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Abstract: Since other factors (soil properties, topography, etc.) under natural conditions are relatively
invariant over one or two decades, climate variables (precipitation and temperature) and human
activities are the two fundamental factors driving vegetation changes in global or large-scale areas.
However, the combined effects of either single climatic factor and human activities on vegetation
changes and the role of human activities itself in a specific region has not been fully discussed.
In this study, the Hexi region, a typical dryland consisting of three inland river basins in northwest
China was selected as a case area. A new classification framework combining Pearson correlation
analysis and residual trend approach was proposed to assess their individual and conjoint contributions
of climate variables and human activities in areas of significant vegetation changes. Our results
indicated that most of vegetation covered areas in the Hexi region experienced significant changes
during the period 2001−2017, and vegetation improvements were widespread except the interior of
oases; significant changes in vegetation caused by human activities, precipitation, the interactions
of precipitation and human activities, temperature, the interactions of temperature and human
activities, the interactions of temperature and precipitation, and the interactions of the three factors
accounted for 50.46%, 16.39%, 19.90%, 4.33%, 2.32%, 2.11%, and 4.49% of the total change areas,
respectively. Generally, the influence of temperature was relatively weaker than that of precipitation,
and the contributions of the interactions of climate variables and human activities on vegetation
changes were greater than that of climate contributions alone. Moreover, the results of various
investigations, according to the trends and the time of vegetation changes, indicate that decreasing
trends of the normalized difference vegetation index (NDVI) in the Hexi region were chiefly attributed
to the adjustments of agricultural planting structure while the comprehensive treatment programs
implemented in river basins supported a large proportion of vegetation improvements.
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1. Introduction

The remarkable change in processes of vegetation in the world, or in different regions of the world
over the past decades, have been proved by modern remote sensing [1–4]. The significant changes in
vegetation were mainly attributed to the ease of climate constraints and various human activities for
survival and development. However, both the two types of driving factors may work individually or
simultaneously and the relative role of climate variables and human activities in vegetation changes
varies significantly from region to region. Understanding the interactions between vegetation changes
and climate variations, and identifying the degree of human interventions on regional ecosystem,
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are important for exploring the mechanism of vegetation changes and are conducive to sustainable
developments of regional ecosystems.

Monitoring long-term vegetation changes and establishing its relations to climate variations
are fundamental to ascertain their potential interactions with human drivers [5]. Relationships
between vegetation changes and climate variations have been measured globally and regionally by the
correlation coefficients or parameters in linear regression models using remote sensing datasets and
long-term meteorological observations since 1980. Generally, correlation analysis is the most widely
used method [6]. Specifically, simple correlation analysis, e.g., Pearson could reveal the relationship
between two variables [7–10]; partial correlation coefficient of each climate factor calculated by
controlling other factors, represents the relationship between vegetation changes and the specific
climate factor [11–17]; and multiple correlation analysis is applied to interpret the response of vegetation
growth to variations of multiple climate factors [18,19]. Numerous studies had proved that vegetation
growth is temperature-limited at high-latitudes and high-altitudes, but is water-limited in arid and
semi-arid regions [20,21]. Generally, temperature and precipitation are two main climate factors
affecting vegetation activities and the inter-annual changes of vegetation in arid and semi-arid regions
are more sensitive to the fluctuations of precipitation [8,22–25].

Distinguishing and identifying areas influenced by climate variations and human activities is
essential for driving factor analysis. Currently, several pixel-wise methods have been developed to
distinguish drivers of climate variables and human activities based on the ascertained relationships
between them. For example, a multiple regression model based on ordinary least square (OLS) is
introduced to interpret relationships between vegetation changes and climate variations, the adjusted
multiple coefficient of determination (adj-R2) in the model is then adopted to represent the overall
effects of climate-driven vegetation changes and the remaining fractions are considered as the impacts
of human drivers [11,26–28]. Rain use efficiency (RUE, the ratio of net primary production (NPP)
to precipitation) [29] and the residual trend (RESTREND) method [30] were invented to distinguish
human-induced vegetation changes from those driven by climate variations in arid and semi-arid
regions. The RESTREND approach in which a significant trend in residuals derived from linear
regression between the normalized difference vegetation index (NDVI) and climate variables presents
human-induced vegetation changes [25,31–33], is more effective to do this work [34]. However,
both the methods can only provide meaningful results when there is a strong linear correlation
between vegetation changes and climate variations [35,36]. The NPP model-based method calculates
climate-driven NPP and human-induced NPP by using the ideal NPP simulated by climate variables
and the difference between ideal NPP and actual NPP, respectively [37–41]. Several researchers
quantified the independent and conjoint relative effects of climate variations and human activities
using the method by establishing several scenarios according to the trends in the three kinds of
NPP timeseries [37,39,42]. However, numerous parameters and hypotheses are necessary for NPP
calculations and the uncertainties in estimated NPPs will greatly affect the results of driving factor
analysis [43]. Furthermore, combining trend analysis, correlation analysis, and the RESTREND
approach, Leroux et al. [44] developed a classification scheme recently to categorize the factors of
vegetation changes in the western Sahel zone into three types. However, precipitation was considered
as an overriding climate factor in the scheme. In brief, the simultaneous actions of climate variables
and the combined effects of climate variations and human activities are not fully discussed in the
methods aforementioned above.

This study focused on analyzing the driving factors of vegetation changes in the Hexi region,
a typical dryland area in northwest China with a highly vulnerable ecosystem due to insufficient
precipitation but a dense population. For the purpose, a new framework by taking temperature and
precipitation as the two cardinal climate factors was proposed to distinguish and assess the individual
and conjoint effects of either climate variable or human activities on vegetation changes. The specific
objectives of this paper are (1) to identify the areas, trends and time of recent vegetation changes in
Hexi region; (2) to specify the role of climate variations on vegetation changes; (3) to propose a new
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framework to distinguish the drivers of precipitation, temperature and human activities; and (4) to
further explore the underlying human drivers.

2. Materials

2.1. Study Area

The Hexi region, named for its location on the west of the Yellow River is a typical dryland area in
northwest of China (Figure 1). It is selected as the study area following the objectives to investigate
vegetation changes, and to distinguish and explore the driving factors of vegetation changes.
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Figure 1. The study area in northwest China and its main features.

The study area has a complicated terrestrial ecosystem composed of deserts, oases, and alpine
mountains. These geographic and meteorological factors (main mid-latitude westerly winds) produce
a pattern of climate which changes markedly over the region. Annual average temperature ranges
from 13.51 ◦C below zero in the Qilian mountains to 11.68 ◦C; in the northern plains (Figure 2a).
Annual precipitation ranges from 1.66 mm to 527.82 mm over the region by gradually decreasing from
south to north and from east to west (Figure 2b), and approximately 87% of the annual precipitation
falls between May and September [45]. Impacted by the precipitation regime, vegetation coverage (as
described by NDVI) follows a spatial gradient similar to the precipitation gradient (Figure 2c).
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Figure 2. The spatial patterns of annual average temperature (a) and annual precipitation (b) in the
Hexi region. The multi-year monthly precipitation and temperature gridded datasets over the period
1961–2000 obtained from the National Science and Technology Infrastructure [45] were summed and
averaged, respectively, to generate the precipitation and temperature dataset shown in (a) and (b),
respectively. (c) represents the maximum gNDVI (normalized difference vegetation index average over
the growing season) for the period 2001−2017.

The main land cover types are bare land (76.65%), grassland (16.28%), cultivated land (4.96%),
and forest (0.65%) according to the Global Land Cover dataset of 2010 [46]. Desert is the dominant
landscape and vegetation covered areas are mainly concentrated in the southern Qilian mountains
and oasis areas (Figure 1). Oases in the Hexi region have a total area of approximately 1.52 × 104 km2

(2017) and a population of 4.5 million. Three inland rivers: Shiyang, Heihe, and Shule pass through
the Hexi region and are the main available water resources for vegetation growth. All in all, the Hexi
region clearly represent a typical dryland with complicated geographical environments and intensive
human activities.

2.2. NDVI Timeseries

Moderate Resolution Imaging Spectroradiometer (MODIS) is the flagship of the Earth Observation
System operated by the United States National Aeronautics and Space Administration (NASA).
NASA had released several versions of MODIS products with improving data quality. The collection 6
released in February 2015 is the latest version with several improvements based on a new calibration
approach [47]. MOD13Q1 datasets from April 2000 to December 2017, which had been temporally
aggregated (16 days) from already processed daily data using maximum value compositing,
were downloaded from the online data pool at the NASA Land Processes Distributed Active Archive
Centre (LPDAAC) (https://lpdaac.usgs.gov/).

Owing to the good weather conditions for remote sensing observations and the processes of 16-day
maximum value compositing, no procedure, e.g., Savitzky–Golay filter, was employed to reconstruct
the original timeseries of NDVI extracted form MOD13Q1 datasets. Instead, the VI usefulness index in
the VI quality detailed Quality Assessment (QA) layer of MOD13Q1 datasets was utilized to select
pixels with good observations; that is, pixels with a VI usefulness index less than 4 were selected as
candidate pixels. The year 2000 was excluded from the analyses in the study because the proportion
of candidate pixels in images of 2000 was less than 90%. Subsequently, simple linear interpolation
was adopted to fulfill the missing data in timeseries of NDVI for each candidate pixel. The 16-day
maximum value NDVI composites over the growing seasons (gNDVI), which were defined by monthly
temperature greater than 10 ◦C; (corresponding the period from May to September) were averaged for
the period 2001−2017. Finally, a compiled 17-year timeseries of NDVI was generated to analyze the
spatiotemporal patterns of vegetation changes, as well as their linkages to variations in temperature
and precipitation.

It should be pointed out that to minimize the effects of noises and non-vegetation signals on
NDVI, we only focused our study on vegetation covered areas defined as the maximum gNDVI over
the period 2001–2017 not less than 0.2, which accounted for 19.42% of the Hexi region (Figure 2c).

https://lpdaac.usgs.gov/


Remote Sens. 2020, 12, 1758 5 of 21

2.3. Timeseries of Climate Variables

Monthly precipitation and temperature at 50 weather stations in and around the Hexi region
were collected from the China Meteorological Data Sharing Service Systems (http://cd.cma.gov.cn).
Consistent with the NDVI data time period, the monthly precipitation and temperature at each weather
stations were summed and averaged over the growing season, respectively, for each year of the
observation period (hereafter referred to gPRCP and gTEMP). Empirical Bayesian kriging interpolation
method [48], which can automatically establish the variogram according to the spatial distribution
characteristics of data itself, was then applied to generate annual gridded gPRCP and gTEMP datasets
for the period from 2001 to 2017. Moreover, all the gridded datasets had a spatial resolution of 250 m
to match the MODIS NDVI datasets.

The other datasets used in our study also included the ASTER GDEM (Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model) dataset obtained from
Geospatial Data Cloud (www.gscloud.cn), and the Global Land Cover dataset of 2010 was obtained
from the National Geomatics Centre of China (http://www.globallandcover.com/).

3. Methods

3.1. Methods Involved in the Classification Framework of Driving Factor Analysis

3.1.1. Method for Detecting the Areas, Trends, and Time of Vegetation Changes

In order to disclose the potential disturbances (mainly human activities), a new method proposed
in our previous study [49] was introduced in this study to identify the areas, the trends and the time of
significant vegetation changes.

In previous study, we assumed that vegetation conditions are generally in a stable state or keeps
gradual changing over time; once disturbed, it will change rapidly and shifts to an alternative state of
changing until reaching a new equilibrium. Therefore, the timeseries of NDVI were first smoothed
and prolonged according to the timepoint of the maximum change rate in timeseries. Subsequently,
the non-linear patterns were determined by fitting the prolonged timeseries of NDVI using a logistic
model (Equation (1)), and the remained pattern was fitted using a linear model (Equation (2)).

f(t) =
a

1 + eb×(t−c)
+ d (1)

where t were serial numbers in the prolonged timeseries of NDVI, f(t) were values in the prolonged
timeseries of NDVI, parameter a represented the change magnitude of NDVI, the symbol of b denoted
the direction of vegetation change, c was the location where the fitting value was equal to (a+d)/2,
and parameter d revealed the initial background NDVI value. The goodness-of-fitting was implemented
by a standard F statistics test. Only the goodness-of-fitting of the part in the timeseries corresponding
to the period 2001–2017 were taken into consideration.

NDVIi = s + slope× i i = 1, 2, · · · , 17 (2)

where i was the ith year in the smoothed timeseries of NDVI, s and slope were the parameters in the
linear regression and were estimated based on OLS. The goodness-of-fitting was also tested by the
standard F-test.

In this study, areas of significant vegetation changes were defined as pixels in which the fitting
models had passed the statistical significance F-test, the trends of vegetation changes were identified
by parameters b in Equation (1) and slope in Equation (2), and the time that vegetation conditions began
to change was determined by the timepoint in timeseries at which the change rate of the curvature in
the S-type curve of the logistic model exhibits the maximum or minimum.

http://cd.cma.gov.cn
www.gscloud.cn
http://www.globallandcover.com/
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3.1.2. Pearson Correlation Analysis

To investigate the sensitivities of vegetation changes to climate variations, pixel-wise Pearson
correlation coefficients (R) between gNDVI (dependent variables) and gTEMP and gPRCP over the
period 2001−2017 were calculated independently. Statistical significances of both correlations were
tested at 95% confidence level and the threshold of significance was determined by a look-up table
method (p-value < 0.05, corresponding to R = 0.482). If there was a significant gNDVI–gPRCP
or gNDVI–gTEMP correlation (|R| = 0.482), we assumed that vegetation changes were affected by
precipitation or temperature; otherwise, the influences of human drivers on vegetation changes
exceeded climate factors, underlying climate variables had little influences on vegetation changes.

3.1.3. RESTREND Analysis

The RESTREND approach was first introduced to discriminate between climate and human-induced
dryland degradations [30]. Since vegetation growth in dryland areas is largely dependent on
inter-annual rainfall, annual biomass production (NDVI as an indicator in our study) could be predicted
by precipitation. Positive or negative deviations in biomass expressed in the residuals, which were
defined as the differences between the observed NDVI and the predicted NDVI, are interpreted as
parts induced by factors other than precipitation. The RESTREND approach is a useful method for
detecting vegetation changes independent of precipitation in water-limited regions [50–53]. Currently,
it is widely applied to separate human-induced vegetation changes from those driven by climate
variables, followed by a deep discussion of the differentiated human activities [25,31,54,55].

In the study, gTEMP and gPRCP over the period 2001−2017, were chosen as the input climate
dataset for RESTREND analyses, independently. The specific processes of RESTREND analysis at
a pixel were (1) to calculate the relationship between vegetation growth and either climate factor
using a linear regression between gNDVI and gTEMP or gPRCP, (2) to predict NDVI using this
relationship, (3) to calculate the residuals of NDVI defined as differences between the predicted
and observed NDVIs, and (4) to detect trend in residuals using a linear regression of the residuals
against time. The goodness-of-fitting of the linear regressions was determined by the standard F-test
(p-value < 0.05, corresponding to F = 4.543). It should be pointed out that the RESTREND approach
only produces reliable results when there is a significant correlation between vegetation changes
and climate variations [35]. Therefore, pixels with no significant gNDVI–gTEMP or gNDVI–gPRCP
correlations were excluded in the RESTREND analyses.

3.2. A New Framework for Driving Factor Analysis

A new framework consisted of Pearson correlation analysis and the RESTREND approach was
proposed in the study to address the question of separating the factors of climatic variables (temperature
and precipitation) and human activities in areas of significant vegetation changes (Figure 3). Areas of
significant vegetation changes were identified by the method described in Section 3.1.1. All procedures
in the framework were implemented using ENVI software (version 5.1).

Since precipitation is the controlling climate factor affecting vegetation changes in arid
and semi-arid regions [17,56], Pearson correlation analysis was first adopted to examine the
linkages between vegetation changes and precipitation (RgNDVI–gPRCP). If there was no significant
gNDVI–gPRCP correlation, the Pearson correlation analysis between vegetation changes and
temperature (RgNDVI–gTEMP) was then conducted to infer if vegetation changes were closely related
to temperature; where there were no significant gNDVI–gPRCP and gNDVI–gTEMP correlations,
we assumed that vegetation changes only benefited from human activities; and for areas with a
significant gNDVI–gPRCP correlation but a not significant gNDVI–gTEMP correlation, a significant
trend in residuals derived from the linear regression between gNDVI and gTEMP (REgNDVI–gTEMP)
indicated that vegetation changes were affected by temperature and human activities; otherwise,
vegetation changes in those areas were only affected by temperature.
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Figure 3. The flowchart of the new classification framework.

RESTREND analysis was also executed in areas where vegetation changes are closely related to
precipitation to examine if a significant trend existed in residuals derived from the linear regression
between gNDVI and gPRCP (REgNDVI–gPRCP). If there was no significant trend in the residuals,
vegetation changes were considered to be caused only by precipitation; otherwise, changes in
vegetation were caused by factors associated with precipitation. In areas where vegetation changes
were affected by factors associated with precipitation, the Pearson correlation analysis between gNDVI
and gTEMP was carried out to infer if vegetation changes were also affected by temperature; where there
was no significant gNDVI–gTEMP correlation, it meant that vegetation changes only benefited from
precipitation and human activities; and for areas with a good gNDVI–gTEMP correlation, a significant
REgNDVI–gPRCP indicated that vegetation changes were affected by precipitation, temperature, and
human activities; otherwise, vegetation changes in these areas are affected only by precipitation
and temperature.

4. Results

4.1. Vegetation Changes in the Hexi Region

4.1.1. The Trends of Vegetation Changes in the Hexi Region

In the Hexi region, 88.72% of vegetation covered areas (gNDVImax = 0.2) experienced significant
changes during 2001−2017, among which 92.32% were positive while 7.67% were negative (Figure 4).
Vegetation improvements were universal and mainly located in the southern Qilian mountains,
the marginal areas of oases, and the downstream areas of the river basins. Moreover, vegetation
conditions in the Qilian mountains had improved slightly while vegetation conditions at the edges of
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oases improved obviously. Areas with a decreasing trend in NDVI timeseries were concentrated in the
interiors of oases, mainly in Liangzhou, Minqin, Ganzhou, Gaotai, Guazhou, and Dunhuang.
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Figure 4. Trends of vegetation changes in the Hexi region of northwest China detected by the method
proposed in our previous study [49]. Only vegetation covered areas with the maximum gNDVI over
the period 2001−2017 with not less than 0.2 were discussed in our study.

4.1.2. The Time at which Vegetation Began to Change

In order to further explore the potential human activities in the Hexi region, the time that
vegetation began to increase or decrease were analyzed independently. The time that vegetation
conditions began to improve are shown in Figure 5. In oasis areas (Figure 1), vegetation conditions
inside the oases began to improve mainly at the early stage of the observation period (before 2005)
while those in the marginal areas of oases started to improve in the years after 2007. In the upstream
Qilian mountains, vegetation improvements in the middle-west of the Qilian mountains mainly took
place at the early stage of the observation period while those in the eastern and the western parts of
the Qilian mountains mainly took place in the years after 2009; the time of vegetation improvements
at the junction zones of the Shiyang river basin and Heihe river basin were the latest (around 2013).
The main periods that vegetation began to improve in the downstream areas of the Heihe river basin
and Shiyang river basin were in years before 2006 and after 2010, respectively.
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The time that NDVI began to decrease varied by different counties. Specifically, the time that
NDVI began to decrease in Liangzhou and Minqin mainly ranged from 2006 to 2008 and 2006 to 2009,
respectively (Figure 6a,b); the decrease of NDVI in Gaotai and Ganzhou mainly took place at three
periods: 2001–2004, 2008–2010, and the years after 2013 (Figure 6c,d); the main periods that NDVI
began to decrease in Guozhou and Dunhuang were in years after 2012 (Figure 6e,f).



Remote Sens. 2020, 12, 1758 10 of 21
Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 
Figure 6. The time that NDVI began to decrease in the oases where decreasing trends were 
concentrated (as showed in Figure 4). (a)–(f) represent the time that NDVI began to decrease in 
Liangzhou (a), Minqin (b), Gaotai (c), Ganzhou (d), Guazhou (e), and Dunhuang (f), respectively. 
The human drivers of the decreasing trends in the sample sites obtained from various investigations 
according to the trends and time of vegetation changes were further classified and are shown in the 
figure. 

4.2. Relationships between Vegetation Changes and Climate Variables 

4.2.1. Relationships between Vegetation Changes and Precipitation 

The Pearson correlations between gNDVI and gPRCP in the Hexi region over the period 
2001−2017 are shown in Figure 7a. In the vegetation covered areas, 41.04% had a significant 
gNDVI–gPRCP correlation, among which 99.67% were positive. Spatially, the majority of the highly 
positive correlations were distributed in the Qilian mountains. Vegetation changes in agricultural 
oases where crops were irrigated periodically were independent of precipitation while that in 
wastelands in oases supported a contradictory conclusion. In addition, there were a few negative 
gNDVI–gPRCP correlations in oasis areas, indicating that increases in precipitation might lead to 
decreased trends of NDVI. More attention should be paid to better understand these anomalies. 

Figure 6. The time that NDVI began to decrease in the oases where decreasing trends were concentrated
(as showed in Figure 4). (a)–(f) represent the time that NDVI began to decrease in Liangzhou (a),
Minqin (b), Gaotai (c), Ganzhou (d), Guazhou (e), and Dunhuang (f), respectively. The human drivers
of the decreasing trends in the sample sites obtained from various investigations according to the trends
and time of vegetation changes were further classified and are shown in the figure.

4.2. Relationships between Vegetation Changes and Climate Variables

4.2.1. Relationships between Vegetation Changes and Precipitation

The Pearson correlations between gNDVI and gPRCP in the Hexi region over the period 2001−2017
are shown in Figure 7a. In the vegetation covered areas, 41.04% had a significant gNDVI–gPRCP
correlation, among which 99.67% were positive. Spatially, the majority of the highly positive correlations
were distributed in the Qilian mountains. Vegetation changes in agricultural oases where crops were
irrigated periodically were independent of precipitation while that in wastelands in oases supported a
contradictory conclusion. In addition, there were a few negative gNDVI–gPRCP correlations in oasis
areas, indicating that increases in precipitation might lead to decreased trends of NDVI. More attention
should be paid to better understand these anomalies.

In areas where vegetation changes were significantly related to precipitation, 57.45% of them had
a significant trend in residuals and almost all of the trends were positive (99.35%), indicating that
vegetation changes in nearly half of the areas affected by precipitation were also influenced by other
factors (temperature or human activities) (Figure 7b).
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4.2.2. Relationships between Vegetation Changes and Temperature

Correlation coefficients between vegetation changes and temperature in the Hexi region over the
period 2001−2017 are shown in Figure 8a. Only 15.67% of vegetation covered areas had a significant
relationship between vegetation changes and temperature, among which 86.64% were positive and
13.36% were negative. Areas with a significant positive gNDVI–gTEMP correlation were mainly
distributed in the high-altitudes of the Qilian mountains. The gNDVI–gTEMP relationships in oases
were negative. In other words, increase in temperature was conducive to the growth of subalpine
vegetation in the Qilian mountains, but were unfavorable to vegetation growth in oases. In addition,
most of vegetation changes affected by temperature were also affected by precipitation (Figure 7a).
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Figure 8. Correlation coefficients between gNDVI and gTEMP in the Hexi region over the period
2001−2017 (a) and trends in residuals derived from the linear regressions between gNDVI and
gTEMP (b).

In areas with a significant gNDVI–gTEMP correlation, 40.91% of them had a significant trend in
residuals, among which 94.97% were positive and 5.03% were negative (Figure 8b). Specifically, trends
in residuals in the Qilian mountains and the western oases were positive while those in the eastern
oases were negative.

4.3. Mapping the Driving Factors Driving Based on the New Framework

The results of the driving factor analyses obtained by the new framework are shown in Figure 9.
Significant changes in vegetation caused by human activities, precipitation, precipitation and human
activities, temperature, temperature and human activities, precipitation and temperature, and all of the
three factors accounted for 50.46%, 16.39%, 19.90%, 4.33%, 2.32%, 2.11%, and 4.49% of the total change
areas, respectively. Obviously, human activities were the dominant factor affecting vegetation changes
in the Hexi region. Vegetation changes driven by climate variations alone accounted for 22.83% of the
total vegetation changes, and 26.71% of vegetation changes resulted from the interactions of human
activities and climate variations. Spatially, human-induced vegetation changes were universal in the
oasis areas and the downstream areas of the river basins; vegetation changes in the eastern and western
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parts of the Qilian mountains were largely attributed to the interactions of precipitation and human
activities; meanwhile, vegetation changes affected by the interactions precipitation, temperature,
and human activities were mainly concentrated in the upstream areas of the Heihe river basin where
the driving factors of vegetation changes were more complicated than other places.
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4.4. The Potential Human Activities

Combining the detected trends (Figure 4) and time of vegetation changes (Figures 5 and 6),
we further investigated and identified the specific human drivers in areas of vegetation changes caused
by factors associated with human activities (Figure 9). Firstly, we counted the time that NDVI began to
decrease in each individual year by counties and the times that vegetation conditions began to improve
in each individual year in different geographical regions (Figure 10). Secondly, sample sites were
selected in regions where the time of vegetation changes were same (Figure 5 and 6). Lastly, based on
the trend and time of vegetation changes, various methods, e.g., high-resolution images from Google
Earth Pro software (version 7.3.2) and field investigations were adopted to explore the underlying
human driver at each sample site. If a specific human driver could lead to the detected increasing or
decreasing trend of NDVI (Figure 4), and the time that the driver acted on vegetation was coincident
with the detected vegetation change time, we considered the specific human driver as the cause of
vegetation change at the sample site.



Remote Sens. 2020, 12, 1758 14 of 21
Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 

Figure 10. The statistics on the time that NDVI began to decrease in different counties of Wuwei 
Prefecture (a), Jiuquan Prefecture (b), and Zhangye Prefecture (c); and the statistics on time that 
vegetation conditions began to improve in the upstream areas (d) and the downstream areas (e) of 
the river basins. Values in the Y axes of each histogram were the number of pixels in each individual 
year. Only the pixels where vegetation changes were driven by the factors associated with human 
activities (Figure 9) were counted in the histograms. 

The results of various investigations indicated that urbanization, industrialization, and the 
constructions of infrastructure (roads or new rural settlements) has led to changes in natural land 
covers inside oases, causing significant decreasing trends in NDVI. Generally, the growth of urban 
areas, mainly distributed in areas surrounded cities or towns, accounted for a small fraction of the 
decreasing trends (Figure 6a–f). A total of 2323 pumping-wells in Minqin oasis were closed in the 
comprehensive treatment program of the Shiyang river basin (CTPSRB) (2005−2011) to reduce 
groundwater exploitation and irrigation consumptions [58], accompanied by nearly 512.66 km2 of 
farmland abandonment [59]; these initiatives led to large-scale NDVI decreasing trends in Minqin 
during 2006−2010 (Figure 10a). The majority of the decreasing trends in oases were due to the 
adjustments of agricultural planting structure (including the construction of greenhouses). There 
were several reasons for farmers to adjust the planting structure. Firstly, the construction of 
greenhouses, which was an important water-saving measure in CTPSRB, caused large-scale 
decreasing trends of NDVI in Liangzhou and Minqin during 2005−2008 (Figure 10a), which was 
confirmed by field investigation or observing the images on Google Earth (Figure 6a,b). Secondly, 
the agricultural industrialization aimed at integrating the agricultural lands of smallholders into 
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Figure 10. The statistics on the time that NDVI began to decrease in different counties of Wuwei
Prefecture (a), Jiuquan Prefecture (b), and Zhangye Prefecture (c); and the statistics on time that
vegetation conditions began to improve in the upstream areas (d) and the downstream areas (e) of the
river basins. Values in the Y axes of each histogram were the number of pixels in each individual year.
Only the pixels where vegetation changes were driven by the factors associated with human activities
(Figure 9) were counted in the histograms.

The results of various investigations indicated that urbanization, industrialization, and the
constructions of infrastructure (roads or new rural settlements) has led to changes in natural land
covers inside oases, causing significant decreasing trends in NDVI. Generally, the growth of urban areas,
mainly distributed in areas surrounded cities or towns, accounted for a small fraction of the decreasing
trends (Figure 6a–f). A total of 2323 pumping-wells in Minqin oasis were closed in the comprehensive
treatment program of the Shiyang river basin (CTPSRB) (2005−2011) to reduce groundwater exploitation
and irrigation consumptions [58], accompanied by nearly 512.66 km2 of farmland abandonment [59];
these initiatives led to large-scale NDVI decreasing trends in Minqin during 2006−2010 (Figure 10a).
The majority of the decreasing trends in oases were due to the adjustments of agricultural planting
structure (including the construction of greenhouses). There were several reasons for farmers to adjust
the planting structure. Firstly, the construction of greenhouses, which was an important water-saving
measure in CTPSRB, caused large-scale decreasing trends of NDVI in Liangzhou and Minqin during
2005−2008 (Figure 10a), which was confirmed by field investigation or observing the images on
Google Earth (Figure 6a,b). Secondly, the agricultural industrialization aimed at integrating the
agricultural lands of smallholders into agricultural cooperatives to promote large-scale specialized
productions, has developed rapidly in the Hexi region along with the implementation of land transfer
policies (since 2008). Crops shifted from traditional grain crops to cash crops of high profit, causing
decreasing trends inside oases (Figure 6d,e). For example, traditional crops have been replaced by
cotton (2007−2008) and muskmelon cultivations (since 2010) in Guazhou [60] (Figure 10b) while grain
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crops were replaced by various vegetables in Gaotai in 2008 (Figure 10b); the industrialized operations
of land-scale greenhouses has kept increasing trends since 2008 (Figure 10c). Thirdly, in order to
increase runoff to the downstream areas of the Heihe river basin, the adjustments of agricultural
planting structure, e.g., reducing the planting of water-intensive crops (e.g., rice), the construction of
greenhouses, and farmland abandonments involved in the short-term treatment program of the Heihe
river basin (STPHRB) (2001−2010) (Figure 6c,d). These adjustments have led to universal decreasing
trends of NDVI in Gaotai, Linze, and Ganzhou at the early stage of STPHRB (Figure 10c). Finally,
surface mining in the Qilian mountains and farmland abandonments in the Dunhuang oasis since 2012
(Figure 10b), which were also identified by images from Google Earth Pro, have resulted in significant
vegetation degradations (Figure 6f).

The vegetation improvements in the marginal areas of oases were largely attributed to the
expansion of agricultural oases. A map of five-year interval changes of oasis from 1986 to 2014 in the
Hexi region was analyzed in a previous study [57], in which the periods of oasis expansion agreed
well with the time of vegetation improvements in oasis areas (Figure 5). Programs of grassland
protection, e.g., returning grazing land to natural grassland implemented early in Subei and Sunan
counties from 2003 [61,62], led to vegetation improvements in the upstream Heihe and Shule river
basins at early stage of the observation period (Figure 10d). The human driver in the eastern part
of Qilian mountains were attributed to the ecological projects of returning farmlands to forest or
grasslands, returning grazing land to natural grassland [63], and ecological migration involved in
CTPSRB, which encouraged peasants to do non-farm work through labor-export or moved out from
the mountains. In addition, the main periods of vegetation greening in the downstream areas of the
Heihe and Shiyang river basins (Figure 10e) were consistent with the continuous runoff in CTPSRB
since 2001 and the oasis dynamics in Minqin during the observation periods [59], respectively.

5. Discussion

As a typical dryland consists of deserts, oases, and alpine mountains, vegetation changes in the
Hexi region are evidently affected by climate variations. Responses of vegetation changes to climate
variations in the Hexi region were ascertained in the study and have been also discussed precisely in
previous studies using timeseries of remote sensing datasets and climate measurements from weather
stations. Our study has further confirmed the findings in previous studies that precipitation was the
absolute dominant climate factor influencing vegetation changes in the Hexi region [64–66]. Specifically,
vegetation changes in the upper Shiyang river basin and Shule river basin were more sensitive to
precipitation than temperature [19]; areas affected only by factors associated with temperature were
scarce, mainly distributed in high altitudes where increasing temperature facilitated vegetation
growth [67]; nevertheless, temperature was found not to correlate as highly as precipitation in the
Qilian mountains where vegetation changes were influenced significantly by both temperature and
precipitation [19,64,66]. In addition, we also found that approximately half of the vegetation changes
in temperature-related and precipitation-related areas in the Hexi region were also affected by other
factors due to a significant trend in residuals derived from the linear regression between gNDVI and
gPRCP or gTEMP over the period 2001−2017 (Figures 7b and 8b).

According to the findings above, a new classification framework by taking temperature and
precipitation as the two cardinal climate factors was proposed in the study to distinguish and assess
the respective and the combined effects of either climate variables or human activities. It is a universal
method consisting of several traditional statistical approaches. Any complicated calculations and
man-made parameters were not necessary, which made the method suitable for most regions in the
globe, especially the arid and semi-arid regions. In addition, areas of significant vegetation changes
in the framework (Figure 3) could be identified using a widely used method, e.g., linear regression
based on ordinary least squares, Theil–Sen slope estimation, and Mann–Kendall test, so as to simplify
the analysis.
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However, the new classification framework of driving factor analysis was premised on the
assumptions of linear relationships between vegetation changes and climate variables. For example,
Pearson correlation analysis in the framework was adopted to measure the linear relationships between
vegetation changes and either climate factor; RESTREND analyses were carried out based on the linear
correlations between gNDVI and gTEMP or gPRCP. We conducted our study based on the fact that
annual precipitation in the Hexi region is generally below 500 mm (Figure 2b) because several studies
have demonstrated that annually-integrated NDVI was linearly related to annual precipitation when
annual precipitation was below 500 mm in arid and semi-arid areas [68–70]. However, responses
of vegetation changes to climate variations may be non-linear, seasonal, and different among plant
functional types; there is also a time lag between temperature, precipitation, and response of vegetation
ranging from one to several months. The form (linear, log-linear, quadratic, or others) of the functional
relationship between vegetation changes and climate variations (temperature and precipitation), as
well as the lagged responses of vegetation to precipitation in the Hexi region, both of which deserve
further understanding, is still blurry and has not yet been investigated in great depth.

The results of driving factor analysis based on the new classification framework demonstrated
that factors associated with human activities accounted for 72.34% of the significant vegetation changes.
Human activities had profoundly affected vegetation changes in the Hexi region, especially in the
oasis areas and the downstream areas of the river basins where vegetation changes could not be fully
interpreted by climate variations. The findings in the study agreed with the standpoints in previous
local studies [27,66].

The potential human drivers in the Hexi region have been explored in numerous local studies.
Guan et al. [27] confirmed that the decreasing trends in NDVI observed in vicinity areas of cities were
attributed to urbanization, industrialization, or the construction of rural settlements, which increased
rapidly by mainly encroaching on croplands or grasslands [71]. The expansion of agricultural oases was
identified as an important factor for promoting vegetation greening in northwest China (including the
Hexi region) [57,72]. Owing to insufficient precipitation and high evaporation, vegetation conditions
in dryland regions were largely constrained by available water resources and the treatment programs
of the river basin, e.g., STPHRB and CTPSRB contributed greatly to vegetation changes. Specifically,
the continuous discharges of runoffs and a series of countermeasures, e.g., the banning of grazing,
afforestation, and the returning farmlands to forest or grassland involved in STPHRB and CTPSRB,
has been proved to directly promote vegetation restorations in downstream areas of the Heihe river
basins [73–75] and Shiyang river basins [73,76,77] at the early stage of the programs (Figure 10e);
Diao et al. [59] and Zhang et al. [74] also found that there were a lot of newly reclaimed agricultural
oases in the downstream areas, which benefited from the increased water discharge; apart from climate
variations and various ecological restoration programs, several local newspapers or studies [63,78–80]
have reported that vegetation improvements in the upstream Qilian mountains were also partly
attributed to the treatment programs of river basins; furthermore, we also testified in the study that
large-scale decreasing trends of NDVI inside oases resulted from various water-saving measures in
STPHRB and CTPSRB. In addition, our findings demonstrated that the adjustments of agricultural
planting structure were the main reason for the large-scale decreasing trends of NDVI; however,
the effects of planting structure adjustments on vegetation improvements were not discussed in the
study. Liu et al. [81] found that summer harvest crops (e.g., wheat and barley) were replaced by
autumn harvest crops (e.g., corn and rapeseed) in Minle County, causing a reason for the greening
trends in oases. The influences of the adjustments of agricultural planting structure on vegetation
changes in oases deserves more attentions in future works.

6. Conclusions

We analyzed nearly two decades of vegetation changes in the Hexi region and explored the
relationships between vegetation changes and climate variations. Consequently, an alternative
procedure that could distinguish the individual and conjoint influences of climate variables
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(precipitation and temperature) and human activities on vegetation changes was proposed in the study.
The method is a general approach for driving factor analysis and could categorize the factors driving
vegetation changes into seven types. Our results indicated that changes in vegetation covered areas
of the Hexi region were remarkable; significant changes in vegetation caused by human activities,
precipitation, the interactions of precipitation and human activities, temperature, the interactions
of temperature and human activities, the interactions of temperature and precipitation, and the
interactions of the three factors accounted for 50.46%, 16.39%, 19.90%, 4.33%, 2.32%, 2.11%, and 4.49%
of the total change areas, respectively. Obviously, human activities were undoubtedly the dominant
factor driving vegetation changes in the Hexi region, especially in the oasis areas and the downstream
areas of the river basins. Compared with temperature, vegetation changes were more sensitive to
precipitation; moreover, nearly half of the vegetation changes in climate-related areas were caused by
the interactions of climate variations and human activities rather than that of climate variations alone.
Furthermore, the driving factors in the upstream areas of Heihe river basins were complicated.

Human drivers in areas of vegetation changes induced by human activities or the interactions
of climate variations and human activities were disclosed according to the time and trends of
vegetation changes. The results indicated that urbanization, industrialization, and the construction
of infrastructure caused a small proportion of the decreasing NDVI trends, the majority of which
were attributed to the adjustments of the agricultural planting structure. Vegetation improvements
in the marginal areas of oases were mainly due to the expansion of agricultural oases while those
in the upstream areas and downstream areas of the river basins were directly or indirectly affected
by ecological restoration projects, especially the comprehensive treatment programs implemented in
the river basins. In general, the comprehensive treatment programs of the river basins contributed
greatly to vegetation changes in the Hexi region and the effects of human activities have shifted from
negative to positive recently. Our findings provide new insights for better management and vegetation
restoration in the Hexi region and other dryland basins in northwest of China or the globe.
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