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Abstract: The processing of remote sensing measurements to Building Information Modeling (BIM) is
a popular subject in current literature. An important step in the process is the enrichment of the geometry
with the topology of the wall observations to create a logical model. However, this remains an unsolved
task as methods struggle to deal with the noise, incompleteness and the complexity of point cloud
data of building scenes. Current methods impose severe abstractions such as Manhattan-world
assumptions and single-story procedures to overcome these obstacles, but as a result, a general
data processing approach is still missing. In this paper, we propose a method that solves these
shortcomings and creates a logical BIM model in an unsupervised manner. More specifically,
we propose a connection evaluation framework that takes as input a set of preprocessed point clouds
of a building’s wall observations and compute the best fit topology between them. We transcend
the current state of the art by processing point clouds of both straight, curved and polyline-based
walls. Also, we consider multiple connection types in a novel reasoning framework that decides
which operations are best fit to reconstruct the topology of the walls. The geometry and topology
produced by our method is directly usable by BIM processes as it is structured conform the IFC data
structure. The experimental results conducted on the Stanford 2D-3D-Semantics dataset (2D-3D-S)
show that the proposed method is a promising framework to reconstruct complex multi-story wall
elements in an unsupervised manner.

Keywords: building information modeling; reconstruction; topology; point clouds

1. Introduction

The production of as-built Building Information Modeling (BIM) databases from point cloud
data is an important task in remote sensing. The target is to enrich the raw metric inputs with
building component information which is crucial in navigation and scene interaction tasks [1,2].
The resulting data is also used by the Architectural, Engineering, Construction, Owner and Operator
(AECOO) industry where it has proven to significantly facilitate refurbishment, facility management
and project planning [3,4]. However, processing remote sensing data to BIM is a challenging task,
especially without the use of prior knowledge about the environment. Various approaches are proposed
to automate this procedure [5,6]. Typically, point cloud data is first produced of the scene by using
static or dynamic data acquisition systems (Figure 1a). These raw inputs are processed by reasoning
frameworks to segment basic primitives from the scene such as planes and cylinders and building
component information is assigned to these primitives (Figure 1b). Next, the observed geometry is used
to fill the voids in the point cloud by producing geometry in occluded areas i.e., connecting partially
observed walls (Figure 1c). In a final step, the hierarchical relations and topology are defined
between the building components, which in building environments is typically based on the Industry
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Foundation Classes (IFC) standard [7], which is the widely adopted implementation of BIM (Figure 1d).
While the segmentation and subsequent classification are well researched topics, there is a lack of
understanding of how to properly define topological relations between the observations and to fill
the gaps in the point cloud with building information [8]. The aim of this research is to provide a more
general and robust framework to reverse engineer these relations in building environments. More
specifically, we target the reconstruction of the connections between observations of wall geometry
that are highly occluded in the point cloud.

(a) (b)

(c) (d)

Figure 1. Overview of the Scan-to-BIM procedure from remote sensing point clouds. (a) Point cloud
data (b) Extracted building components (c) Geometry reconstruction in occluded areas (d) BIM topology
reconstruction.

Current algorithms presented in the literature only partially solve the topology reconstruction.
First of all, most approaches aim to retrieve geometric primitives instead of actual building
component information such as defined by the IFC standard [9,10]. Consequently, these methods
emphasize on processing the point clouds to static watertight models that only deal with superficial
occlusions in the point cloud. The few methods that do reason about the structure of the building,
i.e., how the observations relate to volumetric entities and their connections, are mostly limited by
Manhattan-world scene assumptions which severely limit the method’s applicability. For instance,
the methods of Becker et al. [11] and Tran et al. [12] only consider observations in orthogonal
configurations. Another common abstraction is only considering the observed faces of straight
walls. Even the promising methods of Ochmann et al. [13], Nikoohemat et al. [14] and the recent
work of Tran et al. [15] are limited by these abstractions. To our knowledge, our approach is the only
interpretation method that actively deals with more complex wall observations including those of
curved and polyline-based walls, which are vital to a more complete processing of the point cloud.

Similarly, there is the limitation of the scope to a single building story, which ignores important
multi-story remote sensing information. In previous work, we already proposed methods to perform



Remote Sens. 2020, 12, 1800 3 of 17

the segmentation [16] and classification [17] on the entire dataset and we continue this approach for
the topology reconstruction. Finally, there are few methods that consider the topology of the building
components. Most methods are limited to a single connection type i.e., intersections between adjacent
walls with exceptions such as Previtali et al. [18,19] and Jung et al. [20] who respectively also consider
orthogonal and shortest Euclidean distance connections. In our work, we propose a framework that
considers all three connection types and also blended connections for complex walls on multiple stories.
To this end, we developed an unsupervised topology reconstruction method to process the point cloud
to a more logical model with the proper semantics. In summary, our contributions are:

1. The automated simultaneous processing of multi-story wall observations from point cloud data
2. The development of a topology reconstruction framework that computes the best suited

connection type in highly occluded areas
3. The automated representation of complex building environments with straight, curved and

polyline-based walls

The remainder of this work is structured as follows. In Section 2, the related work on BIM
reconstruction is presented. Section 3 explains the methodology for the topology reconstruction
of the partial wall geometry. The results of the investigation and the experiments are discussed
in Section 4. The discussion is presented in Section 5. Finally, the conclusions and future work are
presented in Section 6.

2. Background & Related Work

The reconstruction of the topology between wall observations is still a largely unexplored topic
in the current literature as there are researchers that forego the topology reconstruction and leave
this task up to the user [21]. We therefore expand our literature study to also include the topology
reconstruction of rooms and other building components. There currently are three frequently used
methods for topology reconstruction including cell decompositions, semantic nets with shape grammar
and connection evaluations (Figure 2).

(a)

Figure 2. Cont.
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(b)

(c)

Figure 2. Schematic overview of the potential methods in the literature to reconstruct building
topology (2D-3D-S Stanford dataset). The partial walls are shown in grey while the geometries
supporting the reconstruction are shown in green. (a) Overview cell decomposition such as presented
by Ambrus et al. [22], Ochmann et al. [13] and Mura et al. [10]. A set of semi-infinite rays (green)
is computed from the partial walls (grey) to subdivide the space into cells that are the base
geometry for the topology reconstruction. (b) Overview connection evaluations such as presented
by Nikoohemat et al. [14] and ourselves. A set of connections (green) is proposed for each set of
neighboring partials walls (grey) for the topology reconstruction. (c) Overview shape grammar such as
presented by Tran et al. [12]. Given a set of rooms (green), a set of connectivity relations (red) such as
containment and adjacency is defined between the geometries to reconstruct the topology.

2.1. Cell Decomposition

Cell decompositions are the most commonly used method to create watertight room geometry
and with it wall geometry. It extends the planar room boundaries to the edge of the bounding box
of the building, thus creating a 2D or 3D cell grid of the structure. Following, the cells are merged
together based on some seeding criteria such as the presence of floor or ceiling geometry. The naked
edges of each cluster subsequently form the boundary of the room’s geometry. These boundaries
can then be fused together and replaced with BIM wall objects. There are several researchers that
show promising results with this technique for planar wall segments. Liu et al. [23], Turner et al. [24],
Ambrus et al. [22], Budroni et al. [25] and Wang et al. [26] all use 2D or 2.5D cell decompositions for
the production of accurate floor plans of a story. Mura et al. [10,27], Oesau et al. [9] and Xiao et al. [28]
deploy 3D cell decompositions on an entire story and succeed in creating watertight BREP and
CSG room volumes of the interior of a building. While their methods are designed to complete
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the topology of the boundaries of rooms, we believe it can be extended towards parametric wall
reconstruction given a prior clustering of the wall segments and subsequently performing a cell
decomposition on the candidate wall axes. Also, these methods show that topology reconstruction
procedures significantly benefit from the incorporation of floor and ceiling information which we also
use in our method.

While there are significant advantages to cell decompositions, there are several important
limitations to consider. First, this method typically requires at least one observation from every
wall in order to create proper cells. Also, appropriate seeding and the presence of ceiling or floor
observations is required to properly detect the boundaries and the methods typically only operate
on planar/linear segments. Typically, only intersecting connections are established in these methods
that might fail to properly enclose the target space. Also, by considering every intersection between
candidates, the combination complexity of O((n − 1)!) quickly becomes overwhelming in larger
datasets. Two very promising cell decompositions that overcome some of these obstacles are presented
by Ochmann et al. [13] and Previtali et al. [19]. Both focus on optimizing the room layout but
incorporate vital functionalities that we adopt for our wall topology reconstruction. Ochmann et al. pay
close attention to the connections between neighboring rooms and deal with multi-wall intersections.
Previtali et al., also consider orthogonal connections for the cell decomposition which increases
the method’s robustness to occlusions. Overall, we adapt their functionalities but restrain from using
cell decompositions because of the limited scalability due to the combination complexity. We opt for
a more controlled influence zone of potential connections so we can consider more connection types.

2.2. Connection Evaluations

Connection evaluations are a more conventional approach to reconstruct the topology,
but we believe, if implemented properly, it has very high potential. This framework, of which
intersections are the most popular, evaluates potential connections between neighboring segments and
connects them based on some evaluation criteria. For instance, Valero et al. [29] solve the intersections
of pre-segmented wall lines to create an enclosed area. They retain the first intersection which
scores well for single rooms with proper observations and so does Xiong et al. [30]. More recent
implementations are presented by Nikoohemat et al. [14] and Murali et al. [31]. Nikoohemat merges
parallel wallfaces into parametric volumes and intersects nearby volumes that lie within a certain
Euclidean distance. Murali et al., extend their Manhattan-world planes and employ an adjacency
graph based on the shortest Euclidean distance for the candidate selection. Neighboring walls that
are near orthogonal are connected after which they complete the wall topology by testing the walls
for Manhattan-world room layouts. An interesting method that could be considered as a connection
evaluation is the skeleton line (wall axes) evaluation method of Jung et al. [20]. They iteratively connect
adjacent wall axes by their shortest distance vector and condition these connections to not collide
with floor or ceiling grid cells. In our work, we adapt the adjacency graph and the incorporation of
ceiling and floor information but consider multiple connection types. This leads to a more informed
decision framework on which connection is best suited between multiple wall axes lines and increases
the applicability.

2.3. Shape Grammar

The use of shape grammar is becoming increasingly popular in reconstruction tasks.
It is a top-down method that reconstructs elements conform a set of grammar rules. In the case
of BIM, the IFC data structure along with common building logic is exploited to create instances
of walls, rooms, doors and so on. For instance, Khoshelham et al. [32], Ikehata et al. [33],
Becker et al. [11] and Tran et al. [34,35] all propose a grammar ontology for modeling indoor
environments. Khoshelham et al., iteratively place, connect and merge navigable cuboid shapes,
which is expanded by Tran et al., who propose additional rules for establishing adjacency, connectivity
and containment relations between the reconstructed objects. A useful property of shape grammar is
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that the topology is used as prior information for the reconstruction and thus is inherently present
in the model. Additionally, shape grammar can be used to predict the location of occluded rooms
as shown in Tran et al. [34]. Given the proper structure grammar and operations, this technique
has great potential for volumetric wall reconstruction. Especially the different types of connections
are appealing to conduct a better informed reconstruction. Typically, these approaches are designed
for room geometry and produce walls as a byproduct in the graph but this graph structure could
potentially be reversed to process wall geometry. However, the current state of these methods are
restricted to Manhattan-world scenes with orthogonal connections and straight walls. In this research,
we propose a more general reconstruction but we do adapt the connectivity rules to decide which
connection to chose to reconstruct the topology between multiple walls.

Surprisingly, multi-story reconstruction methods have only been proposed in the last several
years such as in the method of Ochmann et al. [13]. 2D methods do not have a choice since they
inherently make an abstraction of the dataset. However, 3D methods also generally pre-segment
the point cloud into separate stories or rooms. In our 3D method, we specifically process multiple
stories simultaneously since we strongly believe it contributes to the overall context and consistency of
the model.

3. Topology Reconstruction

In this section, the BIM wall topology reconstruction pipeline is presented. The proposed approach
focuses on the creation of a set of wall objects with the proper topological and hierarchical relations to
complete the walls of the BIM model. Based on the literature, a connection evaluation methodology
is proposed. This reduces the number of candidates compared to cell decompositions and offers
a more flexible reconstruction framework compared to shape grammar which also allows us to test
for multiple connection types. To the achievement of this goal, the following assumptions are made:
(1) The point clouds are stored in a logical coordinate system, with the z-axis equal to the “up” direction,
(2) the partial walls fit well to the IfcWallStandardCase definition and (3) the partial walls extracted
in previous processes are correct.

The topology reconstruction consists of four steps (Figure 3). First, the neighboring wall axes to
each wall end point are determined. Next, a set of potential connections is determined. In contrast
to the literature, four potential connections are considered: intersecting connections, orthogonal
connections, blended connections, which are a combination of the above, and direct connections,
which are defined by the shortest Euclidean distance between the boundaries of the wall axes.
Following, a unique set of connections is determined based on a cost function. In a final step, new
IfcWallStandardCase objects are created and joined with the partial wall geometry to form a more
logical BIM. Each step is discussed in detail below.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Wall topology reconstruction procedure of 3 interlocking walls. The reoccurring elements
in each figure are the partial wall axes L = {li, lj, lk} (black), their wall segments and the floor
segments (purple). (a) Neighborhood selection (b) Candidate connections (c) Candidate selection
(d) Wall reconstruction.

3.1. Preprocessing

The input of the pipeline is a set of partial LOD200 IfcWallStandardCase objects which represent
the visible parts of the point clouds’ wall observations (Figure 1a). These walls are reconstructed
from mesh geometry in previous research [36] and are vertical entities with a uniform wall thickness
without openings, protrusions or niches. The wall axes of these objects can be both straight edges,
curves or polylines. Additionally, we also use the mesh wall, ceiling and floor segments, which are
obtained from previous segmentation and classification procedures [16,17], to support the topology
reconstruction.

Prior to the topology reconstruction, a set of IfcBuildingStorey and IfcSpace objects are established
to support the proposed procedure. The IfcBuildingStorey objects are automatically created from
the clustered heights of the classified floor and roof segments of the mesh. The wall axes of the partial
walls are bound to these IfcBuildingStorey objects by their base and top constraints and are used to
retrieve neighboring wall axes. As such, the wall axes at different stories are processed in parallel,
making the method highly performant. Additionally, a set of IfcSpace placeholders is computed for
the room geometry. Each ceiling is paired with an underlying floor and their combined convex hull
geometry serves as the BREP representation of the IfcSpace placeholders.

3.2. Neighbor Selection

The first step of the topology adjustment is creating an adjacency graph between neighboring
partials wall axes based on the shortest Euclidean distance between the geometries. To determine
which wall axes to connect, a set of seed points P are established (Figure 3a). Each endpoint of a wall
axis li ∈ L is considered a seed pi ∈ P if it does not also belong to another wall axis. For a seed pi of
a wall axis li, the wall axes Ni are found so that each axes contains a point qj that lies within a user
defined threshold distance td of pi (Equation (1)). This Euclidean distance is set equal to the maximum
gap a wall is allowed to span over to make a connection and is considered application dependent.

P =
{

pi ∈ li
∣∣∣li ∈ L, lj ∈ L \ {li} : pi /∈ lj

}
Ni =

{
lj ∈ L \ {li}

∣∣∣d(pi, lj) ≤ tc

}
Qi =

{
qj ∈ lj

∣∣∣lj ∈ Ni : qj = argminqj

(
‖pi − qj‖

) } (1)

where d(pi, lj) is defined as the shortest Euclidean distance between pi and lj, and ‖pi − qj‖ as
the shortest Euclidean distance between pi and qj which is observed to construct an adjacency matrix.
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Qi is the set of the possible connection points of each pi and Ni is the set of curves to which Qi belongs.
Thus for every pi ∈ P, there is a Qi and Ni.

3.3. Candidate Connections

Given Ni and Qi, the four types of connections are established between pi and every qj ∈ Qi
(Equation (2)): the intersection between the wall axes li and lj (Figure 4a), the intersection between

the normals
−−→
n(pi) and

−−→
n(qj) at respectively pi and qj (Figure 4b), the combination of both (Figure 4c)

and finally also the direct connection with the shortest Euclidean distance −→piqj (Figure 4d).

Ui =
{

uij

∣∣∣∀lj ∈ Ni : uij = li ∩ lj

}
Vi =

{
vij

∣∣∣∀qj ∈ Qi : vij =
−−→
n(pi) ∩

−−→
n(qj)

}
Wi =

{
wij

∣∣∣∀lj ∈ Ni, ∀qj ∈ Qi : wij =
{

li ∩
−−→
n(qj), lj ∩

−−→
n(pi)

}} (2)

where Ui,Vi and Wi are the intersection points of respectively the functions themselves, their normals
at pi and qj and their combinations. We combine the connections in an upperstrict manner so that
the extension of li can also intersect with the normal of lj and vice versa. The result is a set of vector
pairs c ∈ Ci between pi and its neighboring wall axes (Equation (3)).

(a) (b)

(c) (d)

Figure 4. Potential connections in a configuration with 3 walls. The reoccurring elements in each figure
are the partial wall axes L = {li, lj, lk} (black), their wall segments and the floor segments (purple).
(a) Intersecting connection (b) Orthogonal connection (c) Blended connection (d) Direct connection.

c ∈ Ci =


Intersecting connection: cs =

{−−→piuij,
−−→qjuij

}
Orthogonal connection: co =

{−−→pivij,
−−→qjvij

}
Blended connection: cb =

{−−→piwij,
−−→qjwij

}
Direct connection: cd =

{−→piqj
} (3)
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where the first component of each vector pair (−−→piuij,
−−→pivij,

−−→piwij and −→piqj) are vectors that connect
li directly to lj or to an intersection point in between them. The second component of each vector
pair (−−→qjuij,

−−→qjvij and −−→qjwij) connects lj to the same intersection point. It is important to notice that
blended connections are mutually exclusive with intersecting and orthogonal connections. To increase
the method’s detection rate, the vector pairs are conditioned not to intersect, within a certain threshold,
with IfcSpace geometries R that are temporarily constructed from the 3D convex hull of ceiling
segments and their underlying floor segments. Also, the vector pairs may not intersect with wall mesh
segments SW that are directly derived from the point cloud. Finally, the combined length of the vector
pair c ≤ td. Orthogonal vector pairs are conditioned with a more strict threshold αtd as a wall axis can
be more reliably extended than orthogonally connected (Equation (4)).

C′i =
{

c ∈ Ci

∣∣∣‖c‖ = ‖c1‖+ ‖c2‖ : ‖c‖ ≤ td∧

‖co‖ ≤ αtd ∧ Intersect(c, SW, R) = ∅
} (4)

where C′i is the set of conditioned connections for each pi to Qi. The length of c = ‖c‖ is set equal to
the sum of its vector pair. co are the orthogonal vector pairs and α is the factor governing the orthogonal
distance threshold relative to the intersection threshold td. The result is a set of valid connections of
which only 1 type can be chosen.

3.4. Candidate Selection

For every C′i defined by P, the best suited connection ci to one of its Qi is determined by minimizing
the extrapolation of the wall axes that is not supported by observations (Figure 3c). As such we define
a cost function based on the connection’s length and type (Equation (5)).

C =

{
ci ∈ C′i

∣∣∣∀pi ∈ P : ci = argminc∈C′i

(
‖c‖
ωc

)}
C′ =

{
ci, cj ∈ C

∣∣∣ci ∪ cj

} (5)

where the weight of each connection type ωc = {ωi, ωo, ωb, ωd} is either set to a default value based
on the topology of a manually conceived model of a reference dataset, or by the user as it can be
application dependent. In general, the order of the connections (i.e., the order of decreasing weight) is
regular intersections, blended connections, orthogonal connections and finally the direct connections.
The resulting set C′ is conditioned to only contain distinct and non-overlapping members to respect
the topology of the structure.

3.5. Wall Adjustment

Given C′, a set of new IfcWallStandardCase objects W ′ is created with the wall parameters of
respectively wi and wj (Figure 3d). The wall axes (selected from C′), the base/top constraint hbase/htop

and the walltype τ of each wall is thus defined as follows (Equation (6)).

W ′ =



I: ws =
{

w(−−→piuij, hbase,i, htop,i, τi), w(−−→qjuij, hbase,j, htop,j, τj)
}

O: wo =
{

w(−−→pivij, hbase,i, htop,i, τi), w(−−→qjvij, hbase,j, htop,j, τj)
}

B: wb =
{

w(−−→piwij, hbase,i, htop,i, τi), w(−−→qjwij, hbase,j, htop,j, τj)
}

D: wd =
{

w(−→piqj, hbase,i, htop,i, τi)
}

(6)

where the direct connections inherit the parameters of li rather than lj. The result of the topology
reconstruction is an updated set of IfcWallStandardCase objects W = {W ∪W ′} that form a more
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logical model (Figure 3d). It is important to notice that this procedure can be repeated multiple times
to also allow walls to connect to newly created walls.

From the connected walls, IfcRelConnectsElements relationships and the parametric
representation of the connections are automatically defined upon exporting the data to the .ifc data
format. Additionally, IfcBuilding and IfcProject information is generated upon export to provide
the proper inheritance for the objects. We currently do not store the IfcSpace geometry as it serves
as a placeholder in our method.

4. Experiments

The algorithm is evaluated on the Stanford 2D-3D-Semantics dataset (2D-3D-S) created by
Armeni et al. [37]. In our experiments, we use regions 1, 2, 4 and 6 because these belong to two
multi-story buildings: Area 6 is on top of Area 1, and Area 4 on top of Area 2. Table 1 shows
the specifications of each dataset along with the process time for each operation. Each zone is
a realistic representation of the type of building that we are looking to reconstruct. The scenes are
littered with clutter and objects of no interest and the structure is occluded in many places. In our
experiments, we evaluate the algorithm’s performance to update a set of partial wall axes to properly
represent the walls of a multi-story building. To this end, the topology of both datasets was manually
reconstructed using the same partial walls. The automatically reconstructed connections are compared
to the manually created connections and the false positives are visually inspected for both models. Also,
we specifically investigate the performance of the topology reconstruction in a variety of realistic wall
configurations (including multiple interlocking walls). All experiments were conducted on a normal
laptop with an Intel R© CoreTM i7-4900MQ CPU @ 2.8 Ghz with 4 cores, 8 threads and 32 GB RAM.

The reconstruction of the topology is conducted with the following parameters, which are set
according to common building logic and by observing the training data. The distance threshold is set
to tc = 3m, equal to the maximum span width over which walls are allowed to connect. This value is
determined from observing the manual connections in the first dataset, which revealed that there is
a tradeoff between the span width and the number of false positives. The ratio between intersection
and orthogonal connection distance α is set to 0.33. As mentioned above, this is because orthogonal
connections are deemed less reliable to span wider gaps. The weights for the scores of the intersections,
the orthogonal connections, the blended connections and the direct connections are respectively set to
ωc = {ωs = 0.4, ωo = 0.2, ωb = 0.3, ωd = 0.1} based on an empirical study of the manually created
connections in dataset 1. It is important to notice that these parameters are made user-accessible so
they can be changed on the fly to improve the detection rate.

On average, the wall topology reconstruction computed a solution for dataset 1 (154 walls) and
dataset 2 (176 walls) in under 4 s. The ground truth C′ for dataset 1 (254) and dataset 2 (215) reveal
that on average 71% of the wall axes has to be connected on one or both ends, thus showcasing
the need for a topology reconstruction method. Our method succeeded in reconstructing 86% of
these connections with on average 76.8% recall and 92.2% precision which is very promising despite
the clutter in the environment and the complex wall configurations. Table 2 shows the potential
connections and final results of some more elaborate wall configurations in the dataset. We also added
some curved wall axes as this was not initially present in the Stanford dataset. The results show that
the correct connections are determined even in complex multi-wall configurations.

Despite the promising connection results, several errors still remain in the model. Table 3
showcases erroneous or absent wall connections. The most frequent errors are caused by faulty ceiling
or floor meshes. As connections are conditioned to not intersect with the IfcSpace objects based on
these geometries, floors or ceilings in the wrong location can obstruct correct connections from being
made. The same applies to wall segments as there are inevitably some meshing, classification and
clustering errors. This is clearly reflected by the lower recall values compared to the precision values.
To mitigate these problems, the user can choose to not incorporate the wall segments and rooms
intersection tests to improve the results. However, this might lead to more false positives which is
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undesirable. Another issue is the overshoot of some partial wall axes. The partial wall geometry is
computed up to the extend of the bounding box of the wall segments and thus this is prone to errors
in the clustering and classification procedure. As a result, overshooting wall axes can sometimes
produce awkward connections. To mitigate this problem, the user can choose to trim the wall axes up
to a certain threshold. However, this increases the confusion for potential connections as a portion of
a wall axis is missing.

Table 1. Combined Areas 1 + 6 and 2 + 4 of the Stanford 2D-3D-Semantics Data set (2D-3D-S) data set.
The data specifications and results are shown for both multi-story datasets.

Stanford 2D-3D-S Dataset 1 (Area 6 and 1) Dataset 2 (Area 4 and 2)

Input
#Points/#Mesh faces 85,265,271/357,090 90,301,358/563,565
#Wall segments 486 640
#Wall axes 154 176
#Connections 254 215

Topology
#Partial wall axes 154 176

Runtime 2.2 s 3.3 s
# Connections 219 183
% Recall 75.4 78.1
% Precision 91.5 92.8
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Table 2. Detailed topology reconstruction results of interlocking walls in complex scenarios.
Partial walls are shown in black, potential connection in green and final connections in red. The green
surfaces depict the IfcSpace geometry and the floor segments are shown in purple.

Successful Connections (Lines, Curves, Polylines)

2 walls

3 walls

n walls
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Table 3. Erroneous topology reconstruction results of interlocking walls in complex scenarios. Partial
walls are shown in black, potential connection in green and final connections in red. The green surfaces
depict the IfcSpace geometry and the floor segments are shown in purple.

Erroneous Connections (Lines, Curves, Polylines)

Room intersection

Overshooting wall axes

Segment intersection

5. Discussion

The presented methodology is an alternative to the 2D and 3D cell decompositions and shape
grammar that currently dominate the literature. In this section, we discuss the pros and cons of
our method compared the state of the art. First of all, an important difference to the literature is



Remote Sens. 2020, 12, 1800 14 of 17

the extent to which is relied upon Manhattan-world scene assumptions to process the remote sensing
inputs. Our method is not bound by these assumptions other than that the scene should represent
a building in a logical coordinate system. This is an important advantage over the shape grammar
methods such as presented by Tran et al. [12] who struggle with more complex scenes. However,
we do still rely on the verticality of the walls since we use IfcWallStandardCase objects. A second
major difference is the room-based approach, which is common in literature, versus the wall-based
approach that we present to complete the structure’s geometry. Both approaches can produce proper
wall geometry but room-based approaches might outperform our method in structures with well
defined rooms while our method will have the upper hand in more complex scenarios. A third aspect
is the combination complexity of the presented method. Cell decompositions are generally bound by
a combination complexity of O((n− 1)!) which does not only introduce more confusion in the decision
framework, but can also lead to faulty connections. Current algorithms typically overcome this by only
considering the first intersection which is not always the best solution. In contrast, our method only
has a combination complexity of O(nk) with k the number of potential neighbors which is significantly
more efficient in larger datasets. Additionally, this allows us to test for multiple types of connections
which is essential to reconstructing a more complete BIM model.

In addition to the existing literature, it is important to discuss the limitations of the method.
First of all, more complicated wall configurations can have multiple plausible connection solutions
of which we prefer intersections and the least intervening connections. This fits well for the majority
of the scenes but without actual building knowledge, this is not a certainty. As the algorithm is
highly performant (avg. 2.8 s for both buildings), we made the weights of the connections accessible
by the user so the weights can be dynamically adjusted to select the best fit connections. A second
shortcoming is the method’s dependency on nearby ceilings, floors and walls. The method’s reliability
can be compromised in the absence of these geometries. While the prioritization of the intersection
connections is generally the correct choice, the reliability of the method decreases since there is
no certainty about the connection type in these configurations. We therefore leave the criteria for
the adjacency up to the user who can heuristically determine over which distance a wall axis may be
extrapolated to connect to a neighboring wall. This is closely linked to the assumption of function
continuity for the extrapolation of wall axes. As the distance threshold increases, the extrapolation of
functions (especially for arcs and polylines) becomes increasingly unreliable. In the case of severely
occluded point clouds of meshes, the user is encouraged to manually validate the connections as they
are error prone due to the lack of observations.

Overall, there is high applicability of this method in the field of processing remote sensing
inputs. By enriching the raw metric measurements with semantics such as wall information and
reconstructing the topology, the data from Lidar or photogrammetric data acquisition system gets ever
more intelligent. This in turn supports the data acquisition itself as prior information has proven to
lead to more successful data acquisition procedures for buildings and other structures. For instance,
techniques such as next-best-scan [38] and occupancy grid mapping for navigation [39] highly benefit
from building topology, enclosed spaces and the whereabouts of certain objects. As such, the future
works should include the feedback of the BIM information back to the data acquisition systems.

6. Conclusions and Future Work

This paper presents a novel framework to create a logical BIM model in an unsupervised manner.
The method enriches preprocessed remote sensing inputs with the topology of Building Information
Modeling conform the IFC standard. The goal of the research is to compute a more complete parametric
object representation from the raw point clouds of existing buildings that do not have a preexisting
BIM. The presented procedure is the second step in a two-step process that classifies the point clouds,
assign a parametric geometry to them in an unsupervised manner and afterwards adjusts these entities
to reconstruct the topology. The main contributions of this method are its flexibility to deal with
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multiple IfcWallStandardCase definitions i.e., straight, curved and polyline-based walls, the multiple
types of connection candidates that are considered and its ability to process multi-story buildings.

The method is tested on the Stanford 2D-3D-Semantics dataset (2D-3D-S). Areas 1 + 6 and
Area 2 + 4 were successfully reconstructed and topologically adjusted using the proposed method.
The detailed analysis of the computed connections reveals that the method is indeed capable of
creating proper wall geometry in an unsupervised manner of various complex wall configurations.
The experiments indicate that the used method is a promising topology reconstruction framework
and has several functionalities that extend the current state of the art. The proposed wall adjustments
are similar to what human modelers would prefer and the method deals with complex curves and
configurations which can significantly speed up the manual modeling process. While this is a promising
result, several issues still remain. In zones with limited observations and where manual modelers also
struggle, the method underperforms. Also, walls that do not comply with the IfcWallStandardCase
(wall axes) definition are error prone. A manual operator should therefore still validate the model and
some manual adjustments may be in order to complete the BIM.

In future work, we will look to expand the applicability of the research. First off all, we will
look to integrate a feedback loop to further improve the enrichment of remote sensing inputs. Also,
we will strengthen our approach by comparing it to closely related works such as Ochmann et al. [13],
Tran et al. [12] and Nikoohemat et al. [14]. Once the wall geometry is established, openings can be
detected for the integration of window and door frames. A possible extension towards non-uniform
thickness walls is the detection of voids during the wall reconstruction. This detection resembles
opening detection and can be used to reconstruct the walls more accurately.
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