unseen classes. Then, to transfer knowledge from seen
classes to unseen classes, they used a label-propagation algorithm incorporating the semantic-directed
graph and an unsupervised domain adaptation model. They applied the method on the UC Merced
benchmark dataset and remote sensing data. The authors in [23] proposed the integration of ZSL
into a dual-memory LSTM framework for land cover prediction. The method contains two memories
that can capture both long-term and short-term variation patterns, which can effectively resolve the
temporal variation. In another ZSL remote sensing application [33], synthetic aperture radar (SAR)
was employed for target recognition with a ratio of unseen per seen classes of 1/7. Authors in [21]
performed street trees classification using a multi-source region attention network for fine-grained
object recognition tested on RGB, multispectral (MS), and LiDAR (light detection and ranging) data.
The best performance of 17.7% was obtained by the proposed model trained using RGB and MS
data. The more complex models that use all three sources had slightly lower performances due to a
limited number of training samples. Chen et al. [22] utilised generalised ZSL for vehicle detection via a
coarse-to-fine framework with latent attributes using ISPRS Potsdam 2D Semantic data. Their method
showed the effectiveness of GZSL for unseen vehicles. Unseen object classification remains challenging,
especially for remote sensing applications, because remote sensing data have particularly diverse
structures and huge volumes compared to the data generally used in other fields such as computer
science [20,34]. Therefore, in this study, a classification framework based on ZSL is proposed to detect
and classify unseen objects by utilising seen classes and the success of CNN for feature learning.
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3. Methods

ZSL enables land cover mapping in areas that contain novel (unseen) objects, which are useful in
real-world applications. This research proposed a framework for ZSL-based land cover classification
using orthophotos. The framework employed three main techniques, including Word2Vec, CNNs,
and KNN. The models above were used for three main functions, namely class embedding, feature
extractions, and classification of unseen objects based on their semantic similarity, respectively.

3.1. Theoretical Background

3.1.1. Theory of ZSL

ZSL is part of transfer learning due to heterogeneous transfer learning [15]. The main goal of ZSL
is to perform a task without using any sample of that task at training data. For example, the land cover
classification task in areas that contain novel classes not included in the training data can be regarded
as an example of ZSL. In a simple term, ZSL allows classifying and recognising the unseen objects. ZSL
consists of seen and unseen classes, which refer to labelled training and unlabelled testing samples,
respectively. Each sample is assumed to be a part of one class and represented by a vector in feature
space. Feature space is generally a real number space. S =

{
cs

i | i = 1, . . . , Ns} represents the group of

seen classes, where each cs
i is a seen class. U =

{
cu

i | i = 1, . . . , Nu} denoted the group of unseen classes,
where each cu

i is an unseen class. Note that S∩ U = ∅.
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3.1.2. Theory of CNN

CNN is a special type of neural network that was designed for image (or array-like) data under
the concept of convolution and has shown significant success in the field of computer vision and
recently in the remote sensing domain. CNN was first introduced by the paper [35] and was improved
further by other researchers through advances in computing and software technologies. CNN utilises
local connections, shared weights and a wide range of computing layers [36]. Consequently, CNN can
efficiently extract features from the input image data without considerable intervention from humans.
In comparison with feed-forward neural networks and other machine learning models, CNN has
shown a strong predictive capability given that adequate training samples are available. CNN is also
computationally efficient because it can compute convolutions in parallel with multiple GPU cores [36].

CNN consists of a series of convolutional and pooling layers, followed by a classification layer
(e.g., softmax). Other layers, such as dense (fully connected), dropout and batch-normalisation layers,
were optionally added to the model to improve its generalisation and predictive capacity. However,
adding these layers does not necessarily improve the model’s predictions unless proper optimisation is
considered. The main component of CNN is the convolutional layer, which is composed of several
convolutional kernels. The convolutional layer is associated with a small area of the input data—also
known as an image patch. If Ix,y is the given image, then the convolution is performed through
Fk

l =
(
Ix,y. Kk

l

)
, where x, y shows the spatial locality and Kk

l represents the lth convolutional kernel of

the kth layer. Pooling is another important component of CNN, which summarises information across
adjacent spatial regions. For each patch in the feature map, pooling calculates the average (or other
functions, e.g., max and min) value. Global pooling can be performed to sample the entire feature map
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into a single value. Pooling is expected to improve model invariance to local translation and reduce
model parameters. These layers are calculated using Zl = fp

(
Fl

x,y

)
, where Zl represents the lth output

feature map, Fl
x,y is the lth input feature map and fp(.) defines the type of pooling operation [1,37].

3.1.3. KNN Model

K-nearest neighbour (KNN) is one of the simplest classification algorithms that stores all available
cases and is often utilised as the first choice for a classification task when there is little or no previous
knowledge about the distribution of the data. It is simple with no assumptions about data, relatively
accurate and easy to implement, which makes it more attractive than other approaches. Moreover,
In ZSL studies, the interpretation is generally performed based on the nearest neighbour scheme [15,24].
Therefore, KNN was used in the current study due to the aforementioned advantages.

KNN search is performed in the embedding space to match the projection of an image feature
vector against that of an unseen class. In KNN, the output is the participation of a certain class.
An object is categorised by a majority vote of its neighbours, with the object being designated to the
class with the most frequent one among its K-nearest neighbours, in which the K value is a positive
integer and often small [38,39].

3.1.4. Class Embedding

In ZSL, the label of each class is a text (word or phrase). The class labels are assumed to provide
semantic side information about the classes. This aside information is considered by learning the
semantic (numeric) vector representation of the class labels. These semantic representations will then
play a key role in transferring knowledge from the seen to unseen classes. For this purpose, we use the
commonly used Word2Vec model published by Google. Word2Vec is an efficient model for learning
semantic vector representations of words and phrases. Similar words or phrases are embedded as
nearby vectors, whereas dissimilar words or phrases are embedded as far vectors.

In this research, we use the pre-trained Word2Vec model published by Google to create vector
representations for class labels. This contains 300-dimensional representations of the vectors for around
3 million terms and phrases. Since this pre-trained model is case-sensitive, we cast the text label in a
lower case. For the single-word labels, we use the semantic word vector as the class label embedding
for a class. For multi-word labels, an embedding of a class label is obtained by calculating the mean of
the individual semantic term vectors. For more information about this model, a recent work for label
embedding can be found in reference [40].

3.2. Overall Workflow

The overall workflow of the proposed ZSL framework for the land cover mapping from orthophotos
is shown in Figure 1. In the training phase, the training image with training classes (e.g., agricultural
land, urban areas, barren land, forest lands, road, and water body) is fed into CNN-1 for feature
extraction. The output of this step is image vectors. The training classes are fed into the Word2Vec
model to convert the class labels into vectors. These word vectors are trained based on Google News
data, which is prepared by Google, with a dimension of 300 unique numbers [25]. The output of this
step is a class signature with a size of 300, multiplied by the number of training classes.

Then, CNN-2 is used to map the image vectors to the class signature. In the test area, first,
the image is fed to the trained CNN-1 to extract the image features. The ZSL classes are then fed into
another Word2Vec model (which acts here as an auxiliary label’s bank) to extract the class signature.
To avoid predicting labels for unseen classes that are not relevant to land cover applications, we used the
KNN model to find labels from a label bank created for the purpose of land cover mapping. It contains
labels only suitable for land cover e.g., agricultural land, barren land, road, forest, and urban area etc.
Thereafter, the CNN-2, which is trained on the training dataset, is used along with the image features
to predict the class signature from the label’s bank [41]. Once the class signature is predicted, the class
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labels are determined by the KNN algorithm to measuring the similarity between the predicted class
signature and the class signature, which was pre-computed from the label’s bank for all possible class
labels. Lastly, the predicted class labels are used to produce the land cover map for the area.
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3.3. Details of CNN-1 Used for Image Feature Extraction

In this research, CNN-1 is designed to extract features from input orthophotos. It is trained on
image pixels (patches) with the corresponding pixel-level class labels (from the ground truth data).
In this research, CNN is used other than any machine learning model because of its capability to utilise
spectral and spatial information effectively [20]. The spectral content can be obtained by three visible
bands (RGB) of the orthophotos. Instead, the spatial content is attainable in considering neighbouring
pixels [42]. The weights in CNNs are adjusted during training to result in learned filters or nodes,
which are equivalent to handmade filters, the outputs of which during the feed-forward stage are the
feature maps. Based on the experiments above, the best model then was selected among the other
models. Thus, after conducting several experiments (i.e., explained in detail in the experimental set-up
of CNN-1 section), the network was established based on a single convolutional layer (Conv2D) with
a kernel size of 3 × 3 and a filter size of 64. After Conv2D, we used batch normalisation with ReLU
activation to accelerate convergence and introduce regularisation within the network. A dropout of 0.3
is utilised to regularise the network further. Then, a flatten layer is adopted to convert the features from
2D to 1D shape. A dense layer is added on top of the dropout layer with ReLU activation. The number
of units used is 32. Finally, a softmax layer is used to perform classification. We train the model with
an Adam optimiser (initial learning rate = 0.001) with a batch size of 2048 for 100 iterations.
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The CNN-1 model is trained on image pixels (patches) with the corresponding pixel-level class
labels (from the ground truth data). It aimed at extracting image features from a given image pixel.
Figure 2 presents the architecture of the model.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 28 
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3.4. Details of CNN-2 Used for Class Signature Prediction

Figure 3 shows the architecture of CNN-2 used for class signature prediction given the image
vectors. This model was chosen due to the general robustness of CNNs over the traditional classification
techniques in land cover classification [20]. The model consists of a convolutional layer with ReLU
activation. The number of filters in this layer was 128. We included a batch normalisation with ReLU
to expedite convergence and introduce regularisation within the network. A dropout layer is then
added to avoid over-fitting with a drop probability of 0.3. Thereafter, we added two dense layers with
ReLU activations. The number of units in the first dense layer was 64. The second dense layer takes
the number of attributes (300), which is pre-trained by Google News. The target kernel is initialised
with the class signature pre-computed by the Word2Vec model. The final layer is softmax with aims
at classification. The model is trained with an Adam optimiser (initial learning rate = 0.001) with a
batch size of 2048 for 100 iterations. Table 1 presents the parameters of the CNNs set in this study.
Different and several hyper-parameters were tested during the design and optimisation process for the
CNNs configuration. The best result was obtained using the aforementioned parameters. Moreover,
by adding more layers, no constructive progress was observed (experiments with details are provided
in the experimental set-up of CNN-2).
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3.5. KNN Algorithm for Finding the Nearest Class/Label

In this algorithm, the assumption is based on the idea that the adjacent instances should have a
similar label. Considering the initial clustering centres, K-means clustering is performed on the testing
instances. Then, the one-to-one similarity between clustering centres and unseen class samples are
calculated using linear programming. Occurrences in each cluster are categorised into the related
unseen class [39]. In the current research, KNN was separately applied to six scenarios of different
unseen classes to find the closest class (one unseen class for each scenario).
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Table 1. Details of the selected CNN-1 and CNN-2 architectures.

Details of Layers CNN-1 CNN-2

Duty Feature extraction Class signature prediction

Kernel size 3 × 3 3x3
Number of filters 64 128

Activation function ReLU ReLU
Drop out 0.3 0.3

Flatten layers 1 None
Dense layers 1 2

Size of dense layers 32 64/300 (# attributes)
Classifier Softmax Softmax
Optimiser Adam (L. Rate = 0.001) Adam (L. Rate = 0.001)
Batch size 2,048 2,048
Iterations 100 100

3.6. Evaluation Metrics (Precision, Recall and F-measure)

The F-measure is the weighted normal or symphonious mean of two proportions, known as
exactness or precision (p). The recall (r) metric is another presentation measure used to evaluate
the class-specific exactness accuracy from recovered information/data. Its computation is based on
Equation (1), based on the average of p and r. The F-measure esteem ranges from Zero (0) as lowest to
one (1) as the highest value [33,43].

Fmeasure= 2×
p × r
p + r

(1)

The p or the certainty of an unseen land cover class is defined by dividing the true positives values
(number of pixels having a place with the real class) with the total number of objects categorised as
the positive class (for example, the sum of true positives and false positives, which are objects/pixels
erroneously categorised as having a place with the class). The sensitivity (r) represents the extent of
true positive objects/pixels that are correctly predicted and distinguished, and can be characterised as
the number of true positives divided by the total number of objects/pixels that belong to the positive
class (for example, the sum of true positives and false negatives). The determination of p and r can be
performed utilising the Equations (2) and (3). An ideal predictor’s value for p and r would be depicted
as 1 [43].

p =
True positives

True positives + False positives
(2)

r =
True positives

True positives + False negatives
(3)

4. Experiments and results

4.1. Datasets

In this research, orthophotos acquired over the Cameron Highlands, Malaysia, on January 15, 2015,
by using an airborne system (RIEGL) with an RGB camera, were used as the first dataset. The average
height of the system whilst collecting data was 1510 m. The spatial resolution of the data was 1 m. Two
subset areas were selected for training and testing the proposed ZSL framework. The training area
consisted of six types of land covers, namely, agricultural land, barren land, road, forest, urban area and
water body. The test area included five types of land covers (agricultural land, barren land, road, forest
and urban area) with an additional class (croplands). Figure 4 presents details about the number of
pixels for each class in the first training and test areas. For the training area, agricultural land contained
2,021,470 pixels, followed by barren land with 1,142,705 pixels. Road, forest lands, urban areas and
water body contained 395,206, 7,819,007, 558,300 and 142,896 pixels, respectively. In total, the number
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of training pixels was reported at 12,079,584 for all classes with a dimension of 4464 × 2706 × 3. The test
area contained 1,423,087 pixels with dimensions of 863 × 1649 × 3. Agricultural land contained 229,060
pixels, followed by barren land with 113,040 pixels. Road, forest lands, urban areas and croplands
contained 76,436, 829,964, 152,786 and 21,801 pixels, respectively. Figure 5 exhibits the maps of the first
training and test areas, including the orthophotos and ground truth data.
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To further assess the performance and robustness of the current ZSL framework, a second dataset
also was tested. The new dataset was taken from the Ipoh area (in Peninsular Malaysia) on January 15,
2015, by using an airborne system (RIEGL) with an RGB camera and the average height of the system
whilst collecting data was 1000 m. The area contained seven land cover types including green space,
road, urban area, barren land, forest, water body and agricultural land. Figure 4 presents the number
of ground truth pixels for each class. The maps of the second test dataset, including the orthophotos
and ground truth data, are shown in Figure 6.
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4.2. Results of Feature Extraction (CNN-1)

CNN-1 was used for feature extraction, which is an important step in the proposed ZSL framework.
These features were extracted from the second last layer (dense) before the softmax layer. The number
of extracted features was 32 per pixel. The high-level features performed better than the features
extracted from shallow layers [42]. This model was tested separately using the ground truth datasets
for the training and test areas. The model accuracy was measured by the recall, precision, F1-score
and top-k categorical accuracy on training and test areas. For the training area, the model achieved a
0.882 recall, 0.941 precision, 0.953 F1-score and 0.760 top-one, 0.892 top-two, 0.963 top-three. For the
first test area, the model performed well with a 0.949 recall, 0.869 precision, 0.904 F1-score and 0.805
top-one, 0.911 top-two, 0.963 top-three. The evaluation of the model over the second test area also
showed a satisfactory performance with a 0.838 recall, 0.870 precision, 0.898 F1-score, 0.708 top-one,
0.886 top-two and 0.974 top-three, respectively.

4.2.1. Impact of Network Architectures

CNN-1 model was used for feature extraction, which is an important step in the proposed ZSL
framework. These features were extracted from the second last layer (dense) before the softmax layer.
For this purpose, we developed and examined various CNNs architectures applied to the first and
second datasets. The results are demonstrated in Tables 2–5.
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Table 2. The impact of various architectures applied to the first and second datasets.

Model Metric Training Area First Test Area Second Test Area

CNN without
Batch

Normalisation
layer

Recall 0.780 0.748 0.733
Precision 0.927 0.885 0.826

F1 0.882 0.845 0.815
Top-three 0.947 0.897 0.924
Top-two 0.857 0.789 0.846
Top-one 0.696 0.673 0.649

CNN without
Pooling layer

Recall 0.882 0.949 0.838
Precision 0.941 0.869 0.870

F1 0.953 0.904 0.898
Top-three 0.963 0.963 0.947
Top-two 0.892 0.911 0.886
Top-one 0.760 0.805 0.708

CNN without
Batch

normalisation and
pooling layers

Recall 0.834 0.807 0.777
Precision 0.936 0.860 0.844

F1 0.921 0.874 0.850
Top-three 0.957 0.905 0.938
Top-two 0.877 0.804 0.866
Top-one 0.733 0.684 0.675

CNN with batch
normalisation and

pooling layers

Recall 0.859 0.835 0.809
Precision 0.941 0.877 0.857

F1 0.939 0.899 0.875
Top-three 0.959 0.904 0.939
Top-two 0.882 0.812 0.875
Top-one 0.747 0.709 0.691

Table 3. Impact of the number of convolutional filters on the feature extraction (CNN-1) for the first
and second datasets.

Number of Filters in Conv. Layer Metric Training Area First Test Area Second Test Area

128

Recall 0.896 0.853 0.764
Precision 0.946 0.854 0.881

F1 0.964 0.900 0.817
Top-three 0.966 0.889 0.931
Top-two 0.899 0.810 0.858
Top-one 0.770 0.704 0.630

64

Recall 0.882 0.949 0.838
Precision 0.941 0.869 0.870

F1 0.953 0.904 0.898
Top-three 0.963 0.963 0.947
Top-two 0.892 0.911 0.886
Top-one 0.760 0.805 0.708

32

Recall 0.871 0.931 0.810
Precision 0.941 0.963 0.858

F1 0.946 0.971 0.876
Top-three 0.962 0.959 0.940
Top-two 0.887 0.905 0.875
Top-one 0.753 0.793 0.692

Table 2 shows the impact of four architectures applied to the first and second datasets, including:
(1) CNN without batch normalisation layer, (2) CNN without pooling layer, (3) CNN without
batch normalisation and pooling layers, and (4) CNN with batch normalisation and pooling layers.
The performance of CNN without the pooling layer was superior, with an F1-score of 0.953 for the
training dataset, 0.904 for test dataset and 0.898 for the second test dataset, respectively. This was
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followed by the architecture of CNN using both batch normalisation and pooling layers with an
F1-score of 0.939 for the training dataset, 0.899 test dataset, and 0.875 for the second test dataset.
Therefore, the layer with superior performance was used in the current research.

Table 4. Impact of the network’s depth on feature extraction for the first and second datasets.

Number of Conv. Layers Metric Training Area First Test Area Second Test Area

1 Conv2D layer

Recall 0.882 0.949 0.838
Precision 0.941 0.869 0.870

F1 0.953 0.904 0.898
Top-three 0.963 0.963 0.947
Top-two 0.892 0.911 0.886
Top-one 0.760 0.805 0.708

2 Conv2D layers

Recall 0.805 0.882 0.705
Precision 0.939 0.971 0.824

F1 0.903 0.965 0.795
Top-three 0.948 0.951 0.913
Top-two 0.863 0.890 0.836
Top-one 0.719 0.770 0.634

3 Conv2D layers

Recall 0.791 0.827 0.761
Precision 0.941 0.901 0.850

F1 0.894 0.939 0.842
Top-three 0.944 0.938 0.930
Top-two 0.860 0.870 0.855
Top-one 0.712 0.742 0.669

Table 5. Impact of Gaussian noise (mu = 0, sigma = 0.1) on feature extraction for first and second dataset.

Noise Impact Metric Training Area First Test Area Second Test Area

Without noise

Recall 0.882 0.949 0.838
Precision 0.941 0.869 0.870

F1 0.953 0.904 0.898
Top-three 0.963 0.963 0.947
Top-two 0.892 0.911 0.886
Top-one 0.760 0.805 0.708

With noise

Recall 0.858 0.933 0.816
Precision 0.931 0.864 0.861

F1 0.934 0.893 0.881
Top-three 0.959 0.960 0.941
Top-two 0.882 0.906 0.877
Top-one 0.742 0.795 0.695

4.2.2. Impact of Filters Size

Moreover, the influence of filter size in convolutional layers was also examined using several
configurations. As mentioned in Table 3, the experiment with 64 filters demonstrated better performance,
with an F1-score of 0.953 and 0.904 for the training area and first test area, as well as an F1-score of
0.898 for the second test area. Therefore, the filter size of 64 was set for CNN-1’s network.

4.2.3. Impact of Network’s Depth

To assess the impact of the network’s depth, three depths (1, 2, 3 Conv2D layers) were examined
based on the training and test datasets. The results demonstrated that using one Conv2D layer
outperformed the other structures with an F1-score of 0.953 and 0.904 for the training and first test
dataset, and 0.898 for the second test dataset (Table 4).
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4.2.4. Impact of Gaussian Noise

In this work, to investigate the sensitivity to the quality of training samples, the Gaussian
noise technique was employed. This additive noise can have a regularising effect and reduce
over-fitting [44–46]. The performance analysis from Table 5 shows that the model performed well
for the case without noise by (0.953 F1-score for the training dataset, 0.904 for the first test dataset,
0.898 for the second test dataset). The results also indicated that the network’s performance was
slightly dropped by adding the Gaussian noise to the input samples of the first and second datasets.
This could imply that the network was not very sensitive by additional noise, inferring that the quality
of the training data was good.

4.3. Results of Classification (CNN-2)

The CNN-2 model was utilised as a classifier for signature prediction, which is an essential stage
in the proposed ZSL framework. These signature classes (vectors) were extracted from the softmax
layer. The second dense layer before the softmax layer takes the number of attributes (300), which is
pre-trained by Google News. The target kernel is initialised with the class signature pre-computed
by the Word2Vec model. The softmax as a final layer was responsible for the classification (signature
prediction). To this end, we conducted diverse experiments on CNN’s architectures applied to the
training and test dataset. The following subsections describe the experiments in detail.

The proposed ZSL model was used to generate land cover maps of the training and testing areas.
For this purpose, six scenarios were applied to the testing area of the first dataset by considering
different unseen classes separately. In other words, only one class was considered an unseen class
in each scenario. Figure 7c–h displays the classification results obtained from the unseen class of
road, urban areas, barren land, agricultural land, forest lands, and croplands for the first testing area,
respectively (each singular unseen case was shown by a reddish box around the corresponding unseen
class in the legend). As shown in Figure 7c, the road was the unseen class that was detected in the test
image; the other testing classes consisted of urban areas, barren land, agricultural land, forest lands,
and croplands. The next scenario was the detection of the urban area as an unseen class which is
shown in Figure 7d. Likewise, the remaining unseen scenarios for the barren land, agricultural land,
forests land, and croplands are shown in Figure 7e–h, respectively. Table 6 shows the accuracy of each
corresponding unseen scenario.

Table 6. Retrieved labels for unseen classes for the first test dataset (Cameron Highlands).

Unseen Class F1-Score Recall Precision Top-One Top-Two Top-Three

Agricultural land 0.862 0.827 0.899 0.831 0.918 0.952
Barren land 0.842 0.809 0.877 0.813 0.914 0.952
Urban areas 0.825 0.782 0.874 0.796 0.897 0.944

Road 0.819 0.872 0.772 0.790 0.894 0.943
Forest lands 0.803 0.750 0.863 0.775 0.884 0.938
Croplands 0.639 0.558 0.747 0.665 0.837 0.927
Average 0.798 0.766 0.838 0.778 0.890 0.942

In general, the average accuracy of the proposed model for prediction of the unseen classes based
on the top-K categorical accuracy was 0.778 top-one, 0.890 top-two, 0.942 top-three, as well as 0.798
F1-score, 0.766 recall, 0.838 precision, respectively.

As illustrated in Figure 7d, it can be seen that the highest accuracy is achieved when the unseen
class is designated as an agricultural land with 0.862 F1-score, 0.827, 0.899 precision, 0.831 top-one,
0.918 top-two and 0.952 top-three. This result might be attributed due to the good semantic matching
of agricultural lands in the pre-trained Word2Vec model and good detection of this class in the feature
extraction phase. However, the lowest accuracy based on the top-one belongs to the scenario wherein
the unseen class was croplands with an accuracy of top-one 0.665 (Figure 7h). That is because the
areas of croplands could be misclassified with other spectrally closed classes such as agricultural and
forest lands. Likewise, the lowest accuracy of croplands could be observed considering the other
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metrics including the F1-score, precision, recall, top-two and top-three with values of 0.639, 0.747, 0.558,
0.837 and 0.927, respectively. All the test cases retrieved the orange colour for the croplands in the
map. However, as the cropland’s pixels are limited and highly scattered within the map, for better
visualisation, we pointed out the croplands class by a yellowish rectangular box in Figure 7h.
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Figure 7. (a) Testing of the first dataset (Cameron Highlands area), (b) Ground truth map of testing 
dataset, and classification results of the testing area with different unseen classes: (c) road, (d) urban 
areas, (e) barren land, (f) agricultural land, (g) forest lands, and (h) croplands. 
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Figure 7. (a) Testing of the first dataset (Cameron Highlands area), (b) Ground truth map of testing
dataset, and classification results of the testing area with different unseen classes: (c) road, (d) urban
areas, (e) barren land, (f) agricultural land, (g) forest lands, and (h) croplands.
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Overall, although the average top-one accuracy for all unseen classes did not reach 80%, the
top-two and top-three approximately raised to 90% and above, which is a promising result given that
the same probability in the traditional classification systems is almost nil due to absence of the label
in the training stage. This can infer that two potential classes could be designated as correct classes
(top-two), and three potential correct classes based on (top-three). Thus, this outcome could help
experts in the geoscience field to select and advise the most appropriate class among two or three
possible classes.

4.3.1. Impact of Batch Normalisation

Batch normalisation is a technique used in the training of CNN. Its function is to standardise the
input to a layer for every mini-batch by adjusting and scaling the activation. It stabilises the training
task which causes a reduction in the number of training epochs [1,47].

We evaluated the CNN-2 network to inspect whether the input layer is benefiting from batch
normalisation during the training and prediction. To this end, two architectures were developed by
considering the presence and absence of batch normalisation in the network.

Table 7 shows the comparative experiment of including batch normalisation in the network for
the first training dataset. It appears that using the batch normalisation layer slightly enhanced the
performance of the network during the training stage. The improvement was subsequently represented
by mean F1-score of 0.806 reaching 0.809, mean recall of 0.752 reaching 0.757, mean precision of
0.871 reaching 0.872, mean top-one 0.812 reaching 0.814, mean top-two 0.21 reaching 0.923 and mean
top-three 0.972 reaching 0.973.

Table 7. Accuracy of the model without and with batch normalisation for the training area.

Unseen Class F1-Score Recall Precision Top-One Top-Two Top-Three

Without batch normalisation

Urban areas 0.831 0.776 0.893 0.831 0.925 0.976
Barren land 0.863 0.824 0.906 0.862 0.943 0.979

Agricultural land 0.874 0.841 0.910 0.873 0.948 0.978
Forest lands 0.612 0.527 0.731 0.646 0.862 0.952

Road 0.829 0.774 0.893 0.830 0.924 0.975
Water body 0.830 0.775 0.893 0.830 0.924 0.975

Mean 0.806 0.752 0.871 0.812 0.921 0.972

With batch normalisation

Urban areas 0.832 0.780 0.892 0.833 0.927 0.976
Barren land 0.865 0.827 0.907 0.864 0.944 0.980

Agricultural land 0.876 0.844 0.911 0.875 0.950 0.979
Forest lands 0.621 0.536 0.738 0.652 0.866 0.953

Road 0.832 0.780 0.892 0.833 0.927 0.976
Water body 0.832 0.780 0.892 0.832 0.926 0.975

Mean 0.809 0.757 0.872 0.814 0.923 0.973

The same experiment was performed on the first test dataset. The results from Table 8 show that
batch normalisation also improved the network by mean values of F1-score from 0.791 to 0.798, recall
from 0.740 to 0.751, top-one from 0.773 to 0.778, top-two from 0.889 to 0.890 and top-three from 0.930 to
0.942, respectively.

The experiment on the second dataset (Table 9) showed a similar result compared to the first
dataset. Specifically, when using batch normalisation, the model performed slightly better than the
case without batch normalisation with subsequent mean values of F1-score from 0.722 reaching 0.729,
recall from 0.668 reaching 0.676, precision from 0.786 reaching 0.790 and top-one from 0.731 reaching
0.737, top-two from 0.901 reaching 0.906 and top-three from 0.920 reaching 0.924.
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Table 8. Accuracy of the model without and with batch normalisation for the first test area (Cameron
Highlands).

Unseen Class F1-Score Recall Precision Top-One Top-Two Top-Three

Without batch normalisation

Urban areas 0.819 0.773 0.871 0.791 0.891 0.931
Barren land 0.837 0.802 0.876 0.808 0.910 0.941

Agricultural land 0.859 0.822 0.898 0.828 0.905 0.940
Forest lands 0.797 0.741 0.863 0.770 0.879 0.925

Road 0.814 0.765 0.870 0.786 0.889 0.931
Croplands 0.624 0.539 0.742 0.655 0.860 0.914

Mean 0.791 0.740 0.853 0.773 0.889 0.930

With batch normalisation

Urban areas 0.825 0.782 0.874 0.796 0.897 0.944
Barren land 0.842 0.809 0.877 0.813 0.914 0.952

Agricultural land 0.862 0.827 0.899 0.831 0.918 0.952
Forest lands 0.803 0.750 0.863 0.775 0.884 0.938

Road 0.819 0.872 0.772 0.790 0.894 0.943
Croplands 0.639 0.558 0.747 0.665 0.837 0.927

Mean 0.798 0.751 0.838 0.778 0.890 0.942

Table 9. Accuracy of the model without and with batch normalisation for the second test area (Ipoh).

Unseen Class F1-Score Recall Precision Top-One Top-Two Top-Three

Without batch normalisation

Green space 0.749 0.694 0.813 0.754 0.907 0.924
Urban areas 0.729 0.679 0.787 0.737 0.903 0.928
Barren land 0.709 0.653 0.776 0.721 0.900 0.928

Agricultural land 0.724 0.673 0.783 0.732 0.905 0.918
Forest lands 0.713 0.656 0.781 0.723 0.894 0.905

Road 0.728 0.675 0.790 0.737 0.903 0.922
Water body 0.705 0.648 0.773 0.716 0.897 0.917

Mean 0.722 0.668 0.786 0.731 0.901 0.920

With batch normalisation

Green space 0.755 0.702 0.817 0.760 0.912 0.937
Urban areas 0.737 0.688 0.792 0.744 0.908 0.921
Barren land 0.717 0.664 0.779 0.728 0.905 0.922

Agricultural land 0.729 0.678 0.788 0.737 0.909 0.923
Forest lands 0.721 0.664 0.787 0.730 0.900 0.918

Road 0.735 0.684 0.794 0.743 0.907 0.920
Water body 0.712 0.655 0.778 0.722 0.901 0.929

Mean 0.729 0.676 0.790 0.737 0.906 0.924

4.3.2. Impact of the Number of Neurons

Additionally, to enrich the robustness of the network, a different number of neurons were examined
over the first training and testing areas as well as the second test area. Table 10 represents the impact
of diverse configurations of neurons with sizes of 128, 64, and 32.

The results from the experiment showed that the network with a filter size of 128 outperformed
the other configurations of all datasets, including the training dataset (with F1-score of 0.832, recall of
0.780, the precision of 0.892, 0.833 top-one, 0.927 top-two and 0.976 top-three), first test dataset (with
F1-score of 0.825, recall of 0.782, the precision of 0.874, 0.796 top-one, 0.897 top-two and 0.944 top-three)
and second test data (with F1-score of 0.737, recall of 0.688, the precision of 0.792, 0.744 top-one, 0.908
top-two and 0.921 top-three), respectively.
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Table 10. Impact of the number of neurons on the CNN-2 network.

Number of Neurons Metric Training Area First Test Area Second Test Area

128

Recall 0.780 0.782 0.688
Precision 0.892 0.874 0.792

F1 0.832 0.825 0.737
Top-three 0.976 0.944 0.921
Top-two 0.927 0.897 0.908
Top-one 0.833 0.796 0.744

64

Recall 0.775 0.772 0.677
Precision 0.892 0.870 0.784

F1 0.829 0.818 0.727
Top-three 0.975 0.941 0.927
Top-two 0.924 0.891 0.872
Top-one 0.829 0.790 0.735

32

Recall 0.766 0.763 0.661
Precision 0.892 0.868 0.775

F1 0.824 0.812 0.714
Top-three 0.973 0.938 0.913
Top-two 0.920 0.896 0.865
Top-one 0.826 0.814 0.724

4.3.3. Impact of Gaussian Noise

The experiments of adding Gaussian noise to the training and test samples were conducted to
investigate the sensitivity of the models to the noise in the samples. The parameters were set as
(mu = 0, sigma = 0.1). Table 11 demonstrated that the network with the absence of additional noise
outperformed the case with extra noise with (0.832 F1-score, 0.892 precision, 0.780 recall) for the training
of the first dataset, (0.825 F1-score, 0.874 precision, 0.872 recall) for the first test and (0.737 F1-score,
0.792 precision, 0.688 recall) for the second test dataset. This outcome shows that the models trained
with noisy samples also achieved significant results.

Table 11. Impact of Gaussian noise (mu = 0, sigma = 0.1).

Metric Training Area First Test Area Second Test Area

Without noise

Recall 0.780 0.782 0.688
Precision 0.892 0.874 0.792

F1 0.832 0.825 0.737
Top-three 0.976 0.944 0.921
Top-two 0.927 0.897 0.908
Top-one 0.833 0.796 0.744

With noise

Recall 0.762 0.779 0.679
Precision 0.873 0.882 0.785

F1 0.810 0.811 0.719
Top-three 0.957 0.929 0.901
Top-two 0.917 0.875 0.886
Top-one 0.820 0.787 0.723

4.4. Results of Transferability

To evaluate the transferability of the proposed framework, the entire process was applied to the
second test dataset. The visual interpretation illustrated that the area consisted of diverse land cover
types, including green space, urban areas, road, agricultural land, forest lands, barren land, and water
body. The image was taken from a similar geographical environment to the first dataset; therefore,
the same set of hyper-parameters was employed for CNNs. Figure 8 demonstrates the classification
result for seven scenarios of unseen classes.
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Table 12 demonstrates the results of the singular unseen class for each scenario and their mean
accuracies. In each scenario, the unseen class did not exist in the training set. Overall, the average
categorical accuracy of unseen classes showed a promising result by scoring 0.737 top-one, 0.906
top-two, 0.924 top-three, 0.729 F1-score, 0.676 recall and 0.790 precision, respectively. This can infer
that the model excellently works for the second dataset as well.

Table 12. Retrieved labels for the unseen classes for the second test area (Ipoh).

Unseen Class F1-Score Recall Precision Top-One Top-Two Top-Three

Green space 0.755 0.702 0.817 0.760 0.912 0.937
Urban areas 0.737 0.688 0.792 0.744 0.908 0.921

Road 0.735 0.684 0.794 0.743 0.907 0.920
Agricultural land 0.729 0.678 0.788 0.737 0.909 0.923

Forest lands 0.721 0.664 0.787 0.730 0.900 0.918
Barren land 0.717 0.664 0.779 0.728 0.905 0.922
Water body 0.712 0.655 0.778 0.722 0.901 0.929

Average 0.729 0.676 0.790 0.737 0.906 0.924
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5. Discussion

Typical classification models in remote sensing can only classify objects that are seen during the
training stage. These methods are unsuccessful in the classification of unseen objects in the testing stage.
Unseen object classification is a challenging topic, in which plenty of studies have attempted to develop
models to address this problem. For example, in recent years, ZSL has been widely implemented in
computer science due to its potential to identify unseen objects without obtaining training samples
by assistance from semantic information [14]. These models extract abstract features from the image
pixels. From the class labels, the semantic information is often retrieved as vectors using models like
Word2Vec. Unseen object classification is a hot topic, especially for the remote sensing field, due to its
data variety and scalability [20,34]. To the best of our knowledge, these models are rarely applied to
geoscience applications, especially for high-resolution land cover classification from aerial photos.

Therefore, this paper presented a ZSL framework based on CNN and Word2Vec for unseen land
cover mapping. The CNN was found to be a robust feature extraction technique that achieved relatively
high accuracies on training (0.953 F1-score, 0.941 precision, 0.882 recall), testing (0.904 F1-score, 0.869
precision, 0.949 recall) and second test dataset (0.898 F1-score, 0.870 precision, 0.838 recall). For the
robustness of the network, various cases and models were tested. Despite including the Gaussian
noise to input samples, no improvement was observed in the networks. This implies that the training
strategies used in this experiment were good enough, and also, no over-fitting effects were observed.
In the feature extraction phase, the best performance status was recorded, when the pooling layer was
not included in the architecture. Therefore, we hypothesised that the dimensionality or complexity
of the dataset was not an obstacle to train the network. Nevertheless, the case study including CNN
with batch normalisation and pooling layers had comparable accuracy with the superior case (without
pooling). Given that the feature extraction is a separate step in our ZSL, the proposed framework
is flexible and can be further improved and customised for other applications. This process can be
achieved by replacing the proposed CNN model with other deep-learning methods, depending on a
new problem.

In the second phase, Word2Vec with 300 dimensions is used as word embedding to gather class
attributes. Our ZSL approach could obtain (0.798 F1-score, 0.766 recall, 0.838 precision, 0.778 top-one,
0.890 top-two and 0.942 top-three) mean accuracies for different unseen classes on the first test area,
accompanied by (0.729 F1-score, 0.676 recall, 0.790 precision, 0.737 top-one, 0.906 top-two and 0.924
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top-three) mean accuracies for the second test area; however, a standard terminology or word model
(exclusively for remote sensing domain) might further improve the results. Moreover, the obstacle of
distance structure distinction between the word vectors and visual models of remote sensing image
classification seriously impacts the operation and efficiency of the ZSL image classification [47]. Thus,
special embedding attributes for remote sensing data could positively affect the model’s performance.

In a previous generalised ZSL application on land cover classification with 8 m PolSAR images, the
overall accuracy of 73% and the ratio of 1/3–3/3 unseen/seen classes were reported; however, the exact
category missing with attributes in the SUN database of rural areas, wetland, and agricultural land was
reported [24]. In another application utilising label propagation and label refinement approaches [14],
the overall accuracy was reported as 58% and 70.4% for 5/16 and 1/7 unseen/seen ratio, respectively.
In another work of street tree detection from areal images [21], CNN structures were employed and
the accuracy of 14.3% for 16 tree classes was reported. While the overall accuracy evaluation metric
was the main performance evaluation used in the previous remote sensing studies on zero-shot unseen
land cover mapping, we further evaluated the robustness of the current framework considering the
imbalanced class distribution via six evaluation metrics, namely F1-score, precision, recall and top-k
categorical accuracy for k = [1,2,3] with 1/6 unsee/seen ratio. Table 13 presents a comparison among
some related studies that have a similar scope with the current study in the remote sensing domain.

Table 13. Comparison of results from the previous studies and the current study.

ZSL Applications On Remote Sensing Data Approach Accuracy Unseen/Seen Ratio

Land cover classification (Current study) Aerial images 2 CNNs-based structure

Average:
F1-score: 0.798
Precision: 0.838

Recall: 0.766
Top-one: 0.778
Top-two:0.890

Top-three: 0.942

1/6

Land cover classification PolSAR image with
8-meters resolution

Embedding space and
latent embedding Overall: 73% 1/3–3/3

Object detection High-resolution
satellite image

Label propagation and
label refinement

Overall: 58.7%
Overall: 70.4%

5/16
1/7

Street trees detection Aerial images CNN-based structure Average: 14.3% 16/40

Although ZSL models achieve relatively high accuracy in computer vision, it is not fully explored
in remote sensing applications. For this purpose, we need further specific word embedding models
that can be trained on geospatial data. This case can introduce new research areas of ZSL and other
fields requiring word embedding.

The most influential step in the current proposed ZSL framework is the feature extractor, which is
based on CNN models. It has shown a promising result that could be extended to other geospatial
applications. Accordingly, more robust CNN architectures like graphical CNNs, capsule-based CNNs,
and others can help to improve the accuracy of the ZSL classification. A second model (CNN) is
required to perform class signature prediction. This model can also be replaced with any other machine
learning methods, such as SVMs or random forests. The class label is predicted by mapping the output
vector to the nearest one and matching it with the vectors of all classes. Nevertheless, as part of the
limitations that exist in CNN and deep learning models, they often require a large number of training
samples for their learnings, and also their architectures contain enormous tuneable parameters to train
the classifiers [36]. Another limitation is that the classifiers usually employed as black boxes. To solve
these drawbacks, tensor-based learning models (tensor algebraic operations) [48], could provide
promising solutions including a reduction in weight parameters (especially for high-dimensional/noisy
data), allow physical interpretation and preserve the spatial and spectral coherency of input samples.
This technique can generally be applied to CNN’s structure by replacing fully-connected layers with
tensor contractions [49].

In future works, several subjects should be additionally contemplated. First, a more efficient
semantic data related to the land cover mapping in different remote sensing utilisation should be
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investigated, including orthophotos, multispectral/hyperspectral images, synthetic aperture radar
(SAR), and other remote sensing products. Second, the potential of different semantic models for land
cover mapping assisted with diverse machine learning methods need to be further expanded. Third,
there is no specific standard or agreed upon ZSL benchmark in the geospatial field [27,32]. Thus, the
potential application of ZSL in a variety of popular applications such as change detection, land use/land
cover mapping, detecting the types of landslides and more operations can be explored.

In this research, although some degrees of confusion are still existing among classes (e.g., croplands,
forest lands and agricultural lands), the overall performance is still satisfactory. This confusion could
be attributed to the likeness of the spectral and spatial properties of these classes. In such a case, using
data with additional spectral bands (e.g., hyperspectral) could relatively improve the result. Besides,
it is expected that establishing special standard embedding attributes for remote sensing data could
decrease such confusion effects among classes.

Overall, the applicability of the adopted framework in the second study area showed that our
ZSL scheme exhibited relatively similar classification results. Most of the unseen classes in different
scenarios are excellently detected, given that such detection of unseen classes is impossible via
traditional classification methods due to the absence of specific samples in training data. We performed
various CNN models, techniques and sensitivity analysis (e.g., Gaussian noise additive) to our networks
to assure its robustness using two different datasets. Both experiments on the datasets demonstrated
their agreement to the framework’s performance.

6. Conclusions

ZSL is an important concept that has been recently developed because of its potential to solve
classification problems that lack sufficient training data for every class. In this paper, we present a ZSL
framework for land cover mapping using orthophotos. The framework is built based on CNN and
Word2Vec. The former is applied for the feature extraction process, whereas the latter is used to learn
class attributes from the class labels.

The proposed models and the framework are tested on two subset datasets obtained for the
Cameron Highlands as the first dataset and the Ipoh area as the second dataset, in Malaysia. The results
show that the proposed feature extraction model achieves high accuracies on the training of the first
dataset (0.953 F1-score, 0.941 precision, 0.882 recall), the first test dataset (0.904 F1-score, 0.869 precision,
0.949 recall) and 0.898 F1-score, 0.870 precision, 0.838 recall for the second test dataset. The ZSL model
achieves accuracies of 0.778 top-one, 0.890 top-two and 0.942 top-three, 0.798 F1-score, 0.766 recall
and 0.838 precision on average for different unseen classes on the test area of the first dataset and
0.737 top-one, 0.906 top-two, 0.924 top-three, 0.729 F1-score, 0.676 recall and 0.790 precision average
accuracies for the second dataset. This outcome could help the experts in the remote sensing field,
supporting them in recognising the correct class among two or three possible classes, especially when
those classes are not included in the training set.

Transforming remote sensing imagery to a new embedding and using this strategy to predict seen
and unseen classes could be a useful approach to ZSL in remote sensing data. Further developments
will be considered, making the proposed framework more efficient for learning to predict unseen
classes by using novel Word2Vec models specifically for remote sensing applications and various types
of CNN models, including residual and graph CNNs. Moreover, the same number of samples for the
seen and unseen classes will be considered for further assessment.
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