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Abstract: In this paper, we propose a novel approach based on the active contours model for change
detection from synthetic aperture radar (SAR) images. In order to increase the accuracy of the
proposed approach, a new operator was introduced to generate a difference image from the before and
after change images. Then, a new model of active contours was developed for accurately detecting
changed regions from the difference image. The proposed model extracts the changed areas as a target
feature from the difference image based on training data from changed and unchanged regions. In this
research, we used the Otsu histogram thresholding method to produce the training data automatically.
In addition, the training data were updated in the process of minimizing the energy function of the
model. To evaluate the accuracy of the model, we applied the proposed method to three benchmark
SAR data sets. The proposed model obtains 84.65%, 87.07%, and 96.26% of the Kappa coefficient for
Yellow River Estuary, Bern, and Ottawa sample data sets, respectively. These results demonstrated
the effectiveness of the proposed approach compared to other methods. Another advantage of the
proposed model is its high speed in comparison to the conventional methods.
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1. Introduction

Change detection is the process in which two remote sensing images of a region at different
times are used to extract areas that have been changed during the time between the images. In the
last decades, optical and radar remote sensing imageries have become vital resources in change
detection applications due to their high spatial and temporal resolutions, useful spectral or polarimetric
characteristics, extensive spatial coverage, and cost-effectiveness. This includes the synthetic aperture
radar (SAR) images, owing to their ability in imaging in all weather conditions, such as rainy and
dusty air and in the night, and also their suitable spatial resolution. They have been widely exploited
in change detection applications for natural hazards’ impacts [1–3], monitoring and mapping of
environment and natural resources [4,5], urban development [6–8], etc.

The change detection algorithms can be categorized into supervised, semi-supervised,
and unsupervised classes, depending on the availability of ground truth information. Supervised approaches,
however, do have higher accuracy; they need sample data of change and unchanged areas to train
the classifier model [9–11]. These models are less frequently used due to a lack of prior information
in real applications. Additionally, the labeled and unlabeled samples are utilized simultaneously in
the semi-supervised change detection algorithms [12,13]. In these algorithms, the labeled sample data
are training data, and the rest of the pixels are the unlabeled sample data. In general, supervised and
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semi-supervised algorithms have a better efficiency than unsupervised methods. However, due to
the unnecessary usage of training data, the unsupervised approaches are more prevalent in change
detection applications [14].

The unsupervised change detection methods can be summarized into two classes: Threshold-based
and classification methods. In threshold-based algorithms, the goal is to find a threshold in order
to classify the difference image into changed and unchanged classes correctly [15,16]. Gong et al.
introduced a neighborhood-based ratio operator to generate a difference image and finally extracted
the changed regions by applying a threshold on the difference image [17]. Furthermore, Sumaiya and
Kumari calculated a threshold based on the mean of the difference image and the logarithm of two input
SAR images to extract the changed areas from the background [18]. In another study, they proposed a
change detection algorithm based on the Gabor filter and Kittler–Illingworth thresholding algorithm [19].
Although the threshold-based methods have higher simplicity and speed, they are less accurate than
other methods.

According to the suitable accuracy and simplicity of the clustering classification-based models,
they have been widely used in change detection from temporal SAR images. Classification-based
methods are usually combined with conventional image processing and optimization algorithms to
increase the accuracy, which reduces their computational cost [20,21]. Shang et al. utilized an artificial
immune multi-objective clustering algorithm based on the intensity and texture of the differences
image to identify changed regions from unchanged ones [22]. Additionally, Zheng et al. used a K-means
clustering method to detect changed pixels using a linear combination of subtraction and log-ratio
difference images [23]. Li et al. proposed a multi-objective fuzzy clustering algorithm in which the
change detection problem is modeled as a multi-objective optimization problem with two objective
functions to preserve image details and remove the noise [24]. Zheng et al. used an unsupervised
saliency-guided method and K-means clustering to detect the changed areas in a difference image
obtained from a logarithmic ratio operator [14]. In addition, Tian et al. developed an edge-based fuzzy
clustering algorithm to detect the changes in the SAR images [25].

The artificial neural networks as a classification method are utilized in change detection applications.
Although artificial neural networks can obtain a better performance, they have high complexity and
low speed. Convolutional neural networks (CNNs), sparse auto-encoder, and unsupervised clustering
algorithms were applied for detecting changes in SAR images [26]. Additionally, Li et al. used a deep
learning network, named PCANet (Principal Component Analysis Network), and saliency method for
SAR change detection [27]. Recently, Chen et al. introduced a fast unsupervised deep neural network to
generate a difference image for change detection of SAR images [28].

Furthermore, other classification models, such as graph cuts, have been used as a change detector of
temporal SAR images. Carincotte et al. developed a fuzzy hidden Markov chain model by combining two
fuzzy and statistical points of view to identify changes in the SAR images [29]. Ma et al. fused wavelet
coefficients for low- and high-frequency bands using fusion rules based on weight averaging and the
minimum standard deviation, respectively, to extract changed regions from temporal SAR images [30].
Gong et al. presented a change detection method based on texture and intensity information and a
multivariate generalized Gaussian graph cuts model [31].

In this paper, we developed an innovative model based on the active contour model for change
detection from the SAR images. The proposed model consists of three stages: The difference image
generation, change detection by active contours, and accuracy assessment of the model. Firstly, a new
difference image operator is introduced to increase the accuracy of change detection. At the next
step, a novel change detection algorithm based on the active contours, named desired feature local
active contour (DFLAC), is presented. Finally, the accuracy and speed of the model are evaluated and
compared with other studies.
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2. Materials and Methods

In all change detection methods, at first, a difference image is produced from two images of the
same region before and after the change using one of two standard operator subtraction or log-ratio.
Next, a model is developed to detect the changed from the unchanged areas. In this paper, we first
introduced a new difference image generation operator to increase the accuracy of the change detection
method. On the other hand, we developed an innovative active contour model to extract changed
regions from the difference image precisely.

Based on the active contours model proposed by Chunming Li [32], we introduced a new model
that detects changes in the presence of inhomogeneity and noise in SAR images. We named the
proposed model the desired feature local active contour (DFLAC) model because of the extraction of
the desired target feature (changed regions) using the local image information. The DFLAC model
needs training data from changed and non-changed areas, which are automatically produced by the
Otsu thresholding method.

2.1. New Difference Image Operator

The first step of the change detection algorithm is to generate the difference image from two images
before and after the change. Subtraction and log-ratio are two frequently used operators employed in
many change detection research works [14]:

Id1 = |Ib − Ia|, (1)

Id2 =

∣∣∣∣∣∣log10

(
Ib + 1′

Ia + 1

)∣∣∣∣∣∣, (2)

where Id, Ib, and Ia are the difference, before and after images, respectively.
Although the subtraction operator can detect the small changes, the log-ratio has a better performance

in the change detection of SAR images, which have multiplicative noises [14]. We proposed another
equation for generating the difference image, namely the root multiplication log-ratio and normal
difference (RMLND) operator. This operator fused two subtraction and log-ratio operators and has the
benefits of them. Therefore, it can find out the small changes but has less sensitivity to SAR image noises
(Figure 3):

Id3 =
√

Id2 × Id4, (3)

where Id2 is log-ratio operator and Id4 is a normal difference operator defined as follows:

Id4 =

∣∣∣∣∣ Ib − Ia

Ib + Ia + η

∣∣∣∣∣, (4)

where the parameter η is a constant value that avoids wrong results in pixels, when Ia and Ib are equal
to zero.

2.2. DFLAC Model

The proposed DFLAC model was developed based on Chunming Li’s model [32], which detects
changed regions from the difference image utilizing training data. In this model, the contour C of the
model separates the difference image (Id) domain (R) into changed and unchanged regions Rc and
Ru, so that R = Rc ∪ Ru. The energy function of the model is the sum of the difference between the
pixel values inside the curve C and training data. The function is minimized in an iteration process,
and the curve C moves towards the border of the changed and non-changed regions. Inspired by Li’s
model, the energy function of the proposed model in a local region Sx in the neighborhood of pixel x is
defined as follows:
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F(x) =
∑2

i=1

∫
A
(Id(y) − ti)

2dy, (5)

where I(y) represents the difference image in Sx, and ti (i = 1,2) represents the training data of changed
and unchanged regions. Additionally, A is defined as:

A =

{
Sx ∩Rc i=1

Sx ∩Ru i=2
, (6)

when more than one training data of changed and unchanged regions are introduced to the model.
The minimum difference between image intensity and training data is used in the integral of Equation (5).
Therefore, this equation can be changed as follows:

F(x) =
∑2

i=1

∫
A

min
j

(
Id(y) − tj

i

)2
dy, (7)

where tj
i shows jth training data for the ith class of the image (changed and unchanged regions).

The above equation calculates the difference between the intensity of each pixel inside the curve
C and the most similar pixel to it from the training data. Accordingly, after minimizing the energy
function of the model, the curve C would extract changed regions from the unchanged area. Equation (7)
is improved by utilizing a kernel function K such that K(x-y) = 0 for x < Sx as a non-negative window
function to separate Sx from other image domains and make use of the local intensity in the energy
function [32]:

F(x) =
∑2

i=1

∫
Sx

K(x− y)min
j

(
Id(y) − tj

i

)2
dy. (8)

Due to the nature of the SAR images, the difference image Id is very heterogeneous and noisy.
Therefore, we used the Li model to decompose the difference image into the true image, bias field
(a parameter to formulate the intensity inhomogeneity in each pixel of the image), and noise:

Id(y) = b(x).J(y) + n(y), (9)

where Id(y) depicts the difference image, J(y) represents the true image, b represents the bias field, and
n represents image noise [32].

In the Sx area, the true image J(y), the training data consequently take approximately two constant
values for changed and unchanged regions so that we can write:

tj
i = b(x)pj

i(y) + n(y), (10)

where p represents the true value of training data. Therefore, based on Equation (10), Equation (8) will
be presented as follows:

F(x) =
∑2

i=1

∫
Sx

K(x− y)min
j

(
Id(y) − b(x)pj

i(y) − n(y)
)2

dy. (11)

The F(x) is considered as the energy function of pixel x, and we should calculate the integral of Fx

to obtain the energy function of the whole image domain:

F =

∫
Ω

∑2

i=1

∫
Sx

K(x− y)min
j

(
Id(y) − b(x)pj

i(y) − n(y)
)2

dydx. (12)
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After exchanging the order of the integration, Equation (12) is written as follows:

F =

∫
Ω

∑2

i=1

∫
Sx

K(x− y)min
j

(
Id(y) − b(x)pj

i(y) − n(y)
)2

dxdy. (13)

The implicit form of curve C based on level set theory is used to minimize the energy function of
the DFLAC model [33]:

F =

∫
Ω

∑2

i=1

∫
Sx

K(x− y)min
j

(
Id(y) − b(x)pj

i(y) − n(y)
)2

Wi(ϕ)dxdy. (14)

In the above equation, the changed and unchanged regions can be presented by their membership
functions defined by W1(ϕ) = H(ϕ) and W2(ϕ) = 1 −H(ϕ), respectively, where H represents the
Heaviside function, and ϕ represents a signed distance function to describe curve C implicitly [33].

The above energy function F, namely the image term of the DFLAC model, is used to regularize
the model. The two additional terms called the length and distance regularization terms are added to
the energy function introduced in the study by Li and his colleagues [32]:

FFinal = αFimage + βFlength + γFdistance, (15)

where α, β, and γ represent the constant parameters that set the weight of each term in the
energy function.

2.3. Minimization of the Energy Function

The parameter ϕ is an implicit form of curve C, where ϕ > 0 depicts the inside of the curve and
ϕ < 0 represents the outside of the curve and wherever ϕ = 0 shows the curve C of the model. As a
result, changing the parameter ϕ over time by minimizing FFinal with respect to ϕ using the standard
gradient descent method, the position of the curve C is moved towards the border of the changed and
unchanged regions of the image [34]:

∂ϕ
∂t

= −
∂FFinal

∂ϕ
. (16)

Therefore, the evolution equation of the level set function ϕ over time is represented as follows:

ϕk+1 = ϕk +
∂ϕk

∂t
∆t⇒ ϕk+1 = ϕk −

∂FFinal

∂ϕ
∆t, (17)

where ∆t is the time step, and ϕk represents a level set function in iteration k. The derivative of ∂FFinal
∂ϕ

is calculated, and the corresponding gradient flow equation is presented as follows:

∂ϕ
∂t

= −αδ(ϕ)
∑2

i=1
fi + βδ(ϕ)div

(
∇ϕ

|∇ϕ|

)
+ γdiv

(
dp(|∇ϕ|)∇ϕ

)
, (18)

where δ(φ) = ∂H(φ)
∂φ , and div is the divergence operator, ∇ represents the gradient operator, and dp is

defined as below according to the study by [32], as follows:

dp(x) =
p′(x)

x
& p(x) =

(x− 1)2

2
. (19)

Additionally, the term fi can be achieved using the following expression:

fi =

∫
K(x− y)min

j

(
Id(y) − b(x)pj

i(y) − n(y)
)2

dx. (20)
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Moreover, the above integrals can be described using the convolution function so that:

fi = min
j

(
Id

2Ku − 2pj
iId(b ∗K) − 2InKu +

(
pj

i

)2(
b2
∗K

)
+ 2pj

in(b ∗K) + n2Ku

)
, (21)

where * represents the convolution operator and Ku =
∫

K(y− x)dx, where Ku = 1 except for the
region near the boundary of the image domain Ω [32].

Furthermore, in order to calculate parameter b, we assume the parameters ϕ and t are fixed
parameters and minimize FFinal with respect to b. So, the parameter b is given by:

b =

(
(Id − n)

∑2
i=1 PiWi(ϕ)

)
∗K(∑2

i=1 P2
i

)
∗K

, (22)

where P1 and P2 are two matrixes, with the same size as the intensity matrix. Each element of these
matrixes is a training data of changed and unchanged regions, respectively, that minimizes the E function
for a given pixel:

Ei = (Id − bt− n)2Wi(ϕ). (23)

In the same way, other unknown parameters n and t are obtained as follows:

n =

(
(Id∗K) − b

∑2
i=1(PiWi(ϕ))

)
Ku

. (24)

Furthermore, the true value of training data can be computed in each iteration as follows:

pj
i =

∫
(b ∗K)(Id − n)Bj

iWi(ϕ)dx∫ (
b2
∗K

)
Bj

iWi(ϕ)dx
, (25)

where Bj
i is a binary array, which indicates pixels that pj

i minimized the function Ei defined in Equation (20).

In step 1 of iteration, the training data tj
i used instead of pj

i.

2.4. Training Data Sampling

The DFLAC model separates the difference image domain in two classes of changed and unchanged
areas based on the training data of those classes. In the proposed model, the training data are not
sampled from the difference image but are generated automatically. Firstly, a threshold number (T) is
obtained from the difference image using the Otsu algorithm [35]. The number T is a normalized value
that lies in the range [0, 1] that can be used to classify an image into two classes. Therefore, we use the
Otsu’ algorithm threshold (T) to generate the training data of the model from the difference image,
automatically. Secondly, in the range of [T, 1], k1 numbers and in the range [0, T], k2 numbers with
equal steps are selected as training data. It should be noted that k1 and k2 are the numbers of training
data of the changed and unchanged classes, respectively. For example, if T = 0.6 and k1 = 2 and k2 = 4,
then the numbers 0.8 and 1 are the training data of the changed class and the numbers 0, 0.15, 0.3,
and 0.45 are selected as training data of the unchanged class. Thirdly, the produced training data can be
projected into the other ranges, such as [0, 255]. It should be noted that each difference image operator
has its specific threshold value (T) and training data.
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2.5. Evaluation Indices

In order to evaluate the accuracy of the proposed model, three indices of the percentage correct
classification (PCC), overall error (OE), and Kappa were used. PCC is the percentage of pixels that are
correctly classified [36]:

PCC =
TP + TN

N
, (26)

where TP and TN indicate the number of changed and unchanged pixels that are correctly classified,
respectively. Additionally, N is the number of pixels in the image. OE is the sum of the number of
changed and unchanged pixels incorrectly classified [36]:

OE =
FP + FN

N
, (27)

where FP and FN are the numbers of unchanged and changed pixels, respectively, that are falsely
detected. Finally, the Kappa coefficient is a parameter to indicate the accuracy of the classification
model according to the difference between the observed accuracy and the chance agreement [36]:

Kapp =
PCC− PRE

1− PRE
, (28)

where:

PRE =
(TP + FP).Nc + (TN + FN).Nu

N2 , (29)

where Nc and Nu are the total numbers of pixels that belong to the changed and unchanged classes,
respectively [36].

3. Implementation Results

3.1. Algorithm’s Workflow

Figure 1 shows the flowchart of the proposed model. The proposed model has four main steps,
including difference image generation, training data production, implementation of the DFLAC model,
and finally, accuracy assessment. Furthermore, each step has several sub-steps that are described in
the following.

• At the first step of difference image generation, two SAR images of the data set (before and after
change) are introduced to the model, and the difference image is then produced based on one of
Equations (1) to (4). Secondly, in the training data sampling step, a threshold T was first estimated
using Otsu’s method, then, the training data of changed and unchanged classes were selected
based on this threshold. In the third step, the DFLAC model was implemented. The DFLAC
model starts with defining the initial curve implicitly (ϕ0) based on a level set theory, which is a
simple shape as a square and circle. Then, the evolution of the DFLAC model’s curve was done
over time using Equation (17). Next, the parameters b, n, and pj

i were then estimated according
to Equations (22), (24), and (25). These last previous steps were repeated until the curve model
reached stability and was not changed (i.e.,

∫
|ϕn −ϕn−1| < ε). Finally, the output of the model

was generated by separating changed regions (pixels inside the curve that ϕ ≥ 0) from unchanged
areas (pixels outside the curve that ϕ < 0).

• The accuracy assessment was the last step of the workflow, in which the error image was computed
by subtracting the output image from the reference image as follows:

error image =
∣∣∣Reference image− output image

∣∣∣. (30)

• Finally, the accuracy assessment of the model using the error map and some accuracy criteria,
such as PCC, OE, and the Kappa, were estimated based on Equations (26)–(28).
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Figure 1. The flowchart of our proposed model.

The main stage in the proposed model is the implementation of the DFLAC model stage.
Moreover, this step takes the most running time of the whole model. It is mainly because the evolution of
the active contour is an iterative process that needs too much time to run. In this regard, more distinctions
between the values of the changed and unchanged pixels in the difference image lead to a higher accuracy
and speed of evolution of the active contour. In addition, the time step parameter, i.e., ∆t in Equation (17),
regularizes the rate of the active contour evolution and has a considerable effect on the performance and
speed of the model. Therefore, selecting a large value for the time step parameter leads to the passing
of the model through the minimum of the energy function. Contrariwise, a very small value reduces
the model speed. Accordingly, assigning an optimal value for the time step has a crucial impact on the
efficiency of the model.

3.2. SAR Datasets

We used three sample data sets to evaluate the DFLAC model in change detection from SAR
images. Brief information about the data sets is presented in Table 1.
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Table 1. Characteristics of the SAR datasets.

Data Set Size (Pixel) Resolution
(m)

Date of the
First Image

Date of the
Second Image Location Sensor

Yellow River Estuary 289 × 257 8 June 2008 June 2009 Dongying,
Shandong Province of China Radarsat 2

Bern 301 × 301 30 April 1999 May 1999 a region near the city of Bern European Remote
Sensing 2 satellite

Ottawa 350 × 290 10 July 1997 August 1997 Ottawa City Radarsat 2

The first data set is a part of the Yellow River Estuary SAR data at Dongying, Shandong province,
China. This data set shows a block of farmland that is landlocked. It should be noted that the first
image of the Yellow River Estuary data set is four-look data, but the second image is single-look data,
which means that the two images have different levels of speckle.

The second data set named Bern data was taken by the European Remote Sensing 2 satellite SAR
sensor, which relates to a region near the city of Bern, Switzerland. River Aare flooded parts of the
cities of Thun and Bern and the airport of Bern completely. Therefore, the Aare valley between Bern
and Thun was chosen to extract flooded regions. The Ottawa data set is the third sample data set,
which was acquired over the city of Ottawa by the Radarsat SAR sensor. This data set illustrates regions
that were once flooded. Moreover, all data sets have a reference image as ground truth, which indicates
changed regions precisely, and we used them to evaluate our model. Figure 2 illustrates the sample
data sets and their reference image.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 18 
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3.3. Difference Image

In this section, the difference images were generated using four formulas explained in
Equations (1) and (2). The produced difference images lie on the range [0, 1], but for better processing,
we normalized them in the range [0, 255]. Figure 3 demonstrates the difference image of the selected
data sets.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 3. The difference images generated from four operators. (a) Subtraction; (b) Log-ratio; (c) normal
difference; (d) RMLND.

3.4. Model Implementation

The constant parameters of the DFLAC model, i.e., α, β, and γ, were determined by the trial
and error method as 1, 0.11, and 0.4, respectively. In order to define the training data of changed
and unchanged regions, we computed the Otsu thresholding algorithm on four difference image
operators. Then, four numbers as training data of the changed class and two numbers as training data
of the unchanged class were determined for each difference image operator in the range of 0 to 255
(Section 2.4). The numbers of training data of each dataset for the RMLND difference image operator
are shown in Table 2.

Table 2. Training data of the sample data sets based on the Otsu threshold in the range [0, 255].

Dataset Changed Regions Unchanged Regions

Yellow river Estuary 127.00 169.67 212.33 255 0 42.167
Bern 112.40 159.94 207.47 255 0 32.44

Ottawa 127.00 169.67 212.33 255 0 42.17
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Then, the difference image, constant parameters, and training data of each sample data set were
introduced to the DFLAC model, and after 20 iterations, the curve of the model (C) extracted the
changed regions. The final output of the DFLAC model based on the RMLND operator is represented
in Figure 4.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 18 
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3.5. Accuracy of the Proposed Model

To evaluate the accuracy of the DFLAC model, we calculated the error image by subtracting the
output of the model from the reference image. For this purpose, the accuracy parameters, such as
Kappa, PCC, and OE, were calculated and compared with the results of the three most known models in
change detection of SAR images, including saliency guided K-means (SGK) [14], neighborhood-based
ratio (NR) [17], and log-normal generalized Kittler and Illingworth thresholding (LN-GKIT) [37].
Besides, two models of active contours, Chan and Vese (CV) [34] and distance regularized level set
evolution (DRLSE) [38], were used for the evaluation of the proposed model. Table 3 demonstrates the
accuracy parameters of the DFLAC model comparison with other algorithms for selected data sets by
using the RMLND difference image operator as the best operator (Table 4).

As shown in Figure 4, due to the different levels of speckle in the two images of the Yellow
River Estuary data sets, the difference between the two images in some areas of unchanged regions is
relatively high. Therefore, the proposed model detects some unchanged area as a changed region and
decrease the accuracy of the model.
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Table 3. The accuracy of the proposed model compared to other models.

Dataset Method PCC % OE % Kappa %

Yellow River Estuary

SGK 98.06 1.92 85.24

NR 88.33 79.99

LN-GKIT 69.60 30.82 33.78

CV 95.37 4.63 84.38

DRLSE 90.84 9.16 69.47

DFLAC 95.49 4.51 84.65

Bern

SGK 99.68 0.32 87.05

NR 99.66 0.34 85.90

LN-GKIT 99.90 0.35 85.37

CV 99.61 0.39 85.32

DRLSE 98.70 1.30 63.32

DFLAC 99.68 0.32 87.07

Ottawa

SGK 98.95 1.05 95.98

NR 97.91 2.09 92.2

LN-GKIT 98.35 2.22 91.87

CV 97.06 2.93 88.92

DRLSE 95.44 4.56 81.37

DFLAC 99.00 1.00 96.26

Table 4. The comparison of the Kappa of the difference image operators.

Subtraction Log-Ratio Normal Difference RMLND

Yellow River Estuary 75.22 83.97 84.71 84.65
Bern 32.44 81.26 83.14 87.07

Ottawa 83.81 95.26 94.92 96.26
Average 63.82 86.83 87.59 89.33

4. Discussion

In this section, we discuss the parameters that affect the accuracy of the model. Additionally, to
evaluate the efficiency of our model, the speed of the model is compared with the SGK approach [14].

4.1. Accuracy Assessment

The accuracy and performance of the proposed model depend on three parameters, including
the fixed parameters, i.e., α, β, and γ, in Equation (18), the difference image operator type, and the
number of training data in which the impact of each is discussed below.

4.1.1. The Constant parameters

The constant parameters α, β, and γ regularize the effect of the length, distance, and image terms
in the energy function of the model (Equation (12)). Changing these parameters causes a change in the
evolution of the curve and the results of the model. As a result, the accuracy of the model is affected.
To determine the role of these parameters in the accuracy of the model, we fixed two parameters and
then changed the other parameters with 0.1 steps. We then calculated the average accuracy of the three
data sets. The rate of change of the Kappa parameter due to the variation of the constant parameters α,
β, and γ is depicted in Figures 5–7, respectively.
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Based on Figure 5, in all data sets, the Kappa increases when α rises from zero to 1. Therefore, 1 is
the best value for parameter α. Additionally, as shown in Figure 6, the change rate of Kappa with
respect to β in all data sets is low because the impact of the length term in the energy function of the
active contour models is slight. Figure 7 shows that the Yellow River Estuary data set has its maximum
Kappa γ = 0.2 contrast with other data sets and the average of all data sets, which reached its peak
in 0.4.
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Consequently, the maximum value of Kappa occurs when α, β, and γ are 1, 0.11, and 0.4,
and therefore, we selected these numbers as optimal values of the constant parameters for implementing
the model. It can be noted that the Yellow River Estuary and Bern data sets have minimum and
maximum sensitivity to the variation of the constant parameters, respectively.

4.1.2. The Difference Image Operator Type

We assessed the four difference-image operators, including subtraction, log-ratio, normal difference,
and RMLND, in the case of the Kappa parameter. The results and statistics of these operators, which were
executed on sample data sets, are illustrated in Table 4 and Figure 8.
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It can be seen that the RMLND operator has the best performance compared to the other
operators. Therefore, the RMLND difference image was chosen as the principal operator for implementing
our proposed model. Additionally, the normal difference model, after the RMLND operator, has the best
efficiency; the log-ratio and the subtraction models are in the next ranks, respectively. The reason for the
low performance of the subtraction model is that it detects small changes due to speckle noise. This defect
is very significant at the border of the changed regions.

According to Figure 8, the normal difference operator achieved the best result for the Yellow River
Estuary data set, and after that, the RMLND, log-ratio, and subtraction operators have more accuracy,
respectively. Moreover, the subtraction operator obtains the worst results for the Bern data set 32.44%)
and the accuracy of the log-ratio, normal difference, and RMLND operators increases, respectively.
Additionally, the RMLND operator has the best results for the Ottawa image, and the accuracy of
the log-ratio, normal difference, and subtraction is in the next ranks. In addition, according to the
mean accuracy of the three data sets, the best operator is RMLND, and after that, the normal difference
and log-ratio have a better performance, respectively. Finally, the subtraction operator achieved less
accuracy compared to the rest of the operators.

4.1.3. Numbers of Training Data

The numbers of training data of changed and unchanged regions is an effective parameter in
the accuracy of the proposed model. In order to evaluate the effect of the numbers of training data,
and determine the optimal numbers of the data, we fixed the numbers of unchanged data and calculated
the mean of the Kappa of data sets relative to several training data of changed areas. Similarly, the number 2
was obtained as the best number of the training data in the unchanged regions. Figures 9 and 10
demonstrate the variation of Kappa with respect to the numbers of training data of the changed and
unchanged areas.
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Based on Figure 9, the kappa parameter increases with an increasing number of classes of the changed
regions in all data sets and reaches its maximum value in four, and then decreases gradually. According to
Figure 10, the Kappa of all data sets and the average rise sharply by increasing the number of training
data of the unchanged regions from 1 to 2, then it goes down slightly. Therefore, the maximum Kappa is
related to the optimal numbers of training data of the changed and unchanged region, which the four and
two number is the best, respectively.

4.2. Running Time Comparison

One of the efficiency parameters of a model is its running time. Since the proposed model has five
steps, the running time of each step was estimated separately (Table 5). Therefore, we compared the
run time of the proposed model and the SGK model [14] in three sample data sets. Table 5 illustrates
the run time of two models in each data set. As seen in Table 5, our model is approximately 10 times
faster than the SGK model in the three sample data.

Table 5. The comparison of the model’s speed in the second.

Data Sets
DFLAC Time Steps

SGK SGK/DFLAC
1 2 3 4 5 Total Time

Yellow River Estuary 0.01 0.04 0.01 8.90 0.01 8.97 60.53 6.75
Bern 0.02 0.05 0.01 8.31 0.01 8.40 86.60 10.31

Ottawa 0.02 0.05 0.02 9.34 0.01 9.44 101.17 10.72
Average 0.02 0.05 0.01 8.85 0.01 8.94 82.77 9.25

5. Conclusions

In this paper, we proposed a novel model of active contours for change detection of SAR images.
The model was designed to extract a target feature in a digital image by getting some training data
from the target feature and image background. Therefore, in this paper, the changed and unchanged
features were considered as target features and image backgrounds, respectively. Besides, the training
data were generated from the difference image using the Otsu thresholding method automatically.
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Furthermore, we introduced a new difference image operator to attain more accuracy compared to
the existing operators. For the accuracy assessment of the model, it was applied to three temporal
SAR images, and the outputs were compared to their corresponding reference images (ground truth).
The accuracy of the proposed model depends on three constant values of the model, which were
determined by the trial and error method. Additionally, the number of training data of the changed
and unchanged region, which were identified manually, affect the accuracy of the model. The results
of the model demonstrate the higher accuracy of the proposed model compared with the five most
known models of change detection in SAR images. It should be mentioned that the proposed model
was completely implemented in the Matlab R15b software environment.
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