Mapping Long-Term Spatiotemporal Dynamics of Pen Aquaculture in a Shallow Lake: Less Aquaculture Coming along Better Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.2.1. Landsat Image Data
2.2.2. Water Quality Data
2.3. Methods
2.3.1. Feature Image Selection for Extracting Pen Aquaculture
2.3.2. Extraction of Pen Aquaculture Information
- Image enhancement. Image enhancement is a process of adjusting the digital images to make a target (i.e., pen aquaculture area) easier to be identified. There are two steps, including image normalization and exponential GT, to enhance the image and highlight the pen facility [42]. The formula is as follows:
- Image segmentation. It was critical to automatically acquire an appropriate threshold for segmenting an image and identifying a target. Considering noise in the image after GT processing, it was relatively difficult to obtain an appropriate threshold for segmenting an image. In this study, a DWT was applied to remove noise and then to determine the corresponding thresholds [43,44]. The DWT transform can be expressed as follows:
- 3.
- Feature extraction. The pen facility has a similar spectral feature with aquatic vegetation, but it shows a regular shape and periodic spatial arrangement. In practice, an FFT proved to be an effective tool in extracting the time and spatial change frequency of the targets [20]. Therefore, in this study, we used a 2-dimensional discrete FFT (FFT2) to exact the features of the water, aquatic vegetation and different angles of a pen facility. The FFT2 formula is shown as follows:
- 4.
- Target identification. A kNN rule, one of the classic and top-performing classifiers, was used to identify the pen aquaculture area. It achieves a classification by calculating the similarity between the test sample (pixel) and all the training samples based on a discrimination function [46]. The similarity can be measured by Euclidean distances [47,48]. The discrimination function is as follows:
2.3.3. Validation of Extracting Result
3. Results
3.1. Extraction of Pen Aquaculture Area and Validation
3.2. Spatiotemporal Changes in Pen Aquaculture from 1992 to 2016
3.3. Long-Term Trends in Water Quality and Correlations with the Percentage of Pen Aquaculture
4. Discussion
4.1. Advantages and Uncertainty of the Proposed Approach
4.2. Main Factors Affecting Water Quality in Lake Yangcheng
4.3. Effects of Pen Aqauculture Govermance
5. Conclusions
- (1)
- Given the high profit of CMC and local government measures, the pen aquaculture experienced five important stages, including Stage I (before 1993) without pen aquaculture, Stage II (1993−2001) with a sharp increase, Stage III (2001−2007) slightly decreasing, Stage IV (2007−2011) declining dramatically and Stage V (2011−2016) a relatively stable pen aquaculture.
- (2)
- The percentage of pen aquaculture area exhibited significant positive correlations with NH3-N, TN, Chla, BOD, CODMn and TP, but significant negative correlations with SDD and DO.
- (3)
- The government regulations regarding controlling and removing pen aquaculture were effective, and the WQ has been significantly improved since 2008.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Month | Day | Sensor | Year | Month | Day | Sensor |
---|---|---|---|---|---|---|---|
1992 | 4 | 20 | TM | 2005 | 4 | 8 | TM |
1993 | 5 | 25 | TM | 2006 | 5 | 29 | TM |
1994 | 5 | 12 | TM | 2007 | 4 | 27 | TM |
1995 | 5 | 8 | TM | 2008 | 5 | 2 | TM |
1996 | 5 | 1 | TM | 2009 | 5 | 29 | ETM |
1997 | 5 | 4 | TM | 2010 | 5 | 24 | TM |
1998 | 4 | 21 | TM | 2011 | 4 | 25 | TM |
2000 | 5 | 20 | ETM | 2012 | 5 | 15 | HJ |
2001 | 4 | 13 | TM | 2013 | 4 | 14 | OLI |
2002 | 5 | 26 | ETM | 2014 | 4 | 23 | HJ |
2003 | 5 | 13 | TM | 2015 | 5 | 22 | OLI |
2004 | 5 | 23 | TM | 2016 | 4 | 22 | OLI |
References
- Ni, Z.; Wu, X.; Li, L.; Lv, Z.; Zhang, Z.; Hao, A.; Iseri, Y.; Kuba, T.; Zhang, X.; Wu, W.-M.; et al. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. J. Clean. Prod. 2018, 172, 2256–2265. [Google Scholar] [CrossRef]
- Song, X.; Wenbing, X.; Sun, L.; Guo, P.; Yang, C.; Gu, H. The Spatial and Temporal Changes of Nutrients of Net-pen Aquaculture Area in Yangcheng Lake and its Water Quality Evaluation. J. Hydroecol. 2010, 6. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M.; Turchini, G.M.; De Silva, S.S. Responsible aquaculture and trophic level implications to global fish supply. Rev. Fish. Sci. 2009, 18, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Talbot, C.; Hole, R. Fish diets and the control of eutrophication resulting from aquaculture. J. Appl. Ichthyol. 1994, 10, 258–270. [Google Scholar] [CrossRef]
- Axler, R.; Larsen, C.; Tikkanen, C.; McDonald, M.; Yokom, S.; Aas, P. Water quality issues associated with aquaculture: A case study in mine pit lakes. Water Environ. Res. 1996, 68, 995–1011. [Google Scholar] [CrossRef]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-aquaculture Waters. Water Air Soil Pollut. 2010, 219, 157–174. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Brotto, A.C.; Khanal, S.K. Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour. Technol. 2013, 130, 314–320. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total. Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, X.; Wan, Y.; Li, X.J.G.J. Effects of environmental factors on anammox bacterial community structure in sediments of a freshwater aquaculture farm, Yangcheng Lake. Geomicrobiol. J. 2016, 33, 479–487. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Liu, Q.; Hu, Z.; Sun, Y.; Peng, Z.; Chen, L. Spatial variations of macrozoobenthos and sediment nutrients in Lake Yangcheng: Emphasis on effect of pen culture of Chinese mitten crab. J. Environ. Sci. 2015, 37, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Ning, B. Development and application of crab culture in the development of Chinese mitten crab industry of Shanghai. Aquac. Res. 2019, 50, 367–375. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, L.; Liu, J.; Li, Z.; Xie, S.; De Silva, S.S. Freshwater aquaculture in PR China: Trends and prospects. Rev. Aquac. 2015, 7, 283–302. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Q.; Peng, Z.; Hu, Z.; Xue, J.; Wang, W. Rotifer community structure and assessment of water quality in Yangcheng Lake. Chin. J. Oceanol. Limnol. 2012, 30, 47–58. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, Y.; Fu, L.; Fu, Y.; Li, B.; Jiao, B. Aquaculture Industry in China: Current State, Challenges, and Outlook. Rev. Fish. Sci. 2011, 19, 187–200. [Google Scholar] [CrossRef]
- Liu, H.; Fu, C.; Ding, G.; Fang, Y.; Yun, Y.; Norra, S. Effects of hairy crab breeding on drinking water quality in a shallow lake. Sci. Total Environ. 2019, 662, 48–56. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Lian, Y.; Du, X.; Zhang, S.; Yuan, J.; Liu, J.; De Silva, S.S.J.A. Farming system transformation yields significant reduction in nutrient loading: Case study of Hongze Lake, Yangtze River Basin, China. Aquaculture 2016, 457, 109–117. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Gusmawati, N.; Soulard, B.; Selmaoui-Folcher, N.; Proisy, C.; Mustafa, A.; Le Gendre, R.; Laugier, T.; Lemonnier, H. Surveying shrimp aquaculture pond activity using multitemporal VHSR satellite images—Case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Huang, W.; Fu, B. Remote Sensing for Coastal Area Management in China. Coast. Manag. 2002, 30, 271–276. [Google Scholar] [CrossRef]
- Pu, R.; Bell, S.; Meyer, C.; Baggett, L.; Zhao, Y. Mapping and assessing seagrass along the western coast of Florida using Landsat TM and EO-1 ALI/Hyperion imagery. Estuar. Coast. Shelf Sci. 2012, 115, 234–245. [Google Scholar] [CrossRef]
- Luo, J.; Duan, H.; Ma, R.; Jin, X.; Li, F.; Hu, W.; Shi, K.; Huang, W. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Villa, P.; Pinardi, M.; Bolpagni, R.; Gillier, J.-M.; Zinke, P.; Nedelcuţ, F.; Bresciani, M. Assessing macrophyte seasonal dynamics using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018, 216, 230–244. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [Google Scholar] [CrossRef]
- Shi, T.; Zou, Z.; Shi, Z.; Chu, J.; Zhao, J.; Gao, N.; Zhang, N.; Zhu, X. Mudflat aquaculture labeling for infrared remote sensing images via a scanning convolutional network. Infrared Phys. Technol. 2018, 94, 16–22. [Google Scholar] [CrossRef]
- Zheng, Y.; Duarte, C.M.; Chen, J.; Li, D.; Lou, Z.; Wu, J. Remote sensing mapping of macroalgal farms by modifying thresholds in the classification tree. Geocarto Int. 2018, 34, 1098–1108. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Murata, H.; Komatsu, T.; Yonezawa, C. Detection and discrimination of aquacultural facilities in Matsushima Bay, Japan, for integrated coastal zone management and marine spatial planning using full polarimetric L-band airborne synthetic aperture radar. Int. J. Remote Sens. 2019, 40, 5141–5157. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Stiller, D.; Ottinger, M.; Leinenkugel, P. Spatio-Temporal Patterns of Coastal Aquaculture Derived from Sentinel-1 Time Series Data and the Full Landsat Archive. Remote Sens. 2019, 11, 1707. [Google Scholar] [CrossRef] [Green Version]
- van der Werff, H.M.A.; van der Meer, F.D. Shape-based classification of spectrally identical objects. ISPRS J. Photogramm. Remote Sens. 2008, 63, 251–258. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of Coastline in Aquaculture Coast from Multispectral Remote Sensing Images: Object-Based Region Growing Integrating Edge Detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef] [Green Version]
- Virdis, S.G. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: A case study of Tam Giang-Cau Hai Lagoon, Vietnam. Environ. Monit. Assess. 2014, 186, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Loberternos, R.A.; Porpetcho, W.P.; Graciosa, J.C.A.; Violanda, R.R.; Diola, A.G.; Dy, D.T.; Otadoy, R.E.S. An Object-Based Workflow Developed to Extract Aquaculture Ponds from Airborne Lidar Data: A Test Case in Central Visayas, Philippines. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1147–1152. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Wang, A.; Chen, J. Object- and pixel-based classifications of macroalgae farming area with high spatial resolution imagery. Geocarto Int. 2017, 33, 1048–1063. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Peng, Z.; Zeng, Y.; Rinke, K. Predicting Lake Eutrophication Responses to Multiple Scenarios of Lake Restoration: A Three-Dimensional Modeling Approach. Water 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W.J.E.I. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Kronvang, B.; Jeppesen, E.; Conley, D.J.; Søndergaard, M.; Larsen, S.E.; Ovesen, N.B.; Carstensen, J. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 2005, 304, 274–288. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Maini, R.; Aggarwal, H.J.C.S. A Comprehensive Review of Image Enhancement Techniques. Comput. Sci. 2010, 8–13. [Google Scholar]
- Antoine, J.-P.; Carrette, P.; Murenzi, R.; Piette, B. Image analysis with two-dimensional continuous wavelet transform. Signal Process. 1993, 31, 241–272. [Google Scholar] [CrossRef]
- Xiong, C.; Tian, J.; Liu, J. Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme. IEEE Trans. Image Process. 2007, 16, 607–614. [Google Scholar] [CrossRef]
- Lai, C.-C.; Tsai, C.-C. Digital Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition. IEEE Trans. Instrum. Meas. 2010, 59, 3060–3063. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Wei, S.; Gao, J.; Wang, D.; Zhang, K. Impact of aquaculture on eutrophication in Changshou Reservoir. Chin. J. Geochem. 2006, 25, 90–96. [Google Scholar] [CrossRef]
- Ma, L.; Crawford, M.M.; Tian, J. Local Manifold Learning-Based k-Nearest-Neighbor for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Q. Hierarchical Distance Metric Learning for Large Margin Nearest Neighbor Classification. Int. J. Pattern Recognit. Artif. Intell. 2012, 25, 1073–1087. [Google Scholar] [CrossRef]
- Wang, J.; Sui, L.; Yang, X.; Wang, Z.; Liu, Y.; Kang, J.; Lu, C.; Yang, F.; Liu, B. Extracting Coastal Raft Aquaculture Data from Landsat 8 OLI Imagery. Sensors 2019, 19, 1221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lv, Z.; Shi, W. Object-Based Spatial Feature for Classification of Very High Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1572–1576. [Google Scholar] [CrossRef]
- Fu, Y.; Deng, J.; Ye, Z.; Gan, M.; Wang, K.; Wu, J.; Yang, W.; Xiao, G. Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features. Sustainability 2019, 11, 637. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Ma, R.; Duan, H.; Hu, W.; Zhu, J.; Huang, W.; Lin, C. A New Method for Modifying Thresholds in the Classification of Tree Models for Mapping Aquatic Vegetation in Taihu Lake with Satellite Images. Remote Sens. 2014, 6, 7442–7462. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liu, Q.; Tang, G.; Zhai, X. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int. J. Remote Sens. 2015, 36, 618–644. [Google Scholar] [CrossRef]
- Corner, B.R.; Narayanan, R.M.; Reichenbach, S.E. Noise estimation in remote sensing imagery using data masking. Int. J. Remote Sens. 2010, 24, 689–702. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Zhang, M.; Zheng, F.; Du, S. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Sci. Total Environ. 2011, 412–413, 154–161. [Google Scholar] [CrossRef] [PubMed]
SB | SA | SC | SO | Sx |
---|---|---|---|---|
29.95 km2 | 33.44 km2 | 5.59 km2 | 2.11 km2 | 27.84 km2 |
Overall accuracy = 92.95%; EC = 16.72%; EO = 7.05%. |
Year | Reference Area (km2) | Monitoring Area (km2) | Relative Difference (%) |
---|---|---|---|
2000 | 92 (Ding et al. 2015) | 89.79 | −2.46 |
2001 | 95 (Tang 2010) | 94.37 | −0.67 |
2002 | 91 (Ji et al. 2018) | 95.03 | 4.24 |
2015 | 31 (Huang et al. 2017) | 32.05 | 3.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Pu, R.; Ma, R.; Wang, X.; Lai, X.; Mao, Z.; Zhang, L.; Peng, Z.; Sun, Z. Mapping Long-Term Spatiotemporal Dynamics of Pen Aquaculture in a Shallow Lake: Less Aquaculture Coming along Better Water Quality. Remote Sens. 2020, 12, 1866. https://doi.org/10.3390/rs12111866
Luo J, Pu R, Ma R, Wang X, Lai X, Mao Z, Zhang L, Peng Z, Sun Z. Mapping Long-Term Spatiotemporal Dynamics of Pen Aquaculture in a Shallow Lake: Less Aquaculture Coming along Better Water Quality. Remote Sensing. 2020; 12(11):1866. https://doi.org/10.3390/rs12111866
Chicago/Turabian StyleLuo, Juhua, Ruiliang Pu, Ronghua Ma, Xiaolong Wang, Xijun Lai, Zhigang Mao, Li Zhang, Zhaoliang Peng, and Zhe Sun. 2020. "Mapping Long-Term Spatiotemporal Dynamics of Pen Aquaculture in a Shallow Lake: Less Aquaculture Coming along Better Water Quality" Remote Sensing 12, no. 11: 1866. https://doi.org/10.3390/rs12111866
APA StyleLuo, J., Pu, R., Ma, R., Wang, X., Lai, X., Mao, Z., Zhang, L., Peng, Z., & Sun, Z. (2020). Mapping Long-Term Spatiotemporal Dynamics of Pen Aquaculture in a Shallow Lake: Less Aquaculture Coming along Better Water Quality. Remote Sensing, 12(11), 1866. https://doi.org/10.3390/rs12111866