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Abstract: Rapid flood mapping is crucial in hazard evaluation and forecasting, especially in the early stage
of hazards. Synthetic aperture radar (SAR) images are able to penetrate clouds and heavy rainfall, which
is of special importance for flood mapping. However, change detection is a key part and the threshold
selection is very complex in flood mapping with SAR. In this paper, a novel approach is proposed to
rapidly map flood regions and estimate the flood degree, avoiding the critical step of thresholding.
It converts the change detection of thresholds to land cover backscatter classifications. Sentinel-1 SAR
images are used to get the land cover backscatter classifications with the help of Sentinel-2 optical images
using a supervised classifier. A pixel-based change detection is used for change detection. Backscatter
characteristics and variation rules of different ground objects are essential prior knowledge for flood
analysis. SAR image classifications of pre-flood and flooding periods both take the same input to make
sense of the change detection between them. This method avoids the inaccuracy caused by a single
threshold. A case study in Shouguang is tested by this new method, which is compared with the flood
map extracted by Otsu thresholding and normalized difference water index (NDWI) methods. The results
show that our approach can identify the flood beneath vegetation well. Moreover, all required data and
data processing are simple, so it can be popularized in rapid flooding mapping in early disaster relief.

Keywords: flood extent; SAR; change detection; backscatter characteristics; supervised classifier

1. Introduction

Flooding is one of the most frequent and destructive natural hazards, which often causes property
and life loss [1,2]. Satellite remote sensing plays an important role in all phases of hazard monitoring and
management [3]. The traditional remote sensing of flood monitoring is still difficult due to the lack of data
with sufficient acquisition frequency and timeliness [4], while synthetic aperture radar (SAR) systems offer
the possibility to operate in day and night time [5]. Optical satellite images contain rich information in their
bands [6], which have a preferable result in the classification of ground cover [7]. However, optical satellite
images are vulnerable to weather conditions, and have poor quality during the period of disaster because
it is always cloudy and rainy during that time. SAR images are independent of weather conditions, so they
are the best choice under cloudy and rainy weather. The digital number (DN) values of SAR images
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show the backscatter characteristics of ground objects, but this has a bad result in the classification of
ground cover due to its inadequacy of information [8]. However, the change in backscatter coefficients
can sensitively reveal the change in backscatter properties and the state of ground objects. In particular,
the backscatter coefficient increases due to flooding in all SAR bands over vegetated areas [9].

There were several studies on flood mapping using SAR images: (1) the threshold of SAR backscattering
values; (2) RGB composition; and (3) classification techniques. The threshold selection of SAR backscattering
values in flood mapping can be divided into two categories: (a) A single threshold value is used to separate
flood and non-flood regions. The change detection of water bodies during pre-flood and flooding periods
is normally used. Li et al. [7] proposed a two-step automatic change detection chain for rapid flood
mapping based on Sentinel-1 SAR images, which only dealt with the negative change caused by open
water in rural areas. This approach can only detect completely inundated areas, but cannot identify slightly
inundated areas. A harmonic model-based approach and the alternative change detection were proposed
to derive the flood extent and the Otsu thresholding method was applied in the change image to determine
a threshold value [10]. However, a single threshold to distinguish flood and non-flood regions was not
comprehensive enough to extract the changes caused by flooding because the backscatter values changed
significantly; (b) Multiple threshold values are used to separate flood and non-flood regions with some
proposed comprehensive models to select different thresholds for different land covers. Long et al. [11]
proposed an approach for flood change detection and threshold selection to delineate the extent of flooding
for the Chobe floodplain in the Caprivi region of Namibia, which can identify flooding in vegetation,
but only two thresholds were used to extract inundated area and inundated vegetation. Pulvirenti et al. [12]
used SAR data to map floods in agricultural and urban environments with interferometric coherence,
a digital elevation model (DEM), and the land cover map as auxiliary data. A threshold selection is always
complex and accompanied by algorithm innovation, which requires a good knowledge of mathematics.

A few researchers used classifiers with SAR images to extract inundated areas to avoid the critical
step of thresholding. Amitrano et al. [8] exploited Sentinel-1 ground range detected (GRD) products with
an unsupervised method for rapid flood mapping, and classic co-occurrence measurements combined
with amplitude information were used for a fuzzy classification system without a threshold selection.
Benoudjit et al. [13] proposed an approach to rapidly map the flood extent using a supervised classifier and
both a pre-event SAR image and an optical Sentinel-2 image were used to train the supervised classifier to
identify the inundation from the flooded SAR image. It can be processed in an automatic way, but only
identified the completely inundated regions. Change detection using RGB composition is also a common
approach. Dual polarized Sentinel-1 SAR images were used to map and monitor flooding in Kaziranga
National Park [14]. Francisco et al. [15] used RGB composition and thresholding to monitor flooding with
Sentinel-1 data in the Ebro River. The approach is based on the RGB color model, which processes the data
to suit the model and get the best result, while this process is always subjective.

Although numerous efforts on flood mapping using SAR images were obtained, it was still challenging
to use the Sentinel-1 SAR images as a powerful tool for flood mapping, especially for flood degree evaluation,
which is an unsolved problem in current studies. SAR images show the backscatter characteristics of
different ground objects. Each object has different backscatter characteristics in different inundated states,
and the backscatter characteristics of one object in a certain flooding state is equal to another object’s
backscatter characteristics in the normal state (not inundated). If the SAR images of pre-flood and flooding
periods are both classified according to the same rule, the ground objects’ normal backscatter characteristics
and the change of classes in the same position between two SAR images show the change in backscatter.
Flood information can be extracted from the change with the variation rules of different ground objects,
meaning that we can convert the change detection of ground objects’ backscatter to the change detection
of land cover classification. In this paper, a novel approach is proposed to extract flooding regions
and evaluate flooding extent from Sentinel-1 SAR images with the help of optical Sentinel-2 images,
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which converts the change detection of thresholding to backscatter classifications. The approach focuses on
pixel-based change detection and a supervised classifier. A supervised classifier is used to ensure the SAR
image classifications based on the same rule. Instead of other information, such as texture information,
the optical Sentinel-2 images are used to improve the accuracy of land cover classification. In order to
compare our approach with other traditional approaches, the Otsu thresholding method based on SAR
images and the NDWI index method based on optical images are also applied in some cases. In Section 2,
the study area and the data are described, the detailed methodology is described in Section 3, a case study
and the results are presented in Section 4, and finally conclusions are given in Section 5.

2. Study Area and Data

2.1. Study Area

Shouguang City was selected as the study area (see Figure 1) because of its flooding history in summer
over the past few years. It is famous and important as intensive vegetable cultivation areas located in
Shandong Province, China. Its terrain is flat with many rivers, and Mihe River flows through the whole
area. There are several reservoirs at its upstream. The average annual precipitation in Shouguang is about
593.8 mm, and the seasonal precipitation is highly concentrated in summer.
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Figure 1. The studied area with Sentinel-2 composite. (a) Sentinel-2 composite (bands 4, 3, and 2 assigned
to the red, green and blue) in the study area with a 10-meter resolution; (b) Sentinel-2 composite (bands 4, 3,
and 2 assigned to the red, green, and blue) in Shouguang City.

Shouguang suffered a severe rainstorm during Typhoon Rumbia in August 2018. The rainstorm
started on 17 August 2018 and became heaviest on 20 August 2018 due to Typhoon Rumbia. The water
discharge from upstream reservoirs made the flood heavier for a longer period. The water discharged
along the Mihe River to the Bohai Sea, so riverbank villages were seriously damaged. The case study
is tested in Kouzi Village in Shouguang City, which was one of the worst-hit areas. The village mainly
consists of farmland and residential areas, and there is also a river and two intersecting major roads.
The farmland can be broken down into farmland without plastic sheds and farmland with plastic sheds.
There are mainly buildings and pathways in the residential areas. Therefore, there are five categories
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for classification: water bodies, roads, constructions, farmland without plastic sheds, and farmland with
plastic sheds.

2.2. Data

Sentinel-1 data are free and have high resolution, which provide level 1 ground range detected
(GRD) products. GRD products consist of focused SAR data that have been detected, multi-looked,
and projected to ground range using an Earth ellipsoid model. GRD products are widely used in studying
the backscattering of land cover and monitoring water bodies [16]. Different polarizations observed by
Sentinel-1 show different detection sensitivities to the land surface [17,18]. Vertical-Horizontal polarization
(VH) has a stronger return over areas with volume scattering and Vertical-Vertical polarization (VV) has
stronger returns specular scattering. Therefore, both VV and VH are used to enrich the band information.
A radar system with multiple polarizations provides more information on inundated vegetation areas than
single-polarized SAR. Backscatter is generally lower for cross-polarization because the depolarization does
not result from ideal corner reflectors.

The flood started on 17 August 2018 and became heaviest on 20 August 2018 and then receded
gradually during the next week. The available GRD products on 20 August and 26 August 2018 were
downloaded as the flooding period images. GRD products on 2 August 2018 were the nearest available
images without rain during the 12 h before imaging. So the GRD products of Sentinel-1 on 2 August 2018
were downloaded as the pre-flood period images. To get the performances of rapid flooding mapping and
evaluation during different rainfalls, the GRD products of Sentinel-1 on 21 July 2018 and 27 July 2018 were
also downloaded for comparative tests. More detailed information about the images is shown in Table 1.

Table 1. Information of Sentinel-1 ground range detected (GRD) products.

Product Time Polarization

S1A_IW_GRDH_1SDV_20180721T100424_20180721T100449_022891_027B8F_9CD7 2018/07/21, 10:04:24 VV + VH

S1A_IW_GRDH_1SDV_20180721T100449_20180721T100514_022891_027B8F_F983 2018/07/21, 10:04:49 VV + VH

S1B_IW_GRDH_1SDV_20180727T220424_20180727T220449_012002_01618E_3530 2018/07/27, 22:04:25 VV + VH

S1A_IW_GRDH_1SDV_20180802T100449_20180802T100514_023066_028115_88D7 2018/08/02, 10:04:49 VV + VH

S1A_IW_GRDH_1SDV_20180802T100424_20180802T100449_023066_028115_1A62 2018/08/02, 10:04:24 VV + VH

S1B_IW_SLC__1SDV_20180820T220420_20180820T220448_012352_016C5A_AA0A 2018/08/20, 22:04:20 VV + VH

S1A_IW_SLC__1SDV_20180826T100425_20180826T100452_023416_028C52_1376 2018/08/26, 10:04:25 VV + VH

Sentinel-2 contributes to a variety of services that rely on multispectral high-spatial resolution optical
observations over global terrestrial surfaces, which provides optical images with high resolution. Sentinel-2
provides 12 bands, including: coastal aerosol, blue, green, red, four vegetation red edge bands, near infrared
(NIR), water vapor, and three short-wave infrared (SWIR) bands. Only blue, green, and red bands are used
in this paper for land cover classification. Sentinel-2 images on 10 August 2018 are downloaded, which are
of high quality in a non-flooding condition. Their full information is shown in Table 2.

Table 2. Information of Sentinel-2 images.

Product Time Spatial Resolution

S2B_MSIL1C_20180810T024539_N0206_R132_T50SPF_20180810T053506 2018/08/10,02:45:39 10 m

S2B_MSIL1C_20180810T024539_N0206_R132_T50SPG_20180810T053506 2018/08/10,02:45:39 10 m

Images from Planet are used here for comparison. Planet is also called Planet Labs, which is a
satellite group consisting of many micro-satellites. Its products have high coverage rates, standard spectral
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resolution, high spatial resolution, and high time resolution. It provides four bands: red, green, blue,
and NIR. The normalized difference water index (NDWI) is used here to extract the inundated area.
Three Planet images were downloaded, which were the nearest to the SAR image date. Their full
information is shown in Table 3.

Table 3. Information of three Planet images.

Product Time Spatial Resolution Bands

20180820_022056_0f12 2018/08/20,02:20:56 3 m Red, green, blue, NIR
20180821_021924_1003 2018/08/21,02:19:24 3 m Red, green, blue, NIR
20180827_022047_1006 2018/08/27,02:20:47 3 m Red, green, blue, NIR

3. Methodology

3.1. Method of Flood Mapping

The core idea of this methodology is the supervised classifier and change detection. The same
supervised classifier and classification rules are applied in both SAR images of pre-flood and flooding
periods, so the variations of backscatter can be extracted from the change detection results of the two SAR
image classifications. Taking the variation rule of different objects as a criterion, the flood extent can be
obtained from the change detection results. The detailed steps are shown below and the flowchart of the
entire processing chain is presented in Figure 2.

(1) Determine the land cover categories in the study area;
(2) Download high-quality optical images and GRD images of the pre-flood and flooding period whose

date is closest to the flood event. The dates of these two images may be different but must contain
a flood;

(3) Get the land cover classification based on the optical images with a supervised classification method,
which is called normal optical classification;

(4) Combine the GRD images of the pre-flood period with the normal optical classification into a layer
group, and get the backscatter classification of the pre-flood period with a supervised method based
on the layer group;

(5) Combine the GRD images of the flooding period with the normal optical classification into a layer
group, and get the backscatter classification of the flooding period with a supervised method based
on the layer group;

(6) Compute the average backscatter coefficient of each category based on the backscatter classification
of the pre-flood period and arrange them in ascending order, which is one of the pieces of prior
knowledge for flood mapping and evaluation;

(7) The number of each category is the nth power of two and the two backscatter classification results are
remarked in number according to the order of their average backscatter;

(8) The other piece of prior knowledge is the backscatter variation rules of different classes;
(9) Detect change information between the two backscatter classification results with the

pixel-based method;
(10) Determine the flood extent according to the prior knowledge in steps (6) and (8).
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Sentinel-2 images.

3.1.1. SAR Image Processing

GRD products provide amplitude and intensity bands with both VV and VH. The images are processed
into sigma bands during radiometric, calibration, geometric, and speckle filtering. Because the change
detection requires that all the layers are normalized, GRD products are finally processed into Gamma
bands. Xin et al. [19] established several statistical models about the power transformation of SAR images
to get some certain distributions, which was independent of image distribution. The Gamma index is
processed in Equation (1) to show the backscatter better and avoid noise information caused by a negative
number, and the processed Gamma index is named S_Gamma.

S_Gamma =
√

100×Gamma, (1)

where Gamma refers to Gamma band.
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3.1.2. Supervised Classification

There are three steps involving a classifier. The first is to get the land cover classification based on
optical images, and the next two are SAR image classifications. The optical images are used to get the initial
land cover classification, which is called normal optical image classification. Three bands (red, green and
blue) of Sentinel-2 are three predictors for this classification. Sentinel-1 SAR images are used to get the
backscatter classification of the pre-flood and flooding periods. The processed S_Gamma bands of both VV
and VH and the normal optical classification are three predictors for classification. Samples of each category
for the two classifications must be the pixels where each ground object is not in a flooding condition.

The random forest classifier is used here for classification, which is an ensemble learning method
for classification, regression, and other tasks and operates by constructing a multitude of decision trees
during the training time and outputting the class as the mode of the classes (classification) or mean
prediction (regression) of the individual trees [20]. The random forest classification (RFC) has been applied
successfully in ecological land cover studies [21]. The Random Forest Classification Toolbox in ENVI 5.3.1
is used in this study to train the model and get the classification results.

3.1.3. Backscatter Characteristics and Variation Rules of Ground Objects

The backscatter characteristics of each category are important prior knowledge for flood analysis,
which are quantitatively shown as the backscatter coefficient. The backscatter coefficients of each ground
object are different when they are in a normal state without a flood, which have a relationship in value.
In general, a backscatter coefficient becomes bigger or smaller due to the flood [22], and the backscatter
coefficient of one ground object in a certain flooding state is equal to the backscatter coefficient of another
ground object in a non-flooding state. For example, a region becomes open water when it is completely
inundated independent of the original land cover, and its backscatter coefficient is equal to the backscatter
coefficient of open water. Therefore, the backscatter of one ground object during the process of being
completely inundated can be indicated by the backscatter of some other objects in a normal state.

The average of each category is used here to study the numerical relationship of backscatter
characteristics. The Sentinel-1 image on 2 August 2018 is used to compute the average backscatter, and the
average backscatter of the five categories in the study area is shown in Table 4.

Table 4. Average S_Gamma and standard deviation of each category.

Category Number

VV VH

Average
S_Gamma

Standard
Deviation

Average
S_Gamma

Standard
Deviation

Water bodies 1 1.982416 0.863452 1.143954 0.35071
Farmland without plastic sheds 2 3.46729 0.683308 1.876859 0.217285

Farmland with plastic sheds 4 3.768043 0.740086 1.909334 0.319949
Roads 8 3.863828 0.663861 2.014632 0.295261

Constructions 16 5.151355 2.348478 2.20923 0.623642

Ground objects show different rules in backscatter coefficient variations caused by the flood.
The backscatter coefficient undergoes a sudden drop when the dry land surface is flooded [10].
The backscatter is increasing due to flooding in all SAR bands over vegetated areas [9]. Open areas covered
by the flood (without wind) cause specular reflection, which could result in a lower backscatter coefficient,
so the backscatter of roads decreases during the process of inundation. Standing water in built-up areas is
generally represented by a brighter line structure because of the double bounce effect, so the backscatter of
constructions increases during inundation before being completely inundated [22].
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3.1.4. Change Detection and Flood Estimation Rules

Change detection is usually pixel-based, objected-based, or hybrid [23], and the pixel-based method
is used in this study to get each pixel’s change. The pixel-based change detection method is used to get the
difference value between two pixels in different layers on the same site. Because the category number is
ranked according to their average S _Gamma, the category number can be treated as different flooding
states. The number of each category is the nth power of two, according to the order of their average
S_Gamma (shown in Table 4), so that the difference value between each category is unique, and from
which we can deduce the numbers of pre-flood and flooding periods.

According to the backscatter variation rules in the previous section: For roads, it is inundated when
the D-value is below zero [24]. For other categories, it is inundated when the D-value is above zero [10].
If the category of the flooding period is the water body and the category of the pre-flood period is not
water body, it is considered completely inundated.

There are five flood degrees to evaluate the flood extent, and the number of flood degrees should be
revised according to specific conditions. It is considered seriously inundated when the category changes
by three levels, moderately inundated when the category changes by two levels, mildly inundated when
the category changes by one level, and no flood when the category does not change. The flood degrees
and their evaluation criteria in this study are shown in Table 5.

Table 5. Flood degrees and their evaluation criteria.

Flood Degree D-value Category Number of Pre-Flood Period Category Number of Flooding Period

Completely inundated

−15 Constructions Water bodies
−7 Roads Water bodies
−3 Farmland with plastic sheds Water bodies
−1 Farmland without plastic sheds Water bodies

Seriously inundated 14 Farmland without plastic sheds Constructions

Moderately inundated
12 Farmland with plastic sheds Constructions
−6 Roads Farmland without plastic sheds
6 Farmland without plastic sheds Roads

Mildly inundated
−4 Roads Farmland with plastic sheds
−2 Farmland with plastic sheds Farmland without plastic sheds
2 Farmland without plastic sheds Farmland with plastic sheds

No flood Other value - -

3.2. Flood Extraction with Otsu Thresholding and NDWI

In order to evaluate the advantages of our approach with other traditional approaches, the Otsu
thresholding method and NDWI method are also applied in some cases to get the final flood maps. The Otsu
method is most commonly used to get an optimal threshold. It is a nonparametric and unsupervised
method of automatic threshold selection for image segmentation [25]. The Otsu method estimates a
suitable threshold value from a bimodal image histogram. It relies on the image with a bi-modal histogram
for proper separation, which means that the contrast in gray values between the flooded and non-flooded
pixels should be as high as possible [10]. Lee et al. [26] found that Otsu had a good performance when the
object area covered more than 30% of the whole image, and the performance got worse when the object
area was reduced to 10% of the whole image.

The normalized difference water index (NDWI in Equation (2)) is used here to extract the inundated
area. After the water index images were derived from the corresponding bands, a threshold was determined
to segment the water index image into a binary water map. The water index images were derived using
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the corresponding bands and a threshold was determined by a self-adaptive threshold method based on
Otsu [25] to segment the water index image into a binary water map.

NDWI =
Green−NIR
Green + NIR

(2)

where Green refers to green band and NIR refers to near-infrared band [27].

4. Results and Discussion

4.1. Flood Extraction and Evaluation

There was no rain during the 24 h before the imaging on 21 July 2018 and 2 August 2018, and
moderate rain during the 24 h before the imaging on 27 July 2018. The flood from 20 August 2018 to 27
August 2018 was caused by a rainstorm, along with Typhoon Rumbia and the erroneous flood relief of
upstream reservoirs. The daily precipitation was around 120 mm on 20 August 2018 in Shouguang City.
Although there was no rain during the 48 h before the imaging on 26 August 2018, the upstream reservoirs
discharged continuously on 20 and 21 August 2018.

All GRD products were processed into Gamma bands and S_Gamma bands, which are shown
in Figure 3. Sentinel-2 images on 10 August 2018 were downloaded as the optical image (Figure 1).
Both Sentinel-1 and Sentinel-2 products were processed into 10-meter resolutions.

The normal optical classification of the study area using Sentinel-2 images on 10 August 2018 is
shown in Figure 4a and the random forest classification results using S_Gamma bands and normal optical
classification are shown in Figure 4b–f. There are some differences between Figure 4a,b, which are due
to the different characteristics between optical images and SAR images. The most intuitive difference
between Figure 4e,f is that the area of water bodies is larger in the flooding period, and the residential areas
also show evidential changes, but accurate changes must be measured by pixel-based change detection in
the next step.

To validate the accuracy of the RFC results, 4563 random points were created and their categories
were determined by visual interpretation. In the training model, 3422 points were used as sample points,
and 1141 points were used as verification points. User accuracy, producer accuracy, overall accuracy and
kappa index were used to evaluate the accuracy, and the detailed results are shown in Table 6. The overall
accuracy is 80.95% and the kappa index is 74.1%, so the classification shows a good accuracy.

Table 6. Accuracy of random forest classification results.

User Accuracy Producer Accuracy

Water bodies 91.67% 84.62%
Farmland without plastic sheds 97.91% 88.46%

Farmland with plastic sheds 90.9% 75%
Roads 65.22% 64.71%

Constructions 78.13% 78.13
Overall accuracy 80.95%

Kappa index 74.1%

The maps of D-value between category numbers were derived from the pixel-based change detection.
The random forest classification result on 2 August 2018 was taken as the initial map, and other classification
results were taken as changed maps. The change detection results are shown in Figure 5.

According to the flood evaluation criteria in Table 5, the final flood extent maps are shown in
Figure 6a–d. The detailed flood conditions can be summarized as follows: On 21 July 2018, there were
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many scrappy and small flooded fragments, and no obvious flood in general. The flooded fragments
may be due to image quality, which is analyzed in Section 4.2. On 27 July 2018, most of the farmland
without plastic sheds was mildly inundated, and most of farmland with plastic sheds was moderately
inundated. On 20 August 2018, the flood was in the most serious state (shown in Figure 6a), and the
flood in the west region was more serious than that in the east region, which was probably surrounded
by rivers in west region. The completely inundated areas were along the Mihe River, especially in the
river bends. The farmland without plastic sheds in the west of the study area was moderately inundated,
but the farmland with plastic sheds was completely inundated. There were many moderately inundated
discrete small areas along the constructions. On 26 August 2018, the flood receded a lot in general
(shown in Figure 6d), and the flood in the west region was also more serious than that in the east region.
The completely inundated areas almost completely disappeared except for some minor areas along the
Mihe River and the farmland without plastic sheds was still moderately inundated in a few areas.
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Figure 3. GRD products in Gamma bands and S_Gamma bands. (a) S_Gamma band of Vertical-Vertical
polarization (VV) on 21 July 2018; (b) Gamma band of Vertical-Horizontal polarization (VH) on 21 July
2018; (c) S_Gamma band of VV on 27 July 2018; (d) S_Gamma band of VH on 21 July 2018; (e) S_Gamma
band of VV on 2 August 2018; (f) S_Gamma band of VH on 2 August 2018; (g) S_Gamma band of VV on 20
August 2018; (h) S_Gamma band of VH on 20 August 2018; (i) S_Gamma band of VV on 26 August 2018;
and (j) S_Gamma band of VH on 26 August 2018.

4.2. Flood Extraction with Otsu Thresholding

The Otsu thresholding relies on image histograms and a bi-modal histogram is essential for proper
separation. Because water bodies were more easily detected under VH, only GRD products of VH were
used. The histograms of five images are shown in Figure 7.

An initial binary map was generated using the Otsu thresholding based on the global image feature.
Only histograms of 27 July 2018 and 20 August 2018 are bi-modal histograms, and only the contrast in gray
values between flooded and non-flooded pixels is distinct. Therefore, the initial results obtained by Otsu
were not good. Because Otsu relies on the image with a bi-modal histogram for proper separation, so new
thresholds were generated based on partial images whose histograms were bi-modal. The inundated areas
were extracted from the binary maps by removing the standing water bodies and the new results are
shown in Figure 8. Except for 20 August 2018, the binary maps were all new. Although the results were
improved a lot, the errors were still large. Except for the image on July 21, 2018, the river was extracted
well, but there was a lot of noise. The farmland was barely inundated on July 27, August 20, and August
26, 2018.



Remote Sens. 2020, 12, 2073 12 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 19 

 

 
Figure 4. The normal optical classification using Sentinel-2 images and the random forest 
classification using S_Gamma bands and normal optical classification. (a) Random forest classification 
result based on Sentinel-2 on 10 August 2018; (b) Random forest classification result on 2 August 2018; 
(c) Random forest classification result on 21 July 2018; (d) Random forest classification result on 27 
July 2018; (e) Random forest classification result on 20 August 2018; and (f) Random forest 
classification result on 26 August 2018. 

To validate the accuracy of the RFC results, 4563 random points were created and their 
categories were determined by visual interpretation. In the training model, 3422 points were used as 
sample points, and 1141 points were used as verification points. User accuracy, producer accuracy, 
overall accuracy and kappa index were used to evaluate the accuracy, and the detailed results are 
shown in Table 6. The overall accuracy is 80.95% and the kappa index is 74.1%, so the classification 
shows a good accuracy. 

118°52'E118°51'E

37°1'N
118°52'E118°51'E

37°1'N
37

°1
'N

37°1'N

118°52'E118°51'E

37
°1

'N

±0 10.5
KM

118°52'E118°51'E
37

°1
'N

(a) (b)

(c) (d)

(e) (f)

Water body

Farmland without plastic sheds Farmland with plastic sheds
Constructions Roads

Figure 4. The normal optical classification using Sentinel-2 images and the random forest classification
using S_Gamma bands and normal optical classification. (a) Random forest classification result based on
Sentinel-2 on 10 August 2018; (b) Random forest classification result on 2 August 2018; (c) Random forest
classification result on 21 July 2018; (d) Random forest classification result on 27 July 2018; (e) Random
forest classification result on 20 August 2018; and (f) Random forest classification result on 26 August 2018.
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Figure 5. The change detection of classifications. (a) Change detection results between 2 August 2018 and
21 July 2018; (b) Change detection results between 2 August 2018 and b27 July 2018; (c) Change detection
results between 2 August 2018 and 20 August 2018; and (d) Change detection results between 2 August
2018 and 26 August 2018.

4.3. Flood Extraction with NDWI

Optical images from Planet are used here for comparison. According to the date of the SAR images,
several available Planet images are used. In terms of time, the Planet image on 21 August 2018 is closer
to the SAR images of August 20 than the Planet image of August 20, so the Planet image of August 21
is used to compare the flood result on August 20, 2018. The western part of the study area is seriously
inundated by the flood on 20 August 2018, and the most serious is the regional center on the west side of
the main road. After about 24 h, the flood recedes in most areas (Figure 9). There is no obvious flood on
the image of 27 August 2018. The binary water maps based on water index images are derived using Otsu
thresholding (Figure 10).

Because optical sensors cannot detect the standing water beneath vegetation [22], and are not exactly
consistent with the SAR images in terms of imaging time, we did not find an appropriate way to validate
the flood results, and only analyzed the spatial distribution of these results. From Figures 7 and 10, we can
see that the flooding along the river and in farmland with plastic sheds can be identified by both methods,
but flooding in farmland without plastic sheds cannot be identified by optical images, probably because
the water was beneath vegetation. According to statistics and news materials, farmlands in the western
part of the study area were heavily damaged by the flood, so our flood mapping result is more reasonable.



Remote Sens. 2020, 12, 2073 14 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 19 

 

moderately inundated. On 20 August 2018, the flood was in the most serious state (shown in Figure 
6a), and the flood in the west region was more serious than that in the east region, which was 
probably surrounded by rivers in west region. The completely inundated areas were along the Mihe 
River, especially in the river bends. The farmland without plastic sheds in the west of the study area 
was moderately inundated, but the farmland with plastic sheds was completely inundated. There 
were many moderately inundated discrete small areas along the constructions. On 26 August 2018, 
the flood receded a lot in general (shown in Figure 6d), and the flood in the west region was also 
more serious than that in the east region. The completely inundated areas almost completely 
disappeared except for some minor areas along the Mihe River and the farmland without plastic 
sheds was still moderately inundated in a few areas. 

 
Figure 6. The flood extent maps on 21 July 2018 (a), 27 July 2018 (b), 20 August 2018 (c), and 26 August 
2018 (d). 

4.2. Flood Extraction with Otsu Thresholding 

The Otsu thresholding relies on image histograms and a bi-modal histogram is essential for 
proper separation. Because water bodies were more easily detected under VH, only GRD products 
of VH were used. The histograms of five images are shown in Figure 7. 

(b)
37°1'N

±0 10.5
KM

(a)
37

°1
'N

118°52'E118°51'E 118°52'E118°51'E

(d)

118°52'E118°51'E

37°1'N

(c)

37
°1

'N

118°52'E118°51'E

Mildly inundated
Moderately inundated

Seriously inundated
Completely inundated

Figure 6. The flood extent maps on 21 July 2018 (a), 27 July 2018 (b), 20 August 2018 (c), and 26 August
2018 (d).

4.4. Discussion

The extracted area from our approach was much larger than other two methods under a flood case,
and much smaller under a non-flood case. The flood area and degree can be evaluated rapidly with
our approach, but only the flooded regions can be extracted from the other two methods. However,
the completely inundated areas were almost the same on 20 August 2018, which were presented as
water bodies from Otsu thresholding and NDWI index methods and as completely inundated areas from
our approach.

Although our method can extract the flood area and degree, there are some limitations: (1) it is
vital to select appropriate typical land covers whose backscatter can reveal the backscatter variations
precisely. If the differences between all categories are small, the change can reveal slight changes in the
backscatter, but excessive classifications are also meaningless. If the differences between all categories
are big, the change cannot reveal the slight changes in backscatter; (2) as important prior knowledge,
each object’s backscatter characteristics in different flooding states and its change rules determine the
accuracy of the results. The backscatter coefficient changed into only one trend when it was flooded,
raising the question of whether there is a turning point during the change process; and (3) the approach
can detect the change caused by “flood”, where the “flood” actually refers to the increase in surface water.
However, it is unable to identify whether the “flood” is caused by natural disasters, such as rainstorms or
artificial works, such as agricultural irrigation, while artificial works may result in false alarms.
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Figure 10. Flood map produced by normalized difference water index (NDWI) on 21 August 2018 (a) and
27 August 2018 (b).

5. Conclusions

In this paper, a methodology using Sentinel-1 and Sentinel-2 images is proposed to map the flood
regions and estimate the flood degree rapidly. Backscatter characteristics and variation rules of different
ground objects are essential prior knowledge for flood analysis. The backscatter of some ground objects in
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the normal state is treated as a certain flooding state for another objects. A supervised classifier was used
to get optical and SAR image classifications. Our conclusions are summarized as follows:

(1) The accuracy of the RFC results based on Sentinel-1 and Sentinel-2 images reaches 80.95%, which avoids
the inaccuracy caused by a single threshold. Furthermore, the optical images from Planet are used to
validate the results.

(2) The final accuracy of rapid extent estimation using Sentinel-1 and Sentinel-2 images on 20 and 26
August 2018 are 85.22% and 95.45, respectively. Moreover, all required data and data processing are
simple, so it can be popularized in rapid flood mapping in early disaster relief.

(3) The flood area and degree can be evaluated rapidly by our approach, but only the flooded regions
can be extracted with the other two methods. The completely inundated areas were almost the same
from the three methods.

In the future, we will further study the backscatter characteristics of different objects to summarize
some typical objects whose backscatter characteristics can cover all land cover and sensitively reveal the
changes due to flooding. We will also focus on the quantitative study of the change rules of different
objects’ backscatter, especially the turning points during the change process.
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