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Abstract: Change detection based on remote sensing (RS) data is an important method of detecting
changes on the Earth’s surface and has a wide range of applications in urban planning, environmental
monitoring, agriculture investigation, disaster assessment, and map revision. In recent years,
integrated artificial intelligence (Al) technology has become a research focus in developing new
change detection methods. Although some researchers claim that Al-based change detection
approaches outperform traditional change detection approaches, it is not immediately obvious how
and to what extent Al can improve the performance of change detection. This review focuses on
the state-of-the-art methods, applications, and challenges of Al for change detection. Specifically,
the implementation process of Al-based change detection is first introduced. Then, the data from
different sensors used for change detection, including optical RS data, synthetic aperture radar (SAR)
data, street view images, and combined heterogeneous data, are presented, and the available open
datasets are also listed. The general frameworks of Al-based change detection methods are reviewed
and analyzed systematically, and the unsupervised schemes used in Al-based change detection
are further analyzed. Subsequently, the commonly used networks in Al for change detection are
described. From a practical point of view, the application domains of Al-based change detection
methods are classified based on their applicability. Finally, the major challenges and prospects of Al
for change detection are discussed and delineated, including (a) heterogeneous big data processing,
(b) unsupervised Al, and (c) the reliability of Al This review will be beneficial for researchers in
understanding this field.

Keywords: artificial intelligence; change detection; remote sensing; deep learning; neural network;
unsupervised learning; SAR; hyperspectral; multispectral; street view

1. Introduction

Change detection is the process of identifying differences in the state of an object or phenomenon
by observing it at different times [1]. It is one of the major problems in earth observation and has been
extensively researched in recent decades. Multi-temporal RS data, such as satellite imagery and aerial
imagery, can provide abundant information to identify land use and land cover (LULC) differences
in a specific area across a period of time. This is very crucial in various applications, such as urban
planning, environmental monitoring, agriculture investigation, disaster assessment, and map revision.

With the ongoing development of Earth observation techniques, huge amounts of RS data with
a high spectral-spatial-temporal resolution are now available, which brings new requirements of
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change detection techniques and greatly promotes their development. To address the problems
brought about by finer spatial and spectral resolution images during the change detection process,
many change detection approaches are proposed. Here, they are broadly divided into two categories:
traditional and Al-based. Figure 1 presents the general flow of traditional change detection and
Al-based change detection.
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Figure 1. General schematic diagram of change detection.

Existing change detection reviews have focused mainly on the design of change detection

techniques in multi-temporal hyperspectral images (HSIs) and high-spatial-resolution images [1-4].
The techniques they reviewed are mainly traditional change detection approaches, which can be
generally summarized into the following groups:

Visual analysis: the change map is obtained by manual interpretation, which can provide highly
reliable results based on expert knowledge but is time-consuming and labor-intensive;
aAlgebra-based methods: the change map is obtained by performing algebraic operation
or transformation on multi-temporal data, such as image differencing, image regression,
image ratioing, and change vector analysis (CVA);

Transformation: data reduction methods, such as principle component analysis (PCA), Tasseled
Cap (KT), multivariate alteration detection (MAD), Gramm-Schmidt (GS), and Chi-Square,
are used to suppress correlated information and highlight variance in multi-temporal data;
Classification-based methods: changes are identified by comparing multiple classification maps
(i.e., post-classification comparison), or using a trained classifier to directly classify data from
multiple periods (i.e., multidate classification or direct classification);

Advanced models: advanced models, such as the Li-Strahler reflectance model, the spectral
mixture model, and the biophysical parameter method, are used to convert the spectral
reflectance values of multi-period data into physically based parameters or fractions to perform
change analysis, and this is more intuitive and has physical meaning, but it is complicated
and time-consuming;

Others: hybrid approaches and others, such as knowledge-based, spatial-statistics-based,
and integrated GIS and RS methods, are used.

According to the detection unit, these methods can also be classified based on pixel-level,

feature-level, object-level, and three-dimensions (3D) object-level, and have been systematically
reviewed in the literature [5-7]. Due to the rapid development of computer technology, the research of
traditional change detection approaches has turned to integrating Al techniques. In both traditional
change detection flow and Al-based flow, the first step is data acquisition and the aim of change
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detection is to obtain the change detection map for various applications; after preparing the data,
traditional approaches typically consist of two steps, including a homogenization process and a change
detection process, while the Al-based approaches generally require an extra training set generation
process and an Al model training process for change detection. Obviously, the key components of
Al-based approaches are the Al techniques.

Al techniques, also called machine intelligence, can provide a better performance in various
data-processing tasks. It can be defined as a system’s ability to correctly interpret external data,
to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible
adaptation [8]. Al techniques in this paper focus on the recent emergence of deep learning methods,
new network structures, and intelligent machine learning methods, which are inspired by biological
systems. Traditional machine learning methods, such as support vector machines and decision trees,
have not been considered in this review due to their relatively low intelligence and existing reviews [7].

Many new approaches integrating Al techniques have been developed to improve the accuracy
and automation of change detection. A wide body of RS research has suggested that Al-based change
detection approaches are superior to the traditional in terms of feature extraction [9,10]. Due to the
powerful modeling and learning capabilities, Al techniques can model the relationship between the
image object and its real-world geographical feature as closely as possible, which enables the detection
of more real change information. Generally, they utilize spatial-context information in multi-temporal
data to learn hierarchical feature representations, and these high-level feature representations are more
effective and robust in change detection tasks.

Most existing studies reviewing Al have either been general reviews concerning the development
of the Al algorithm [11] or detailed RS application reviews for a specific hot-field [12]. In [13],
the authors focused on the theories, tools, and challenges of deep learning in RS community. In other
words, these review articles are based on the theory and application of Al techniques in RS. In the
field of RS data change detection, there is still a lack of a thorough review of Al methods applied
to multi-source data. This paper provides a deep review of the application of Al technologies in RS
change detection processing. It focuses on the state-of-the-art methods, applications, and challenges of
Al for change detection in multi-temporal data. The main contributions of this paper are as follows:

1. The implementation process of Al-based change detection is introduced, and we summarize
common implementation strategies that can help beginners understand this research field;

2. We present the data from different sensors used for Al-based change detection in detail, mainly
including optical RS data, SAR data, street-view images, and combined heterogeneous data.
More practically, we list the available open datasets with annotations, which can be used as
benchmarks for training and evaluating AI models in future change detection studies;

3. By systematically reviewing and analyzing the process of Al-based change detection methods,
we summarize their general frameworks in a practical way, which can help to design change
detection approaches in the future. Furthermore, the unsupervised schemes used in Al-based
change detection are analyzed to help address the problem of lack of training samples in
practical applications;

4. Wedescribe the commonly used networks in Al for change detection. Analyzing their applicability
is helpful for the selection of AI models in practical applications;

5. We provide the application of Al-based change detection in various fields, and subdivide it into
different data types, which helps those interested in these areas to find relevant Al-based change
detection approaches;

6.  We delineate and discuss the challenges and prospects of Al for change detection from three
major directions, i.e., heterogeneous big data processing, unsupervised Al, and the reliability of
Al providing a useful reference for future research.

The rest of the paper is organized as follows. We introduce the implementation process of
Al-based change detection in Section 2; and we list data sources used for change detection in Section 3;
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The review of general frameworks and commonly used networks in Al for change detection are
presented in Sections 4 and 5, respectively; in Section 6, we summarize the various applications of the
methods; after discussing the challenges and opportunities of Al-based change detection in Section 7,

we draw conclusions of this review in Section 8.

2. Implementation Process of AI-Based Change Detection

Figure 1 illustrates the general flow of Al-based change detection. The key is to obtain a

high-performance trained AI model. In detail, as presented in Figure 2, the implementation process of
Al-based change detection includes the following four main steps:

1.

Homogenization: Due to differences in illumination and atmospheric conditions, seasons,
and sensor attitudes at the time of acquisition, multi-period data usually need to be homogenized
before change detection. Geometric and radiometric correction are two commonly used
methods [14,15]. The former aims to geometrically align two or more given pieces of data,
which can be achieved through registration or co-registration. Given two period data, only
when they are overlaid can the comparison between corresponding positions be meaningful [16].
The latter aims to eliminate radiance or reflectance differences caused by the digitalization process
of sensors and atmospheric attenuation distortion caused by absorption and scattering in the
atmosphere [4], which helps to reduce false alarms caused by these radiation errors in change
detection. For heterogeneous data, a special Al model structure can be designed for feature space
transformation to achieve change detection (see Section 4.1.2);

Training set generation: To develop the Al model, a large, high-quality training set is required
that can help algorithms to understand that certain patterns or series of outcomes come with a
given question. Multi-period data are labeled or annotated using certain techniques (e.g., manual
annotation [17], pre-classification [18], use of thematic data [19]) to make it easy for the Al model
to learn the characteristics of the changed objects. Figure 2 presents an annotated example for
building change detection, which is composed of two-period RS images and a corresponding
ground truth labeled with building changes at the pixel level. Based on the ground truth, i.e., prior
knowledge, the Al model can be trained in a supervised manner. To alleviate the problem of lack
of training data, data augmentation, which is widely used, is a good strategy, such as horizontal
or vertical flip, rotation, change in scale, crop, translation, or adding noise, which can significantly
increase the diversity of data available for training models, without actually collecting new data;
Model training: After the training set is generated, it can usually be divided into two datasets
according to the number of samples or the geographic area: a training set for Al model training
and a test set for accuracy evaluation during the training process [20]. The training and testing
processes are performed alternately and iteratively. During the training process, the model
is optimized according to a learning criterion, which can be a loss function in deep learning
(e.g., softmax loss [21], contrastive loss [22], Euclidean loss [23], or cross-entropy loss [24]).
By monitoring the training process and test accuracy, the convergence state of the Al model can
be obtained, which can help in adjusting its hyperparameters (such as the learning rate), and also
in judging whether the model performance has reached the best (i.e., termination) condition;
Model serving: By deploying a trained Al model, change maps can be generated more intelligently
and automatically for practical applications. Moreover, this can help validate the generalization
ability and robustness of the model, which is an important aspect of evaluating the practicality of
the Al-based change detection technique.
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Figure 2. Implementation process of Al-based change detection (black arrows indicate workflow and
red arrow indicates an example).

The above steps provide a general implementation process of Al-based change detection, but the
structure of the Al model is diverse and needs to be well designed according to different application
situations and the training data, which will be introduced in Sections 4 and 5. It is worth mentioning
that existing mature frameworks such as TensorFlow [25], Keras [26], Pytorch [27], and Caffe [28],
help researchers more easily realize the design, training, and deployment of Al models, and their
development documents provide detailed introductions.

3. Data Sources for Change Detection

With the development of data acquisition platforms such as satellites, drones, and ground survey
vehicles, the massive multi-source RS data that they produce bring forth new application requirements
for land change monitoring. In particular, multi-sensor high-spatial and high-temporal-resolution
data require more automated and robust change detection methods to reduce the cost of manual
interpretation. By summarizing the data types used for change detection, we can deeply analyze the
applicability of existing change detection methods to the data. In this paper, the types of data used for
change detection are divided into optical RS images, SAR images, and street view images. It should
be noted that street view images are usually not used as RS data but as auxiliary data [29-31], so it
is not common in the RS community. Still, there are overlapping ideas for change detection. In this
paper, street view images are treated as a kind of RS data in a broad sense and reviewed, because
they can provide street-level observation data. Moreover, the methods combining heterogeneous data
for change detection are summarized and analyzed. Examples of different data sources are shown
in Figure 3. Optical RS and SAR images are gathered with passive and active sensors, respectively,
covering different electromagnetic spectral ranges. Other data sources, such as digital elevation
models (DEMs), geographic information system (GIS) data, and point cloud data, can provide valuable
supplementary attributes. Overhead remote sensing collects information over large spatial areas,
but its time resolution is relatively low. Street view images can provide nearly real-time information
at street-level. For detailed descriptions of optical RS images, SAR images, street view images,
and combined heterogeneous data, please refer to Section 3.1. In addition, Section 3.2 lists existing
open datasets for change detection tasks that can be employed as benchmarks for future research.
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(d) (e) (f)

Figure 3. Examples of different data sources for change detection: (a) Optical RS image (obtained by
Quickbird); (b) SAR image (obtained by the Advanced Land Observing Satellite (ALOS) Phased Array
type L-band Synthetic Aperture Radar (PALSAR)); (c) digital elevation model (DEM); (d) geographic
information system (GIS) data (from OpenStreetMap [32]); (e) Point cloud data (from International
Society for Photogrammetry and Remote Sensing (ISPRS) benchmarks [33]); (f) Street view image (from
Cityscapes datasets [34]).

3.1. Data Used for Change Detection

3.1.1. Optical RS Images

Optical RS images can be divided into hyperspectral, multispectral, and panchromatic images
according to the number of bands. HSIs are volumetric image cubes that consist of hundreds of spectral
bands. They have narrow bands over a wide portion of the electromagnetic spectrum; the band range
is generally less than 10 nm. Multispectral images typically contain multiple bands but fewer than
15 bands. The spectral resolution of multispectral images is in the range of 0.1 times the wavelengths.
Panchromatic images have a single band that is formed by using the total light energy in the visible
spectrum (instead of partitioning it into different spectra). A side-by-side example of hyperspectral,
multispectral, and panchromatic images is shown in Figure 4. HSIs are gathered by the AVIRIS
sensor [35]; multispectral and panchromatic images are taken from the Quickbird satellite. The second
row of Figure 4 shows the spectral intensity of a selected image pixel and the spectral resolution of
the three types of images. Therefore, images with different number of bands, reflecting the spectral
resolution, require different methods for change detection.

HSIs have hundreds or even thousands of continuous and narrow bands, which can provide
abundant spectral and spatial information. Multi-temporal HSIs are of great significance in
distinguishing the subtle changes in ground objects through their high-dimensional feature information.
The detailed information on spectral changes presents promising change detection performance.
However, it increases the redundancy of the data and makes it difficult to interpret. Moreover, due to
the generally low spatial resolution of HSIs, the textures around the pixels are vague, and mixed pixels
occupy a large proportion. Change detection methods for HSIs must address the problems of high
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dimensionality, mixed pixels, high computational cost, and a limited training dataset. Effective Al
algorithms can be employed to solve these problems and have been proved to achieve satisfactory
performance [36-39].

Multispectral images can be acquired economically and stably, with spatial resolution ranging
from low to high. They can provide rich colors, textures, and other properties. Images with high spatial
resolution or very high spatial resolution (10 to 100 cm/pixel) can also reflect the structure information
of the ground objects [40]. Consequently, they are widely used for change detection. Specifically,
the most commonly used types of multispectral images for Al-based change detection methods are
derived from the Landsat series of satellites [41-65] and the Sentinel series of satellites [66,67], due to
their low acquisition cost and high time and space coverage. In addition, other satellites, such as
Quickbird [68-74], SPOT series [75-78], Gaofen series [14,79,80], Worldview series [81-85], provide
high and very high spatial resolution images, and various aircrafts provide very high spatial resolution
aerial images [20,86-94], allowing the change detection results to retain more details of the changes.

200 bands, 4 bands,

20 m spatial resolution 2.4 m spatial resolution 0.6 m spatial resolution
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- - -

150 «:ISO' blwﬂ
5 100 = 100 E 100
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Figure 4. Examples of hyperspectral, multispectral, and panchromatic images, where the hyperspectral
image is from Indian Pines; multispectral and panchromatic images are from Quickbird.

A panchromatic image has only one band (i.e., black and white band), and usually contains a
couple of hundred nanometer bandwidth. The bandwidth enables it to hold a high signal—noise
ratio, making the panchromatic data available at a high and very high spatial resolution. Therefore,
panchromatic images are usually fused with multispectral images to obtain richer spectral information
and spatial information for change detection with high and very high spatial resolution. In addition,
they can be used directly for change detection [95].

Optical RS images are widely utilized for change detection as they provide abundant spectral
and spatial information. However, optical sensors rely upon the sun’s illumination and the used
wavelength is close to visible light or 1 mm. Therefore, they are often affected by solar radiation and
clouds. SAR, on the other hand, uses a wavelength of 1 cm to 1 m and has its own illumination source.
Thus, it can image at both day and night, in almost all weather conditions.
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3.1.2. SAR Images

SAR is a technique which uses signal processing to improve the resolution beyond the limitation
of physical antenna aperture [96]. The sensor is mounted on an aircraft or a satellite, and is used to
make a high-resolution image of the earth’s surface. SAR is independent of atmospheric and sunlight
condition, so it has become a valuable source of information in change detection. With the development
of SAR imaging technology, multi-platform, multi-band, multi-polarization SAR images provide more
abundant data sources for change detection tasks. However, SAR images always suffer from the effect
of speckle noises, which results in a more difficult process of change detection than optical RS images.
Their three key problems include: (1) suppressing speckle noise; (2) designing a change metric or a
change indicator; and (3) using a threshold or a classifier based on a change metric to generate a final
change map. Change detection methods using Al techniques, especially an autoencoder (AE) [97-107]
and a convolutional neural network (CNN) [108-114], to suppress speckle noise and extract features has
been proven to be the state of the art. In the overall process and framework of methods, they are similar
to the methods based on optical RS images, and the detailed framework and Al model introduction are
analyzed in Sections 4 and 5.

3.1.3. Street View Images

Unlike optical RS and SAR images, street view images are captured at eye-level instead of
overhead. They provide more detailed information in relatively small areas and at more observation
angles, which can be used for dynamic or real-time change detection. Change detection based on
street view images focuses on changes in the dynamic urban visual landscape, such as the addition or
removal of specific landmarks, pedestrians, vehicles, and other roadside buildings.

A critical challenge is on how to identify noisy changes caused by various illuminations, camera
viewpoints, occlusions, and shadows in detecting changes using street view images. These noisy
changes are interwoven with semantic changes, making it difficult to define and measure the wanted
semantic changes in street view images. Thus, using Al algorithms, mainly CNN [115-120], to learn
deep features for change detection, requires street view images that have been spatially registered.

3.1.4. Combining Heterogeneous Data

According to whether the source of multi-period data is the same, the change detection methods
can be divided into homogeneous data change detection and heterogeneous data change detection.
Homogeneous data comes from the same type of sensors, and they have the same properties, spectral
distribution, and feature space, while heterogeneous data come from different types of sensors,
they have different properties and feature spaces, so they cannot be analyzed directly for difference
image. Although change detection using heterogeneous data is more challenging, it has fewer
restrictions on the type of input data and can be used in more situations. Different sensors can
complement each other to provide richer information on ground objects. For example, using optical RS
images and SAR images for change detection, the former can provide rich texture information, while the
latter can be acquired without atmospheric restrictions. It can be used for emergency change detection
in areas where data are insufficient or disasters occur. Much work on this issue has been proposed
that uses Al methods to detect changes in SAR and optical RS images [16,66,121-127]. In addition,
GIS maps [128], point cloud data [91], DEMs [129,130], and digital surface models (DSMs) [131] are
used in combination with optical RS images or SAR images for change detection. These different data
types can satisfy different application requirements and are selected according to the actual situation.

3.2. Open Data Sets

Currently, there are some freely available data sets for change detection, which can be used as
benchmark datasets for Al training and accuracy evaluation in future research. Detailed information is
presented in Table 1.
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It can be seen that the amount of open datasets that can be used for change detection tasks is
small, and some of them have small data sizes. At present, there is still a lack of large SAR datasets that
can be used for Al training. Most Al-based change detection methods are based on several SAR data
sets that contain limited types of changes, e.g., the Bern dataset, the Ottawa dataset, the Yellow River
dataset, and the Mexico dataset [24,103], which cannot meet the needs of change detection in areas
with complex land cover and various change types. Moreover, their labels are not freely available.
Street-view datasets are generally used for research of Al-based change detection methods in computer
vision (CV). In CV, change detection based on pictures or video is also a hot research field, and the
basic idea is consistent with that based on RS data. Therefore, in addition to street view image datasets,
several video datasets in CV can also be used for research on Al-based change detection methods, such
as CDNet 2012 [132] and CDNet 2014 [133]. Since they belong to the research field of video analysis,
this paper will not review them in more detail. Those interested can refer to [132-134].

Table 1. A list of open datasets for change detection.

Type Data Set Description
3 different hyperspectral scenes acquired by AVIRIS or
Hyperspectral change detection HYPERION sensor, with 224 or 242 spectral bands,
dataset [135] labeled 5 types of changes related with crop transitions
at pixel level.
. 2 HSIs in Jiangsu province, China, with 198 bands,
River HSIs dataset [39] labeled as changed and unchanged at pixel level.
291 co-registered pairs of RGB aerial images, with
pixel-level change and land cover annotations, providing
HRSCD [136] hierarchical level change labels, for example, level 1
labels include five classes: no information, artificial
surfaces, agricultural areas, forests, wetlands, and water.
1 2-period aerial images containing 12,796 buildings,
WHU building dataset [55] provided along with building vector and raster maps.
SZTAKI Air change benchmark 13 aerial image pairs with 1.5 m spatial resolution,
[137,138] labeled as changed and unchanged at pixel level.
0SCD [139] 24 pairs of multispectral images acquired by Sentinel-2,
labeled as changed and unchanged at pixel level.
4 pairs of multispectral images with different spatial
Change detection dataset [140] resolutions, labeled as changed and unchanged at
Optical RS pixel level.

MtS-WH [141]

2 large-size VHR images acquired by IKONOS sensors,
with 4 bands and 1 m spatial resolution, labeled 5 types
of changes (i.e., parking, sparse houses, residential
region, and vegetation region) at scene level.

ABCD [92]

16,950 pairs of RGB aerial images for detecting washed
buildings by tsunami, labeled damaged buildings at
scene level.

xBD [142]

Pre- and post-disaster satellite imageries for building
damage assessment, with over 850,000 building
polygons from 6 disaster types, labeled at pixel level
with 4 damage scales.

AICD [143]

1000 pairs of synthetic aerial images with artificial
changes generated with a rendering engine, labeled as
changed and unchanged at pixel level.

Database of synthetic and real
images [144]

24,000 synthetic images and 16,000 fragments of real
season-varying RS images obtained by Google Earth,
labeled as changed and unchanged at pixel level.
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Table 1. Cont.

Type Data Set Description

1362 co-registered pairs of RGB and depth images,
) ; labeled ground truth change (e.g., bin, sign, vehicle,
VL-CMU-CD [145] refuse, construction, traffic cone, person/cycle, barrier)
and sky masks at pixel level.

200 panoramic image pairs in "TSUNAMI" and "GSV"
Street view PCD 2015 [119] subset, with the size of 224 x 1024 pixels, label as
changed and unchanged at pixel level.

Image sequences of city streets captured by a
vehicle-mounted camera at two different time points,
with the size of 5000 x 2500 pixels, labeled 3D scene

structure changes at pixel level.

Change detection dataset [146]

4. General Al-Based Change Detection Frameworks

The input of the change detection task is multi-temporal data, which are homogeneous or
heterogeneous data in two or more periods. According to the deep feature extraction or latent feature
representation learning process of the bi-temporal data, the Al-based change detection frameworks
can be summarized into three types: single-stream, double-stream, and multi-model integrated.
In addition, we further analyze their unsupervised scheme in these frameworks, which is a very
important and challenging research issue in AL

4.1. Single-Stream Framework

There are two main types of single-stream framework structures for Al-based change detection,
as shown in Figure 5, namely a direct classification structure and a mapping transformation-
based structure.

Data at Data at . | | Transformated
time Ty time T, [ | Mapping | data at time T,
transformation -
Fusion _|,| Change Decision Change
Classifier map maker map

Data at Data at

time T, time T,

(a) (b)

Figure 5. Schematic diagram of single-stream framework structures of Al-based change detection:
(a) the direct classification structure; (b) the mapping transformation-based structure.

They usually only need a core AI model to achieve change detection, so they can be regarded as a
single-stream structure. It is worth noting that, in practice, some studies have made improvements
based on these structures to meet specific change detection purposes, and a detailed analysis is
given below.

4.1.1. Direct Classification Structure

The direct classification methods use various data processing approaches to fuse the two or more
periods of data into intermediate data, and a single Al-based classifier is then used to perform feature
learning and achieve two or multiple classifications of the fusion data. That is, as shown in Figure 5a,
this structure converts the change detection task into a classification task, also known as a two-channel
structure in some of the literature [108,147]. Its two key research issues are the choice of data fusion
approach and Al-based classifier.
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To obtain the fusion data from multi-period data, the two most common approaches are using
change analysis methods and direct concatenation. Change analysis methods, such as CVA [47],
differencing by log-ratio operator [18,148] or change measures [103,149], are able to directly provide
change intensity information (i.e., the difference data) in multitemporal data, which can highlight
change information and facilitate change detection. The direct concatenation method can retain all
the information of the multi-period data, so the change information is extracted by the subsequent
classifier. In general, the one-dimensional input data is directly concatenated [24,42,101,150-152],
while the two-dimensional data is concatenated by channel [111,112,153,154]. Moreover, the fusion of
original data and difference data [21,99] is another good strategy, which can keep all the information
while highlighting the difference information.

The classifier uses Al techniques to classify the fused data into two types (i.e., changed or
unchanged) or multiple types (different types of changes) [77]. Its performance and related training
data are the key to finally obtaining satisfactory change maps. More details are reviewed in Section 5.

4.1.2. Mapping Transformation-Based Structure

The mapping transformation-based framework structure is usually used to detect changes in
different domains or heterogeneous data. Its main idea is to use the Al method to learn the feature
mapping transformation, and use it to perform feature transformation on one kind of data, as shown
in Figure 5b. The transformed features correspond to the features of another kind of data. In short,
it transforms data from one feature space to another feature space. Finally, the change map can be
obtained by performing decision analysis on the corresponding features of the two kinds of data.
In [16], a mapping neural network (MNN) is designed to learn the mapping function between the
multi-spatial-resolution data, and the feature similarity analysis is then implemented to build a change
map. This method also achieves change detection between SAR and optical images. In [60], the authors
use an ANN to achieve relative radiometric normalization, and then detect changes of the two-period
data under the same radiation condition. Moreover, using this idea of mapping transformation, several
improved structures have been proposed for detecting changes in heterogeneous data [121-124] or
different domain data [10].

4.2. Double-Stream Framework

Since the change detection task is usually based on two periods of data, that is, two inputs,
the double-stream structure is very common for change detection and can be summarized into three
types, as shown in Figure 6. They are a siamese structure, a transfer learning-based structure, and a
post-classification structure.

4.2.1. Siamese Structure

As shown in Figure 6a, the Siamese structure generally consists of two sub-networks with the same
structure, i.e., feature extractors, which convert the input two-period data into feature maps. Finally,
the change map is obtained by using change analysis (i.e., decision maker). The main advantage of this
structure is that its two sub-networks are directly trained at the same time to learn the deep features of
the input two-period data.

According to whether the weights of sub-networks are shared, this can be divided into the
pure-Siamese structure [22,68,94,117,155,156] and the pseudo-Siamese structure [79,109,157,158].
The main difference is that the former sub-network extracts the common features of the two-period data
by sharing weights. The latter sub-network extracts features corresponding input data, respectively,
resulting in an increase in the number of trainable parameters and complexity, but also in its flexibility.
Similarly, the authors of [159] designed a triple network consisting of three sub-networks with sharing
weights for change detection.
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Figure 6. Schematic diagram of double-stream framework structure of Al-based change detection:
(a) the Siamese structure; (b) the transfer-learning-based structure; (c) the post-classification structure.

Although this structure enables the feature extractor to directly learn deep features by supervised
training with labeled samples, unsupervised training is more challenging. A common solution is
to train feature extractors individually in an unsupervised manner [105-107,160]. These pre-trained
feature extractors provide the latent representation of the original data (i.e., feature maps) for further
change detection. To generate change maps, the output feature maps in the two periods can be directly
classified by the concatenation of channels [91,155,161] or can be used to produce difference maps
using a certain distance metric [9], and then used for further change analysis [162,163]. To retain
multi-scale change information, feature maps at different depths can be concatenated for change
detection [164-167], and this works well.

4.2.2. Transfer Learning-Based Structure

The transfer learning-based structure is proposed to alleviate the lack of training samples and
optimize the training process. Transfer learning uses training in one domain to enable better results in
another domain and, specifically, the lower to midlevel features learned in the original domain can be
transferred as useful features in the new domain [13]. The pre-trained Al model, as a feature extractor,
is used to generate feature maps for two periods, and the feature extractors of the two periods can
be the same, as shown in Figure 6b. Whether the pre-trained model can correctly extract the deep
feature map or latent feature representation of the input data determines the performance of the change
detection task.

The transfer learning-based structure usually has two training phases, namely the deep feature
learning phase and the fine-tuning phase. In the deep feature learning phase, the Al model is
usually supervised, pre-trained with sufficient labeled samples in other domain data [67,110,168].
The fine-tuning phase is optional and, in this phase, only a small number of labeled samples are
required for fine-tuning [125,169-172] or additional classifier training [90,140]. Therefore, the change
map can be directly obtained by the trained classifier. Without fine-tuning, final change maps can be
obtained based on the two-period feature maps using change analysis, such as low rank analysis [173],
CVA [72], clustering [73,82], and threshold [119,174]. This means that no more labeled samples are
needed for further training. Moreover, based on the idea of transfer learning, the pre-trained Al model
can also be used to generate training samples or masks to achieve the unsupervised scheme [78],
which is a very practical strategy.
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4.2.3. Post-Classification Structure

As shown in Figure 6c, the post-classification structure consists of two classifiers, which can
usually be converted into classification tasks and trained in a joint or independent way. It provides a
classification map for each period data and the change map with change directions can be obtained
by comparing classification maps. Nevertheless, the accuracy of the change detection results of these
methods depends on the performance of the classifier.

A number of studies [43,44,52,56,61,70,75,76,131,175,176] have proven that Al techniques increase
the accuracy of land-cover classification to a notable level and the results can be further used for
change detection. By converting the direct geometric or spectral comparison to label changes, the
post-classification structure can be regarded as a very general and practical structure, and it provides a
type change matrix. Advantageously, it works robustly for data acquired under different acquisition
conditions (illumination condition, sensor attitude, season, etc.) or even different sensors [45,50,62,130].
Supervised training of the Al-based classifier requires a large number of training samples, which can
be generated by existing GIS data representing land cover [128] or thematic maps [177].

4.3. Multi-Model Integrated Structure

Many works have integrated multiple Al models to improve the performance of change detection
methods. Considering the large number and complex structure, only a representative structure is
summarized, as shown in Figure 7.
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Figure 7. Schematic diagram of multi-model integrated structure of Al-based change detection.

The multi-model integrated framework is a hybrid structure, which is similar to the double
stream structure, but it contains more types of Al models and can also be trained in multiple stages.
Change detection is a spatiotemporal analysis and can be achieved by acquiring the spatial-spectral
features through an Al-based feature extractor as a spectral-spatial module, and then modeling
temporal dependency through an Al-based classifier as a temporal module [14,38,53,74]. Moreover,
this hybrid structure is skillfully used for unsupervised change detection [100] and object-level
change detection [87]. This makes the whole change detection process more complicated while
improving performance.

4.4. Unsupervised Schemes in Change Detection Frameworks

Al-based change detection frameworks usually include feature extractors or classifiers,
which require supervised and unsupervised training. Since obtaining a large number of labeled
samples for supervised training is usually time-consuming and labor-intensive, many efforts have
been made to achieve Al-based change detection in an unsupervised or semi-supervised manner.
As introduced in Section 4.2.2, transfer learning can reduce or even eliminate the need for training
samples, but these are not pure unsupervised schemes, as samples from other domains are required.
In addition, the most commonly used unsupervised scheme is to use the change analysis method and
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sample selection strategy to select absolute changed or/and unchanged as training samples for Al
models. Its flow chart is shown in Figure 8a.
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Figure 8. Flow chart of the most commonly used unsupervised schemes, (a) use the change analysis
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method and sample selection strategy, (b) base on the latent change map.

It can be seen that there are two change detection stages in this scheme. The first stage, i.e., pre-
classification, is usually simple but worth studying, and most of them are unsupervised methods,
which can be implemented with difference analysis and clustering [101], such as K-means [162],
fuzzy c-means (FCM) [90,99,100,111,151,160,165,178-181], spatial FCM [102,154], or hierarchical
FCM [21,113]. This stage in some works are implemented by threshold analysis [18,39], saliency
analysis [78], or well-designed rules [38,83,84,124,148,182,183]. After obtaining high-confidence
changed or/and unchanged samples, the Al model can be trained in a supervised manner for change
detection in the second stage. Moreover, another commonly used unsupervised scheme is based on the
latent change map, as shown in Figure 8b. In addition to the pre-trained model obtained by transfer
learning, it can be generated by an unsupervised Al model (e.g., AEs), and the final change map is
then generated by using a clustering algorithm [23,79,98,107,157,163,184].

Although unsupervised change detection does not require labeled training samples, sometimes
the lack of prior knowledge makes it unsuitable for change detection involving semantic information.
Weakly and semi-supervised schemes use inaccurate or insufficient labeled samples as a priori
knowledge to solve this problem, which can be implemented with label aggregation [97], iterative
learning [58,185], deep generative models [186] (see Section 5.6 for a more detailed review), sample
generation strategies [156], or novel cost functions [36,187].

5. Mainstream Networks in Al

Section 4 summarizes general Al-based change detection frameworks, but the detailed introduction
of their feature extractors and classifiers are not provided. In this section, the various network structures
in Al used for change detection are specifically analyzed. At present, they mainly include autoencoders
(AEs), deep belief networks (DBNs), CNNs, recurrent neural networks (RNNs), pulse couple neural
networks (PCNNs), and generative adversarial networks (GANSs), as can be seen in Figure 9. In addition,
other networks or methods in Al used for change detection have also been summarized briefly.

5.1. Autoencoder

The basic structure of the AE is shown in Figure 9a. It mainly includes two parts: an encoder and
a decoder. The encoder encodes the input vector x to get latent features h(x), which can be formulated
as: h(x) = f(Wx + b). The decoder, which can be formulated as: x = f(W'h(x) + b"), reconstructs the
learned latent features to output a vector x that should be as close as possible to the original x. W and
b are trainable parameters and can be obtained through unsupervised schemes. Intuitively, an AE can
be used for feature dimensionality reduction, similar to PCA, but its performance is better due to the
strong feature learning capabilities of the neural network. Thus, it is widely used in change detection
tasks as the feature extractor. The commonly used AE models are stacked AEs [97,98,104], stacked
denoising AEs [16,101,106,121-123,151,160,188], stacked fisher AEs [189], sparse AEs [80], denoising
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AEs [102], fuzzy AEs [105], and contractive AEs [99,103]. These AEs preserve spatial information
by expanding pixel neighborhoods into vectors, while convolutional AEs are implemented directly
through convolution kernels [170,190]. According to its characteristics, AEs can be used to implement
change detection in an unsupervised manner and perform well.
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Figure 9. Schematic diagram of general network architectures in Al used for change detection:
(a) autoencoder (AE); (b) deep belief network (DBN); (c) convolutional neural network (CNN);
(d) recurrent neural network (RNN); (e) pulse couple neural network (PCNN); (f) generative adversarial
networks (GANSs).

5.2. Deep Belief Network

A DBN is a generative graphical model and learns to probabilistically reconstruct its inputs. It can
be formed by stacking multiple simple and unsupervised networks such as restricted Boltzmann
machines (RBMs) or AEs. As shown in Figure 9b, a DBN consists of multiple layers of hidden units,
with connections between the layers. However, its units within the same layer are not connected to
each other and each hidden layer serves as the visible layer for the next. As a feature extractor, it can
be trained greedily, i.e., one layer at a time, and appears in many unsupervised change detection
methods [23,37,157,183]. On the other hand, the deep Boltzmann machine (DBM), as a graph similar
to DBN but undirected, can also achieve such a function [182].

5.3. Convolutional Neural Network

Deep features extracted by deep neural networks can be divided into two categories according to
whether spatial relationships are considered. One type uses one-dimensional data as input (e.g., DBNs
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and AEs). Their input is a column vector converted from the input image patch that loses the intact
spatial information. The other uses two-dimensional data as input, considering the spatial relationship
and its typical representative is CNN. As shown in Figure 9¢, it detects features hierarchically through
local connections and shared weight and is closer to the human visual perception mechanism. For those
unfamiliar with CNNs, an excellent book by Goodfellow et al. can be found in [191].

Due to its strong ability to automatically learn deep features, the CNN has achieved a satisfactory
performance in various image-processing tasks. Many classic CNNs and their improvements are
used as classifiers or feature extractors for change detection, such as VGGNet [78,86,119,140,164,168],
CaffeNet [174], SegNet [192], UNet [169,193], InceptionNet [67], and ResNet [194,195]. Nevertheless,
most of the network structures in the literature are newly designed, and a CNN, generally, consists
of an input layer and a series of convolutional layers, pooling layers, activation functions, and fully
connected layers. However, to achieve special functions, the CNNs integrate some special structures
for change detection. For instance, the region CNN (R-CNN), primitively designed for object detection
in CV, contains a region-proposals structure to predict the regions of the changed objects [87,196,197].
The PCANet, with its convolution filter banks chosen from PCA filters, is able to reduce the influence of
speckle noise and has been used in SAR image change detection [178,180]. More recent work proposes
a kernel PCA convolution to extract representative spatial-spectral features from RS images in an
unsupervised manner [163].

In conclusion, the use of CNNs enables the change detection method to reach the state of the
art, but there is no systematic way yet to design and/or train the network, which is a long-standing
problem in the RS community.

5.4. Recurrent Neural Network

Obviously, the input for change detection includes two or more periods of data, so the change
detection task can be converted into a process of obtaining change information directly from the
multi-period sequence data. RNN, as a memory network whose input is sequence data, is very suitable
for this situation. As shown in Figure 9d, its core part is a directed graph that can be unfold to a chain,
with units (i.e., RNN cells) linked in sequence. An RNN cell has two inputs: one is the current time
input x¢, which is used to update the state in real time, and the other is the state of the hidden layer
h;_; at the previous time, which is used to remember the state. The network at different times shares
the same set of parameters 7.

A long short-term memory (LSTM) network, a special RNN that alleviates the problem of gradient
disappearance and gradient explosion during long sequence training, has been employed as a temporal
module (see Section 4.3) in change detection tasks [14,38,53,64,74]. In [51], the authors used an
improved LSTM network to acquire and record the change information of multi-temporal RS data.
Advantageously, the trained model could be transferred to other data domains; that is, it has a good
generalization ability. Further, in [52], based on the same idea, i.e., knowledge transfer, the authors
propose an RNN-based framework to detect annual urban dynamics of four cities. These methods can
help to address the problem of temporal spectral variance and insufficient samples in the long-term
detection of urban change.

5.5. Pulse Couple Neural Network

The PCNN is a bionic neural network inspired by the visual cortex of mammals. Unlike traditional
neural networks, it does not require a learning and training stage to extract effective information from
very complex backgrounds, which means that it is unsupervised and can easily be used as a feature
extractor. As shown in Figure e, it mainly consists of three parts: a received field, a modulation field,
and a pulse generator. A PCNN receives a two-dimensional input image, and each neuron corresponds
to one pixel in the image. The value of each pixel serves as an external stimulus for each neuron, and its
connected neighboring neurons provide local stimuli. The external and local stimuli are combined in
a modulation field and a pulse generator to produce a pulsed output. As the number of iterations
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increases, the PCNN generates a pulse sequence that can be used for image segmentation and feature
extraction [198] and, similarly, for change detection [54,66,71,85,124,199-201].

5.6. Generative Adversarial Networks

GAN:Ss are algorithmic architectures that use two neural networks, namely, a generator and a
discriminator, to contest with each other in a game to obtain the best generation and discrimination
model [202], as shown in Figure 9f. The generator learns to generate plausible data as negative training
examples for the discriminator, while the discriminator learns to distinguish these fake data from real
data. Therefore, with a small amount of labeled data (i.e., real data), a well-performed discrimination
model can be trained for change detection [17]. Different from using random Gaussian noises to
generate fake data [83], the authors of [203] used a CNN-based generator to produce fake difference
maps based on the joint distribution of two-period data, which can help to weaken the impact of
the bad pixels on the network. In [204], the authors designed a W-Net as a generator to decrease the
network parameters and make them easy to train, and used many manually annotated samples to
improve the reliability of the results. More recent work [127] proposed a conditional GAN to achieve
change detection of heterogeneous data, where a translation network and an approximation network
were used to transform the heterogeneous data into same feature space, and the change map could
then be obtained by direct comparison. Similarly, a coupling translation network was employed
in [126]. For mapping landslides, the authors of [93] used a mapping generator to transform the pre-
and post-landslide images into the same domain, and a Siamese network was then employed to detect
landslide changes.

To obtain a well-functioning GAN, the methods need a well-designed loss function and a good
training strategy; otherwise, the model results may be unsatisfactory due to the freedom of the neural
network. In addition, real data are needed to ensure the reliability of the network. These are challenges
that exist in many practical applications.

5.7. Other Artificial Neural Networks and Al Methods

There are many types of artificial neural networks in Al and the mainstream network structures
used for change detection are described above. In addition, other networks, such as Hopfield
networks [47,48,65,205-207], back propagation networks [42,149,208,209], multilayer perceptrons
(MLPs) [70,210-214], extreme learning machines [215], and self-organizing map (SOM) networks [55,
216-221], do not require a large number of training samples to learn high-level abstract features as deep
neural networks do, but due to their shallow network structure, low sample size requirements, and
easy training process, they are also widely used in change detection tasks and can achieve satisfactory
results. Since they can be regarded as traditional machine learning techniques, we will not make more
detailed comments here due to space limitations and existing reviews [7,222,223].

In addition to the neural network in Al, there are other Al techniques used for implementing
change detection. Recently, dictionary learning has been employed, and it focuses on learning internal
feature representations from datasets [141,176,224,225], just like AEs. The cellular automata (CA),
a spatially and temporally discrete model inspired by cellular behavior, can help to model future
changes in LULC [226] and predict urban spatial expansion [227]. The development of these Al
techniques has significantly promoted research on change detection, which helps to develop more
automatic, intelligent and accurate methods to meet the needs of various applications.

6. Applications

In practical applications, according to the change information, the final change maps can be
grouped into four types, namely, binary maps, one-class maps, from—to maps, and instance maps,
as can been see in Figure 10.
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Figure 10. Schematic diagram of four change maps. To meet different application requirements, four

different change maps can be obtained by detecting the change of the two-period images, i.e., (a) binary
maps, (b) one-class maps, (c) from-to maps, and (d) instance maps.

A binary map uses 1 and 0 to indicate change and no change. It contains any changes and cannot
provide an additional type of information for the changed ground object. A one-class map provides
single-type change information, which indicates the appearance and disappearance of a specific type
of ground object. For example, the result of building change detection is a one-class map indicating
the addition and removal of buildings, which can be used for urban management [86]. A from—to
map provides change transfer information, indicating that the ground object is changed from one
type to another, and these change types are determined by the classifier [128]. A change instance
map provides boundaries for each change instance, which can be the result of object-based change
detection [89]. These change detection maps can be generated by trained Al models and used in various
applications. To demonstrate the future potential application demands and development possibilities
of Al-based change detection techniques, the current attempts and work in various application fields
are summarized in this section. The development of Al-based change detection techniques has greatly
facilitated many applications and has improved their automation and intelligence. Most Al-based
change detection generates binary maps, and these studies only focus on the algorithm itself, without
a specific application field. Therefore, it can be considered that they are generally suitable for
LULC change detection. In this section, we focus on the techniques that are associated with specific
applications, and they can be broadly divided into four categories:

e  Urban contexts: urban expansion, public space management, and building change detection;

e Resources and environment: human-driven environmental changes, hydro-environmental
changes, sea ice, surface water, and forest monitoring;

e Natural disasters: landslide mapping and damage assessment;

e  Astronomy: planetary surfaces.
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We provide an overview of the various change detection techniques in the literature for the
different application categories. The works and data types associated with these applications are listed

in Table 2.

Table 2. Summary of main applications of Al-based change detection techniques.

Applications

Data Types

Urban expansion

a. Satellite images [52,228]
b. SAR images [229]

Public space management

Street view images [117]

Urban contexts

Building change detection

Aerial images [86,89,90]

Satellite images [85,192]

Satellite/Aerial images [88,94]

. Airborne laser scanning data and aerial
images [91]

e. SARimages [112]

f. Satellite images and GIS map [177]

aon o

Human-driven environmental
changes

Satellite images [69]

Hydro-environmental changes

Satellite images [56]

Resources & environment -
Sea ice

SAR images [171]

Surface water

Satellite images [230,231]

Forest monitoring

Satellite images [45,63,150,196,232]

a. Aerial images [20,93]

Landslide mapping b. Satellite images [129,214,233]
a. Satellite images (caused by tsunami [190,234],
particular incident [156], flood [235], or
) earthquake [19])
Natural disasters b. Aerial images (caused by tsunami [92])
Damage assessment c. SAR images (caused by fires [104], or

earthquake [110])

d. Street view images (caused by tsunami [119])
e. Street view images and GIS map (caused by
tsunami [236])

Astronomy Planetary surfaces Satellite images [170]

Urbanization is a significant factor causing land surface change. As a result of population growth,
the expansion of urbanization plays an important role in transforming natural land cover into urban
facilities for people. In [52], the authors proposed a new framework based on transfer learning and
an RNN for urban area extraction and change detection. Its overall accuracy of single-year urban
maps is approximately 96% among the four target cities (Beijing, New York, Melbourne, and Munich).
Using a genetic-algorithm-evolved ANN [228] or a CNN [229], urban changes were obtained by
taking the difference in the predicted urban distribution maps. For public space management, change
detection based on street view images is a good way to identify the encroachment of public spaces.
In [117], a CNN-using Siamese structure and transfer learning achieved 98.3% pixel accuracy in the
VL-CMU-CD dataset. In addition, many studies focus on building changes. Due to the small scale
of buildings, change detection is usually carried out based on high- or very-high-spatial-resolution
RS data, such as aerial photos [86,90] and satellite images from Quickbird [192] or Worldview 2 [85].
However, due to differences in the experimental data, it is difficult to evaluate which one has the best
performance. Although some methods are based on the WHU building dataset [88], unfortunately,
their experimental data are different with regard to area, which makes it difficult to compare them
directly. In [89], the authors proposed two CNN models, a mask R-CNN for object-based instance
segmentation and a multi-scale CNN for pixel-based semantic segmentation, and their intersection
of union (IoU) accuracy of buildings was more than 0.83. In [94], the authors proposed a pyramid
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feature-based attention-guided Siamese network to detect building changes and the IoU of change
map exceeded 0.97. Sometimes, the problem of constant cloud coverage prevents optical RS images
from being fully utilized, and SAR data represent a good alternative [112]. On the other hand, to obtain
more building information to promote change detection, airborne laser scanning data [91] and building
thematic data [177] can provide 3-D information and a priori knowledge of buildings, respectively,
and proved to be effective.

Land cover changes typically reflect changes in climatology and hydrology. Thus, Al-based
change detection techniques can provide effective methods to monitor changes in resources and
the environment. For example, forest monitoring is usually achieved by detecting changes using
multi-period Landsat satellite images [45,63,150,196,232]. In addition to the Landsat data, the authors
of [56] used an ANN to investigate LULC changes and the effect on outlet runoff by detecting LULC
change locations. Surface water is essential for humans; using an ANN [230] or CNN [231], its changes
can be detected effectively. Obtaining sea ice changes is crucial for navigation safety and climate
research in the polar regions. The authors of [171] employed a transfer learning-based framework and
a CNN model to detect sea ice changes from two-period SAR images, and obtained results with kappa
coefficient exceeding 94%.

Natural disaster is a powerful agent that changes the appearance of the landscape. Therefore,
change detection techniques based on RS data are significant measures to monitor natural disasters.
For example, more automatic and accurate landslide mapping can be achieved through CNN-based
change detection methods [20,93,129,233]. Damage assessment is an important application field of
change detection. After a natural disaster, Al-based change techniques can help to identify damaged
areas using pre-event and post-event data. Existing research mainly includes tsunamis [92,119,190,234,
236], floods [235], fires [104], and earthquakes [19,110].

Many change detection techniques focus on applications that are closely related to people’s
daily lives, but in [170], a new Al-based approach is proposed for planetary surface change detection,
employing a transfer learning-based framework and convolutional AE models. The experiments
showed that the proposed method was superior to a difference image-based method.

7. Challenges and Opportunities for AI-Based Change Detection

By combining general Al-based change detection frameworks and the network structure
summarized in Sections 4 and 5, change detection for various applications can be implemented.
The design of the Al model usually needs to consider the multi-period input data type, training set size,
and desired change map. Specifically, a mapping transformation-based structure or pseudo-siamese
structure should be considered first based on heterogeneous data. To obtain from-to change
maps, post-classification structure is the best choice. If training samples are insufficient, a transfer
learning-based structure can help alleviate this problem, and the use of AEs and GANs can also reduce
the dependence on ground truth. Change detection based on long-term sequence data is usually
implemented using the multi-model integrated structure and an RNN model. A CNN has strong
feature extraction capability, and is the best choice when there are sufficient training samples.

Various applications of Al-based change detection have demonstrated that Al techniques have
achieved great success in the field of change detection in RS community. However, there are many
challenges in the processes, and they relate to the following:

e  With the development of various platforms and sensors, they bring significant challenges such as
high-dimensional datasets (the high spatial resolution and hyperspectral features), complex data
structures (nonlinear and overlapping distributions), and the nonlinear optimization problem
(high computational complexity). The complexity of multi-source data greatly contributes to
the difficulty of learning robust and discriminative representations from training data with Al
techniques. This can be considered a challenge of heterogeneous big data processing;

e  The supervised Al methods require massive training samples, which are usually obtained by
time-consuming and labor-intensive processes such as human interpretation of RS products and
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field surveys. It is a big challenge to achieve a robust model of Al-based methods with insulfficient
training samples. Unsupervised Al techniques need to be developed;

e  There are various efficient and accurate Al models and frameworks, as we review in Sections 4
and 5. At present, researchers constantly propose novel Al-based change detection approaches
endlessly. Still, it is also a great challenge to choose an efficient one and ensure its accuracy for
different applications. The reliability of Al needs to be considered in practical applications.

Some researchers have explored solutions to these problems and proposed useful strategies.
We will discuss them separately and give our views.

7.1. Heterogeneous Big Data Processing

Heterogeneity is one of the main characteristics of big data and heterogeneous data, causing
problems in the generation and analytics of change detection results [237]. From the data source
perspective, RS technology can provide various data types for change detection, such as SAR, GIS data,
high-resolution satellite images, and various time and space measured data. These data with high
variability of data types and formats are difficult to use due to missing values, high data redundancy,
and untruthfulness. Moreover, the generalization ability of existing Al methods needs to be improved
in RS data processing, especially in heterogeneous big data processing [88]. Therefore, in our opinion,
the following aspects need further study:

e  Although some Al-based change detection methods based on heterogeneous data have achieved
satisfactory results, as summarized in Section 3.1.4, the types of sensor and data size of these
studies are relatively limited. Moreover, they mainly consider change detection between different
source data rather than finding the fusion of data in the same period. The full use of multi-source
data at the same period (e.g., optical RS images and DEM) and data fusion theories (i.e., mutual
compensation of various types of data), combined with Al techniques, would help improve the
accuracy of change detection sufficiently;

e Since current change detection methods mainly depends on the detection of 2D information,
with the development of 3D reconstruction techniques, using 3D data to detect changes in buildings,
etc., is also a direction of future development [6]. Among such techniques, 3D reconstruction
based on oblique images or laser point cloud data and 3D information integration based on aerial
imagery and ground-level street view imagery (i.e., air-ground integration) are the hot topics of
research. There are still no effective Al techniques that implement 3D change detection;

e  The processing of RS big data requires a large amount of computing resources, limiting the
implementation of the Al model. For example, the processing of large-format data usually needs
to be processed in blocks, which easily leads to edge problems. The large amount of data means
that large trainable parameters in the Al model are required, resulting in a difficult training process
and consuming a high amount of computing resources. Therefore, it is necessary to balance the
amount of data and the number of trainable parameters. They pose challenges to the design of
Al-based change detection approaches.

In short, heterogeneous big data should be considered when designing Al models for change
detection so that it can be practically used for RS big data processing, which is worth pursuing.

7.2. Unsupervised Al

Although domain knowledge can be used to help design representations in traditional machine
learning methods, the quest for Al is motivating the design of more powerful unsupervised
representation-learning algorithms [238]. This is because unsupervised Al possesses the capacity of
learning hierarchy features directly from the data itself, and can be used to make data-driven decisions.
The research on unsupervised Al can be considered in the following aspects:
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e  Duetothelack of labeled samples to train efficient Al models in the past few years, many researchers
have devoted great efforts to these problems and have consistently produced impressive results.
New unsupervised Al techniques are constantly emerging, including GAN, transfer learning,
and AEs, as summarized in Section 4.4. Although these techniques alleviate the lack of samples to
a certain extent, there is still room for improvement;

e  Change detection is generally regarded as a low-likelihood problem (i.e., the unchanged in the
change map is much larger than the changed), with the uncertainty of the change location and
direction. The current unsupervised Al techniques do not easily solve this problem due to the
lack of prior knowledge. Excluding supervised Al, weakly- and semi-supervised Al techniques
are feasible solutions, but further research is needed to improve performance. Nevertheless,
pure unsupervised Al technique for change detection should be the ultimate goal;

e  One of the reasons for studying unsupervised Al techniques is the lack of training samples,
i.e., prior knowledge. Considering that the Internet has entered the Web 2.0 era (emphasizing
user-generated content, ease of use, participatory culture and interoperability for end users),
using crowd-source data as a priori knowledge is a good alternative solution. For example,
OpenStreetMap [32], a free wiki world map, can provide a large amount of annotation data labeled
by volunteers for the training of AI models. Although the label precision of some crowd-sourced
data is not high, the Al model can also be trained in a weakly supervised manner to achieve
change detection.

On the other hand, given the current trends in CV, unsupervised Al techniques will remain a hot
research field and even more popular in change detection as well.

7.3. Reliability of Al

Although many change detection frameworks using Al present the model structure, their trainable
parameters are opaque, like black boxes, which make it difficult to determine why they do what they
do or how they work [239]. The reliability of Al aims to develop techniques to help improve the
reliability and interpretability of the change detection methods. Therefore, it is necessary to develop
robust Al and interpretable Al for change detection. The relevant theoretical literature can be found
in [240,241]. We only discuss strategies that can be used to improve the reliability of change detection
results from the following aspects:

e  Strategy 1: Reduce errors caused by data sources, such as using preprocessing (e.g., spectral
and radiometric correction) to reduce the uncertainty of data caused by geometric errors and
spectral differences, or fusing multiple data to improve the reliability of the original data, thereby
improving the reliability of the change detection results. To date, there have been some studies
considering the impact of registration [242] and algorithm fusion [243];

e  Strategy 2: Improve the interpretability of Al models through a sub-modular model structure,
which can help to understand the operation principle of the entire Al model by understanding the
function of each sub-module. For example, the region-proposals component in R-CNN can be
clearly understood as a generator to predict the regions of the objects;

e  Strategy 3: Improve the robustness of Al models by integration of multiple algorithms and results.
Ensemble learning is a good solution [15,244], which can improve the accuracy of the final result
by using the results of multiple models;

e Strategy 4: Improve the practicality of the Al model results by integrating post-processing
algorithms, such as the Markov random field [245], the conditional random field [246], and level
set evolution [247], which can help remove noise points and provide accurate boundaries. This is
critical for some cartographic applications;

e  Strategy 5: Improve the fineness of change maps through refined detection units. According to
the detection unit of change detection, it can be divided into scene level, patch or super-pixel level,
pixel level and sub-pixel level from coarse to fine. From the aspect of reliability, sub-pixel level is
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the best choice because it alleviates the problem of mixed pixels in RS images. However, this easily
leads to high computational complexity. Therefore, using different detection units according to
different land cover types is the best solution, which requires a well-designed Al model;

e  Strategy 6: Improve the representation of change maps by detecting changes in each instance.
As we introduced in Section 6, the change maps can be grouped into binary maps, one-class
maps, from—to maps, and instance maps. The instance change map is more practical but still
lacks research. It can provide change information for each instance, and is more reflective of
real-world changes. Moreover, it can avoid the limitation of the binary map without semantic
information and the restriction of the from—to map by the classification system, thereby improving
the reliability of the final result.

When using Al techniques for change detection, factors that affect the reliability of data
preprocessing, model training, change feature extraction, and accuracy assessment should be
considered. This aims toward the most reasonable Al framework to improve the reliability of
change detection results.

In this section, a summary of the challenges and opportunities for Al-based change detection
techniques has been delineated and we have put forward our prospects. The development of Al-based
change detection techniques depends on the future endeavor on overcoming these challenges; the efforts
and innovations of researchers would push forward further successes of the techniques.

8. Conclusions

This review presents the latest methods, applications, and challenges of the Al-based change
detection techniques. For beginners, the implementation process of Al-based change detection is
introduced. Considering that the validity of training data is one of the major challenges, the commonly
used data sources and existing datasets used for change detection were fully surveyed. Although the
current public datasets have increased significantly, openly labeled datasets for change detection are
still scarce and deficient, which requires the joint efforts of the RS community. The systematic analysis
of the general network frameworks and commonly used networks in Al adopted for change detection
shows that great progress has been made in the combination of Al for change detection, but there are
still many challenges in change detection with heterogeneous big data processing, unsupervised Al,
and the reliability of Al This means that further research needs to be pushed forward. This review
offers a clearer organization and will help researchers understand this field.
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