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Abstract: Collecting in situ observations from remote, high mountain rivers presents major challenges,
yet real-time, high temporal resolution (e.g., daily) discharge data are critical for flood hazard mitigation
and river management. In this study, we propose a method for estimating daily river discharge
(RD) based on free, operational remote sensing precipitation data (Tropical Rainfall Measuring
Mission (TRMM), since 2001). In this method, an exponential filter was implemented to produce
a new precipitation time series from daily basin-averaged precipitation data to model the time lag
of precipitation in supplying RD, and a linear-regression relationship was constructed between the
filtered precipitation time series and observed discharge records. Because of different time lags in
the wet season (rainfall-dominant) and dry season (snowfall-dominant), the precipitation data were
processed in a segmented way (from June to October and from November to May). The method
was evaluated at two hydrological gauging stations in the Upper Brahmaputra (UB) river basin,
where Nash–Sutcliffe Efficiency (NSE) coefficients for Nuxia (>0.85) and Yangcun (>0.80) indicate
good performance. By using the degree-day method to estimate the snowmelt and acquire the
time series of new active precipitation (rainfall plus snowmelt) in the target basins, the discharge
estimations were improved (NSE > 0.9 for Nuxia) compared to the original data. This makes the
method applicable for most rivers on the Tibetan Plateau, which are fed mainly by precipitation
(including snowfall) and are subject to limited human interference. The method also performs
well for reanalysis precipitation data (Chinese Meteorological Forcing Dataset (CMFD), 1980–2000).
The real-time or historical discharges can be derived from satellite precipitation data (or reanalysis
data for earlier historical years) by using our method.

Keywords: daily discharge estimation; satellite precipitation; rainfall and snowfall; exponential filter;
Tibetan Plateau

1. Introduction

River discharge (RD) data are indispensable for water resources management and flood prediction,
and are also important for climate change studies and hydrological modeling [1–3]. RD data are
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traditionally obtained by monitoring river hydrological variables (depth, width, and velocity) at river
gauging stations. However, in some areas, particularly those in mountainous regions such as the
Tibetan Plateau (TP), collecting the real-time measurements needed for flood forecasting and hazard
mitigation presents significant challenges [4].

The TP is the source of more than 10 large rivers, including the Yangtze River, Yellow River,
and Ganges [5], which provides water for billions of people and numerous ecosystems. The rivers on the
TP are typical mountain rivers, in which the streamflow is mainly affected by climate change, and there
is little or negligible direct human interference [6]. Because of rapid warming on the TP, the risk of
extreme flood events is increasing [7], leading to a greater demand for timely and high temporal
resolution discharge data for flood prediction and mitigation (e.g., barrier lakes). However, data from
hydrological gauging stations are sometimes discontinuous, because the remote and harsh mountain
environment entails costly maintenance.

Hydrological modeling has been employed for estimating and predicting RD [8–11], but high
accuracy demands a precise description of the most significant hydrological processes within the
catchment, and therefore requires abundant data describing the topography, soil, hydrology, land
cover, and forcing data [12,13]. The TP is an environment with many interacting spheres [14], such that
its hydrology is complex and difficult to model, yet meteorological and hydrological observations are
sparse [15]. Without adequate observations for the assessment and validation of operational models,
uncertainties in the model output can be significant.

The development of satellite and remote sensing technologies has made it feasible to continue the
runoff records for rivers with conventional measurements [16]. In recent decades, several methods for
remote discharge estimation have been developed based on various satellite data sources, such as optical
imagery, radar imagery, as well as data from altimetry and microwave scanning radiometry [17–21].
Nevertheless, it is still difficult to acquire remote sensing discharge records at temporal sampling rates
matching those of gauging stations [22].

Discharge estimates based on remote sensing can be divided into single-variable and
multiple-variable groups. Multiple-variable methods consider hydraulic elements related to runoff

that can be retrieved from satellite data, with different variables using indifferent formulas [23,24].
The temporal sampling rate of multiple-variable estimates is likely to be low, as multiple variables
cannot usually be observed at the same time [1,25,26]. Estimates based on single-variable methods are
mainly achieved by constructing statistical relationships between remote-sensing-derived hydrological
variables (stage or width) and observed discharges [27,28]. Optical images used for estimating
river width have varying temporal resolution, with high temporal resolution sources (e.g., Moderate
Resolution Imaging Spectroradiometer, MODIS) normally having low spatial resolution [29], which is
not suitable for mountainous regions, where rivers are usually small (width < 400 m) [18].
Cloudy weather in the rainy season also hinders the use of optical images [30]. Although remote
sensing methods based on multi-location stages have been developed to derive daily discharge, they
are not suitable for small rivers [31,32].

With the development of satellite technology for monitoring precipitation, it is possible to estimate
river discharge based on remote sensing precipitation. The main drawback for discharge estimating in
mountainous rivers is that the width and stage cannot both be measured accurately and frequently
with remote sensing. However, operational remote sensing precipitation data have high temporal
resolution (daily or better) and can satisfy the temporal resolution requirements.

The main objective of this study is to develop a method for daily discharge estimation based on
discharge observations and operational remote sensing precipitation. The method is demonstrated
at two locations on the Upper Brahmaputra (UB, Yarlung Zangbo) river basin, Tibetan Plateau.
Considering that the remote sensing precipitation data have been available since 1998, the method is
also used to process a reanalysis precipitation dataset to estimate daily discharge before 1998. The rest
of the paper is organized as follows. Section 2 introduces the study regions. Section 3 describes the
data that were used and the method that was developed in the study. Section 4 presents the discharge
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estimates and performance of the method. Section 5 discusses the impact factors for the method and
concludes the utilities of the method.

2. Study Regions

The UB river basin is located in the south of the Tibet Plateau (TP) (Figure 1) and covers an
area of around 241,000 km2. The river basin is in the upstream region of the Brahmaputra River,
a trans-boundary river that flows through China, India, and Bangladesh. With an average elevation of
4000 m above sea level, the Upper Brahmaputra river is the world’s highest river. The TP is one of the
most sensitive regions to climate change [33], and understanding changes in river discharge on the TP
is important for climate change studies; however, the region’s remoteness, high altitude, and harsh
weather conditions make field observations difficult and expensive.
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Figure 1. Locations of the Upper Brahmaputra (UB) river basin and the two hydrological stations
(Yangcun and Nuxia).

The width for the UB river ranges from <100 m in winter to nearly 500 m in summer. The rainy
season is June to September (the Indian monsoon season), which accounts for 60–80% of the annual
precipitation [34]. Two gauging stations (Nuxia and Yangcun) were used to validate our approach in
the study area (Figure 1). Both catchments above the two stations are fed mainly by precipitation (rain
and snow), as glaciers occupy only a small proportion (Table 1). In a preceding study, which simulated
the discharge with a variable infiltration capacity (VIC) model [35], the contribution of glacier melt to
RD was about 10% in the basin.

Table 1. The area and relative proportion of glaciers in the basins upstream of Nuxia and Yangcun
hydrological stations.

Station Name Basin Area above the
Station (km2)

Glacier Area in the Basin
above the Station (km2)

Areal Proportion of
Glaciers (%)

Yangcun 156,561 1793 1.14
Nuxia 195,766 3183 1.63
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3. Data and Method

3.1. Datasets

Two types of operational precipitation data were used to test our method: satellite precipitation
data and reanalysis precipitation data. The satellite precipitation data were acquired from the Tropical
Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) and the reanalysis
precipitation data were from the Chinese Meteorological Forcing Dataset (CMFD). These are among
the most popular satellite precipitation products and they have been applied and evaluated in other
basins [36–39].

The TRMM satellite is a rain-monitoring meteorological satellite that was jointly launched by
the American National Aeronautics and Space Administration (NASA) and the Japanese National
Space Development Agency (NASDA) in 1997 [40]. The TRMM_3B42_Daily dataset, a quasi-global
(50◦S–50◦N, 180◦E–180◦W), three-level precipitation product of TRMM satellites, was used in this study.
It is a fusion of data from TMI (microwave imager), SSMI (special microwave imaging sensor), AMSR
(enhanced microwave scanning radiometer), AMSU (advanced microwave), and thermal infrared
sensors. This dataset contained 0.25◦ × 0.25◦ daily precipitation accumulation data generated from the
research-quality 3-hourly TMPA precipitation data [41]. A total of 6328 files (from 1 January 2001 to
29 April 2018) were used in this study.

The China Meteorological Forcing Dataset (CMFD) is a near-surface meteorological and
environmental reanalysis dataset developed by the Institute of Tibetan Plateau Research at the Chinese
Academy of Science [42]. The dataset is based on the Princeton reanalysis data, GEWEX-SRB, GLDAS,
and TRMM precipitation data, combined with meteorological data from the China Meteorological
Administration. Its resolution is 0.1◦. In this study, the daily precipitation product for the period
1979–2018 is used, including 15,460 files (from 1 January 1979 to 29 April 2018). The daily precipitation
data were computed from the 3 h precipitation data.

In the process of snowmelt estimation, the daily temperature data used for differentiating rain
and snow as well as the calculation of snowmelt were also from CMFD. Daily temperature (from
1 January 1979 to 29 April 2018) was used to split rainfall and snowfall, as well as to calculate
daily snowmelt based on a degree-day model. The extracted rainfall and snowfall data between
1 January 2001 and 31 December 2010 were used to compute the multi-year monthly mean precipitation
of rain and snow.

Observed discharge data included daily data and monthly data. Daily data were available for
Nuxia station (2001 to 2018) and Yangcun station (2003 to 2015). As daily data were not available before
2000, we used monthly data to evaluate historically simulated discharge. All the discharge data were
processed into the normalized form.

3.2. Methods

3.2.1. Basin-Averaged Precipitation

Our method attempted to estimate daily discharge by constructing a statistical relationship
between operational precipitation data and observed discharge. The basin-averaged precipitation over
the study catchment was computed and used as the input of the method. The average precipitation
data for the two catchments (Figure 1) were obtained by clipping and statistical analysis. To compute
the average precipitation over the basin, we resampled the original data into uniform grids (5 × 5 km).

3.2.2. Exponential Filter

The exponential filter was used to model the time lag of the precipitation supply for the RD.
There was an obvious delay in the peak discharge relative to the basin-averaged precipitation peak
(Figure 2), resulting in poor correlation between the original average precipitation and observed
discharge. The discharge often has a time lag relative to the supplements of both rainfall and
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snowfall because of the storage in a river system, while the time length is different. Physically, the
discharge is correlated to the total precipitation over several days before the discharge observation
time. Moreover, precipitation closer to the observation time has a greater contribution to the measured
discharge. Therefore, an exponential filter [43,44] was applied to process the average precipitation
data time series, which was continually calculated as a weighted average of recent precipitation
data by giving less weight to older data. A new time series of precipitation data were acquired
through the exponential filter. This filter uses a single tuning parameter named the characteristic
time T. The correlation coefficient between filtered precipitation and observed discharge changes when
T changes. When the correlation coefficient reaches the maximum, the value of T is defined as Tpeak.
The new time series of precipitation was calculated by using the exponential filter and setting T as Tpeak.
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Figure 2. Basin-averaged precipitation (P) and normalized observed discharge (Q_obs) at the area
upstream of Nuxia hydrological station (hereafter the Nuxia basin). Note that the discharge observations
used in this study have been normalized using Equation (8) to comply with the policy of the data
provider. The precipitation data are from the Tropical Rainfall Measuring Mission (TRMM) dataset.

The exponential filter uses a recursive formula [43]:

P∗tn+1
= P∗tn

+ Ktn+1

(
Ptn+1 − P∗tn

)
(1)

Ktn+1 =
Ktn

Ktn + e−(
tn+1−tn

T )
(2)

where Ptn+1 is the average precipitation at time tn+1 and P∗tn
is the respective filtered value at the

previous time tn. T is the characteristic time and K ranges between 0 and 1. To initialize the filter,
Kt1 and P∗t1

were set to 1 and Pt1 (the precipitation for the first day in the records), respectively.

3.2.3. Linear Least-Squares Regression

After the value of Tpeak was determined and the corresponding filtered basin-averaged precipitation
was obtained, a linear least-squares regression model was constructed with the filtered average
precipitation as the independent variable and observed discharge as the dependent variable.
Discharge for the times without observations was then estimated using the linear regression model.
The filtering and linear regression (FLR) method is summarized in a flow chart (Figure 3).
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3.2.4. Segmented Processing of Precipitation Data

Due to the high elevation of the UB river basin above sea level, both rainfall and snowfall are
supplies for the discharge. In the wet season, rainfall is the dominant supply, while snowmelt is more
important in the dry season. To distinguish the wet season and dry season, the multi-year monthly
mean basin-averaged rainfall and snowfall were calculated by applying a relationship between air
temperature and precipitation type constructed by Ding et al. [45]. The study of Ding et al. presented
the function relationship of proportions of precipitation types with surface elevation and temperature.
The multi-year mean monthly precipitation of rain and snow is presented in Figure 4. It shows that the
precipitation over the UB river basin is mainly rainfall from June to August. In September and October,
although there is less rainfall than snowfall, it is still the dominant supply for the RD, considering
the time lag of the confluence. Additionally, the snowfall over the two months melts quickly due
to the warm temperature. Therefore, the wet season includes summer and autumn, while the dry
season includes winter and spring for the UB river basin. Therefore, basin-averaged precipitation from
June to October (wet season) and precipitation data from November to the next May (dry season) are
processed separately (Figure 3).

Considering the different dominant types of precipitation in wet seasons and dry seasons,
the segmented method was used to deal with the basin-averaged precipitation instead of the year-round
method. Discharge often has different time lags relative to the supplements of both rainfall and snowfall,
so the wet season (rainfall dominant, warm) and dry season (snow dominant, cold) are separated for
estimation (Figure 3). In the segmented method, all the processes are doubled and Tpeak has two values.
The two values of Tpeak are acquired by recognizing the max correlation coefficients in two periods (the
wet season and dry season, respectively).
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3.2.5. Calculation of Snowmelt

Differing from rainfall, the contribution of snowfall to discharge is more complex. It includes
the accumulation and melting of snow. To explicitly study the impact of snow melting on discharge
estimation by using the FLR, we used the degree-day method (DDM) [46] to simply estimate the snow
melt. After using the DDM to calculate the snowmelt, the summation of daily snowmelt and rainfall
produced a new basin-averaged total liquid water (hereafter the active precipitation, Pa) received by
the target basin. The time series of active precipitation at each grid cell (5 × 5 km) in this study can be
computed through the following procedures:

(1) Separate the rainfall (Pr) and snowfall (Ps) from the daily precipitation data by using the method
provided by Ding et al. [45];

(2) Calculate the potential snowmelt capacity (SMc) by using the DDM;
(3) If SMc > Ps, the actual snowmelt (SMa) is equal to the snowfall (that is SMa = Ps); otherwise

SMa = SMc, and the value of Ps minus SMc is added to the Ps of the next day;
(4) The daily active precipitation Pa is equal to the summation of Pr and SMa (Pa = Pr + SMa).

After calculating the Pa for all the grid cells in the target basin, then the basin-averaged Pa can be
obtained. The new basin-averaged active precipitation Pa is then processed by using the FLR method
and the estimation of RD is compared with the result from the original precipitation data to assess the
impacts of snowfall and snow melting on the discharge estimation.

The equations to compute the potential snowmelt capacity are listed as follows:

SMc = DDF ∗ PDD (3)

PDD =
n∑

t=1

Ht·Tt (4)

where DDF (mm/d/◦C) is the degree-day factor and PDD (◦C) is the positive degrees in a day.
DDF is an empirical parameter. The DDF used in the study is obtained by the method provide
by Liu and Zhang [47], who developed an algorithm to spatially estimate the positive DDFs
based on available observed DDFs. The spatial distribution of DDFs in the Yarlung Zangbo River
Basin were presented in the paper. Here, Tt is the daily temperature and Ht is a logical variable
(Ht = 1.0 when Tt ≥ 0; Ht = 0.0 when Tt < 0).
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3.2.6. Performance Evaluation

The accuracy of the discharge estimates was determined by using different performance measures,
such as the Nash–Sutcliffe efficiency coefficient (NSE) [48], the root mean square error (RMSE), and the
BIAS, which are defined as follows:

NSE = 1−

∑n
i=1

(
Qobsi −Qesti

)2

∑n
i=1

(
Qobsi −Qobs

)2 (5)

RMSE =

√√
1
n

n∑
i=1

(
Qobsi −Qesti

)2
(6)

BIAS =
1
n

n∑
i=1

Qesti −Qobsi

Qobsi

× 100% (7)

where Qobsi , Qobs, and Qesti are the observed discharge, mean observed discharge, and estimated
discharge at a given time from paired observations and estimates. NSE ranges from −∞ to 1, where 1 is
the perfect match between the estimates and observations. RMSE ranges from 0 to +∞, where 0 is the
perfect match between the estimates and observations. BIAS ranges from −∞ to +∞, where 0 indicates
no BIAS.

To ensure the confidentiality of the in situ data, all discharge observation data were normalized
as follows:

QNOR =
Q−A
B−A

(8)

where QNOR is the normalized discharge, Q is the discharge before normalization (including both
discharge estimates and observations), and A and B are both constants (0 < A < QMIN and B > QMAX).
QMIN and QMAX are the minimum and the maximum gauged discharge for a given gauging station in
the study period, respectively.

3.2.7. Sensitivity Analysis of FLR

To assess how the time series length of training data impact the estimated discharge, results based
on training data time series lengths of one year, five years, and ten years were compared (see Table 2).
Eight groups of single-year training data (from 2003 to 2010) were trained and six groups of five-year
training data were trained.

Table 2. Accuracy evaluation of daily discharge estimates using segmented TRMM precipitation data
at the Nuxia station.

Time for
Training

Training Validation (2011–2018) Validation (2001–2018)

NSE RMSE (m3/s) BIAS (%) NSE RMSE (m3/s) BIAS (%) NSE RMSE (m3/s) BIAS (%)

2003 0.930 673.7 3.70 0.750 914.6 20.6 0.792 913.2 18.3
2004 0.953 488.1 2.59 0.870 659.1 8.25 0.879 696.5 4.44
2005 0.882 569.0 3.44 0.911 546.6 4.89 0.897 642.9 2.07
2006 0.941 272.8 1.72 0.913 540.6 5.16 0.863 740.5 1.64
2007 0.900 695.7 5.02 0.847 715.1 20.7 0.867 728.5 15.7
2008 0.955 482.5 2.44 0.874 648.5 16.2 0.878 697.5 11.1
2009 0.933 294.9 3.6 0.844 721.7 4.41 0.780 938.0 1.60
2010 0.919 633.6 1.71 0.907 556.2 −3.98 0.890 662.2 −7.2

2001–2005 0.901 726.9 3.89 0.844 722.0 12.3 0.866 731.6 9.36
2002–2006 0.904 641.3 3.33 0.863 676.7 9.93 0.876 705.6 6.87
2003–2007 0.900 645.2 4.22 0.876 642.8 11.4 0.887 673.1 7.83
2004–2008 0.917 567.2 3.42 0.891 602.7 11.0 0.892 657.0 6.98
2005–2009 0.899 564.4 3.89 0.904 566.7 11.5 0.893 655.4 7.37
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Table 2. Cont.

Time for
Training

Training Validation (2011–2018) Validation (2001–2018)

NSE RMSE (m3/s) BIAS (%) NSE RMSE (m3/s) BIAS (%) NSE RMSE (m3/s) BIAS (%)

2006–2010 0.909 572.7 4.19 0.905 564.5 9.78 0.892 658.3 5.62
2001–2010 0.894 691.6 4.41 0.889 608.8 11.1 0.893 655.6 7.41

4. Method Evaluation

4.1. Results of Filtration

The results of filtration are affected by the characteristic time length T. Here, T was selected
by comparing the correlation coefficients between the observed discharge and the filtered average
precipitation for values of T ranging from 1 to 100. For each precipitation dataset (wet season or
dry season), the correlation coefficients show a unimodal distribution (Figure 5a). The values of
T corresponding to the peak correlation coefficient (Tpeak) at Nuxia station during 2001–2010 were 23
for the rainy season and 42 for the dry season. The different values of T for the wet season and dry
season are because of the different time lags of rainfall and snowfall in supplying RD. The time lag
of rainfall supply is about twenty days, while the time lag of snowfall supply is about 1.5 months.
The filtered average precipitation data stream was calculated using Equations (1) and (2) by setting
T equal to Tpeak for the segmented (rainy season and dry season) method (Figure 5b). This shows that
the filtered precipitation lags according to the primal precipitation.
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Nuxia station basin (a), as well as the original and filtered TRMM precipitation average (P, P_f) over
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4.2. Performance of FLR in Discharge Estimation

Two linear-regression models were established based on linear regression, using the data from
2001 to 2010 as training data. One was for the wet season data (Figure 6a) and the other for the dry
season data (Figure 6b).
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Figure 6. Daily discharge estimates using segmented TRMM precipitation data in the Nuxia
basin. (a) Linear regression between normalized daily discharge and filtered basin-averaged daily
precipitation in the rainy season. (b) Linear regression between normalized daily discharge and filtered
basin-averaged daily precipitation in the dry season.

Based on the FLR method, two estimated discharge time series were calculated from 2001 to
2018. The FLR showed satisfactory performance with both segmented TRMM and CMFD precipitation
data for Nuxia basin (Figure 7). The FLR were calibrated respectively and the parameters were
different when the TRMM and CMFD data were processed. The NS coefficients exceeded 0.85 in
training and validation, and the bias for the two estimates was under 5% in training and about 10%
in validation; these results demonstrate that the FLR is reliable in simulating daily discharge using
satellite precipitation data.

FLR was then applied at another hydrological station (Yangcun), with estimates based on satellite
and reanalysis precipitation datasets both yielding good results (Figure 8). Therefore, the FLR method
is applicable to different locations and with different precipitation data.
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Comparing the estimations from TRMM and CMFD precipitation data, both the results at Nuxia
station and Yangcun station prove that the CMFD achieves better performance (Figures 7 and 8).
This owes to the fact that CMFD is reanalysis data, which have combined various satellite precipitation
data with more comprehensive local meteorological observations. Therefore, the accuracy of CMFD is
supposed to be higher than the TRMM precipitation data.

4.3. How the Time Length of Training Data Series Influence FLR

The highest NS coefficients for the training data and validation data were achieved in the
single-year training group, however these were not in the same year (Table 2). Generally, high accuracy
in both training and validation was difficult to achieve simultaneously. Almost all NS coefficients for
the single-year training data exceeded 0.9; however, their respective NS coefficients in the validation
were mostly smaller than those for the multiple-year training (Table 2). For single-year training,
the differences in accuracies among different years and between training and validation were more
obvious than those for multiple-year training. This means that uncertainties associated with the
selected single-year training data are larger than those associated with multiple-year training data.

Average NS coefficient and average RMSE were calculated for all single-year training and five-year
training data. As the training time increased, the average NS coefficient decreased and the average
RMSE increased for the training data (Figure 9). Meanwhile, the average NS coefficient increased and
the average RMSE decreased for the validation data. Increasing training time could reduce the gap
between the accuracies of the training data and validation data, thereby maintaining both at relatively
high levels simultaneously.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 
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Figure 9. Variations in NSE and RMSE for daily discharge estimates at Nuxia station with changing
duration of the precipitation training data time series. The Y axis is the average NSE or RMSE of daily
discharge estimates for all combinations using the same duration of training data (see Table 2). The
precipitation data are from the TRMM dataset.

4.4. Estimates of Historical Discharge Using Segmented CMFD Precipitation Data

The daily historical discharges (1980–2000) at Nuxia and Yangcun stations were estimated using
CMFD precipitation data based on the FLR (Figure 10a,b). Providing that the historical daily discharge
(before 2000) was not available, monthly discharge estimates generated from daily discharge estimates
were evaluated using the monthly discharge observations (Figure 10c,d). NS coefficients exceeded
0.8 for the monthly validation data (Figure 11), demonstrating that the FLR is useful for simulating
discharge using historical satellite precipitation data.
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Figure 10. The normalized daily discharge estimates from the segmented CMFD precipitation upstream
of Nuxia (a) and Yangcun (b). Additionally included is a comparison between observations and
estimates of normalized monthly streamflow (based on the segmented CMFD precipitation) upstream
of Nuxia (c) and Yangcun (d).
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Figure 11. The average daily precipitation data before (Pb, including snowfall and rainfall) and after
(Pa, including snowmelt and rainfall), considering the process of snow melting by using the degree-day
model (a) and the multi-year monthly mean value of (Pa-Pb) (b).

4.5. Factors Impacting the Estimation Accuracy

As the discharge is estimated by using the precipitation data, the quality of the original data
is one of the factors that influence the estimation accuracy. Usually, the quality of the precipitation
data is evaluated by using the meteorological station observations as reference data. Here, we use
the correlation coefficient between the filtered basin-averaged precipitation and the observed RD to
evaluate the quality of precipitation. If the precipitation data are qualified well for estimating RD,
the max correlation coefficient between filtered basin-averaged precipitation and observed discharge is
suggested to be larger than 0.85. When the max correlation coefficient is very low, this means that the
quality of precipitation data is bad or a more complicated relationship between rainfall and runoff

characterizes the watershed.
The input of the FLR method is the basin-averaged precipitation, because the average precipitation

is an index that can represent the whole basin. The spatial variation of precipitation is not considered.

4.6. The Impact of Snow Melting on the Discharge Estimation

To figure out how the daily temperature impacts the snow melting and then influences the river
discharge, we used the DDM and daily temperature data from CMFD to compute daily snowmelt and
produced a new time series of active precipitation data (Pa) by adding daily snowmelt to daily rainfall.
The comparison between the new active precipitation (Pa) and the original TRMM precipitation (Pb)
data shows that Pb including rainfall and snowfall is obviously greater than Pa (sum of rainfall and
snowmelt) in the dry season (Figure 11a). In one year, the snow accumulation lasts from the October
to the next March and the snowmelt is concentrated between April and July (Figure 11b). This is
consistent with the field observation.
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The FLR method is used for the newly produced precipitation data stream. The estimations derived
from the new precipitation data stream are better than the results from the original precipitation data.
The NSE increases and the BIAS decreases according to the performance of the original precipitation
data under the consideration of the snow melting process (Figures 7 and 12). It is concluded that
calculating snowmelt by using the DDM can improve the estimations from operative precipitation
data, as well as by using the FLR method.
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5. Discussion and Conclusions

In this study, we developed a method combining an exponential filter and linear regression
models to simulate river discharge using operational and gridded precipitation data. The exponential
filter can simulate the time lag of rainfall and snowfall in supplying the RD. The UB river basin was
selected as the study area. The basin is predominantly supplied by rainfall in the wet season and fed
by snow in the dry season. Therefore, the method deals with the precipitation data in a segmented way
(dry season and wet season). The method performs well for different locations (Nuxia and Yangcun in
the UB river basin) and for different precipitation data (TRMM and CMFD). It was used to estimate
recent river discharge since 2001 with the satellite precipitation data (e.g., TRMM). It was also used to
establish long time-series of historical discharge in remote regions of the TP, yielding good performance,
as shown above. All the estimates yielded an NS coefficient greater than 0.8, which is suitable for
most applications.
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The accuracy of the precipitation data is one of the factors impacting the quality of RD estimates
based on this method. To test if the precipitation is qualified for estimating RD by using FLR,
the correlation coefficient between the filtered basin-averaged precipitation and observed discharge can
be a useful index. A correlation coefficient >0.85 is suggested. As the quality of satellite precipitation
retrievals gradually improves, the corresponding estimates will become more reliable.

The FLR method is used to estimate RD based on the regression model constructed from free
operational grid precipitation datasets (satellite and reanalysis). This method can be used to estimate
historical discharges based on reanalysis precipitation, real-time discharge based on satellite observing
precipitation, as well as to supplement the missing data due to interrupted observations.

Differing from traditional methods for short-term storm events [49–51], the FLR method (applicable
to long-term time series) is suitable for different kinds of basins, as long as they are mainly fed by
precipitation and there is a linear relationship between filter basin-averaged precipitation and runoff.
For the basins where precipitation is not the main water source for the RD (such as glacier-melt-fed
basin), FLR is not an ideal choice for RD estimation. If the RD management is adjusted artificially,
the accuracy of FLR will be affected.

The advantage of our method is that it is straight forward and easily applied to different sized rivers
where precipitation is the main water source for the river. Although the method was demonstrated
and validated for discharge estimates in mountainous river basins, it can be extended to other river
basins where the impact of human activities on discharge is limited. The satellite precipitation data
can provide daily estimates, in contrast to many other remote sensing datasets, which are affected
by missing data due to cloud cover. This is very important for remote regions where observations
are hard to obtain and for basins where the observations are interrupted by economic or political
factors. The method can also be used for new gauging stations where the historical observations are
absent. The method also has its limitations, since it relies on a certain period of available discharge
observations to develop the linear regression model, and thus is not suitable for ungauged basins.

The cryosphere is widespread on the Tibetan Plateau, and thus snowmelt and glacier melt are
also important supplies for the river discharge. Traditional fitting methods that construct rating curves
between basin-wide rainfall and basin outlet river discharges are not applicable for most rivers on
the TP. The rivers on the TP are mostly fed by both snowmelt and rainfall (as well as glacier melt in
some glaciated head water regions). In this study, we used the degree-day method to calculate the
snowmelt and improved the discharge estimations, which were derived from original precipitation
data. This improvement makes the FLR method applicable to most rivers on the Tibetan Plateau.

Author Contributions: Conceptualization, T.Z. and L.W.; data curation, R.L.; funding acquisition, L.W.;
methodology, T.Z. and L.S.; resources, L.W., X.L. and B.G.; validation, T.Z.; writing—original draft, T.Z.;
writing—review and editing, L.W., X.L., X.Z. and J.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was financially supported by the National Natural Science Foundation of China
(Grant No. 91747201) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences
(XDA19070301 and XDA20060202). Jing Zhou was supported by the National Natural Science Foundation of
China (Grant No. 41771089).

Acknowledgments: We would also like to thank NASDA for the TRMM data (https://pmm.nasa.gov/data-access/
downloads/TRMM) and ITPCAS for the CMFD (https://doi.org/10.3972/westdc.002.2014.db). Lastly, we are pleased
to acknowledge the anonymous reviewers and editor’s valuable comments and suggestions, which improved
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://pmm.nasa.gov/data-access/downloads/TRMM
https://pmm.nasa.gov/data-access/downloads/TRMM
https://doi.org/10.3972/westdc.002.2014.db


Remote Sens. 2020, 12, 2103 17 of 19

References

1. Tarpanelli, A.; Amarnath, G.; Brocca, L.; Massari, C.; Moramarco, T. Discharge estimation and forecasting
by MODIS and altimetry data in Niger-Benue River. Remote Sens. Environ. 2017, 195, 96–106. [CrossRef]

2. Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vorosmarty, C.J.; Lammers, R.B.; Shiklomanov, A.I.;
Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173.
[CrossRef]

3. Wang, L.; Koike, T.; Yang, K.; Yeh, P.J.F. Assessment of a distributed biosphere hydrological model against
streamflow and MODIS land surface temperature in the upper Tone River Basin. J. Hydrol. 2009, 377, 21–34.
[CrossRef]

4. GRDC. River Discharge Data; GRDC: Koblenz, Germany, 2014.
5. Wang, L.; Sichangi, A.; Zeng, T.; Li, X.; Hu, Z.; Genanu, M. New methods designed to estimate the daily

discharges of rivers in the Tibetan Plateau. Sci. Bull. 2019, 64, 418–421. [CrossRef]
6. Zhao, F.F.; Zongxue, X.U. Streamflow response to climate variability and human activities in the upper

catchment of the Yellow River Basin. Sci. China 2009, 52, 3249–3256. [CrossRef]
7. Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [CrossRef] [PubMed]
8. Tong, K.; Su, F.G.; Yang, D.Q.; Hao, Z.C. Evaluation of satellite precipitation retrievals and their potential

utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [CrossRef]
9. Cuo, L.; Zhang, Y.X.; Gao, Y.H.; Hao, Z.C.; Cairang, L.S. The impacts of climate change and land cover/use

transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [CrossRef]
10. Sun, W.C.; Ishidaira, H.; Bastola, S. Prospects for calibrating rainfall-runoff models using satellite observations

of river hydraulic variables as surrogates for in situ river discharge measurements. Hydrol. Process. 2012, 26,
872–882. [CrossRef]

11. Lauri, H.; de Moel, H.; Ward, P.J.; Rasanen, T.A.; Keskinen, M.; Kummu, M. Future changes in Mekong River
hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16,
4603–4619. [CrossRef]

12. Vilaysane, B.; Takara, K.; Luo, P.P.; Akkharath, I.; Duan, W.L. Hydrological stream flow modelling for
calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. In 5th Sustainable
Future for Human Security; Trihartono, A., McLellan, B., Eds.; Springer: Berlin, Germany, 2015; Volume 28,
pp. 380–390. [CrossRef]

13. Wang, F.; Wang, L.; Zhou, H.; Yang, K.; Wang, A.; Li, W. Evaluation and application of a fine-resolution global
data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophys. Res.
2011, 116, D21108. [CrossRef]

14. Yao, T.; Thompson, L.G.; Mosbrugger, V.; Fan, Z.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.
Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [CrossRef]

15. Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal
distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010,
115, F03019. [CrossRef]

16. Bjerklie, D.M.; Dingman, S.L.; Vorosmarty, C.J.; Bolster, C.H.; Congalton, R.G. Evaluating the potential for
measuring river discharge from space. J. Hydrol. 2003, 278, 17–38. [CrossRef]

17. Pan, F.; Wang, C.; Xi, X. Constructing river stage-discharge rating curves using remotely sensed river cross
sectional inundation areas and river bathymetry. J. Hydrol. 2016, 540, 670–687. [CrossRef]

18. Tarpanelli, A.; Brocca, L.; Lacava, T.; Melone, F.; Moramarco, T.; Faruolo, M.; Pergola, N.; Tramutoli, V. Toward
the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens. Environ.
2013, 136, 47–55. [CrossRef]

19. Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River Discharge Estimation by Using Altimetry Data
and Simplified Flood Routing Modeling. Remote Sens. 2013, 5, 4145–4162. [CrossRef]

20. Khan, S.I.; Hong, Y.; Vergara, H.J.; Gourley, J.J.; Brakenridge, G.R.; De Groeve, T.; Flamig, Z.L.; Policelli, F.;
Yong, B. Microwave Satellite Data for Hydrologic Modeling in Ungauged Basins. IEEE Geosci. Remote
Sens. Lett. 2012, 9, 663–667. [CrossRef]

21. Gleason, C.J.; Smith, L.C. Toward global mapping of river discharge using satellite images and
at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA 2014, 111, 4788–4791. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2017.04.015
http://dx.doi.org/10.1126/science.1077445
http://dx.doi.org/10.1016/j.jhydrol.2009.08.005
http://dx.doi.org/10.1016/j.scib.2019.03.015
http://dx.doi.org/10.1007/s11431-009-0354-3
http://dx.doi.org/10.1038/454393a
http://www.ncbi.nlm.nih.gov/pubmed/18650887
http://dx.doi.org/10.1016/j.jhydrol.2014.07.044
http://dx.doi.org/10.1016/j.jhydrol.2013.08.003
http://dx.doi.org/10.1002/hyp.8301
http://dx.doi.org/10.5194/hess-16-4603-2012
http://dx.doi.org/10.1016/j.proenv.2015.07.047
http://dx.doi.org/10.1029/2011JD015990
http://dx.doi.org/10.1016/j.envdev.2012.04.002
http://dx.doi.org/10.1029/2009JF001426
http://dx.doi.org/10.1016/S0022-1694(03)00129-X
http://dx.doi.org/10.1016/j.jhydrol.2016.06.024
http://dx.doi.org/10.1016/j.rse.2013.04.010
http://dx.doi.org/10.3390/rs5094145
http://dx.doi.org/10.1109/LGRS.2011.2177807
http://dx.doi.org/10.1073/pnas.1317606111


Remote Sens. 2020, 12, 2103 18 of 19

22. Jarihani, A.A.; Callow, J.N.; Johansen, K.; Gouweleeuw, B. Evaluation of multiple satellite altimetry data for
studying inland water bodies and river floods. J. Hydrol. 2013, 505, 78–90. [CrossRef]

23. Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L. Estimating discharge in rivers using remotely sensed
hydraulic information. J. Hydrol. 2005, 309, 191–209. [CrossRef]

24. LeFavour, G.; Alsdorf, D. Water slope and discharge in the Amazon River estimated using the shuttle radar
topography mission digital elevation model. Geophys. Res. Lett. 2005, 32, 5. [CrossRef]

25. Huang, Q.; Long, D.; Du, M.D.; Zeng, C.; Qiao, G.; Li, X.D.; Hou, A.Z.; Hong, Y. Discharge estimation in
high-mountain regions with improved methods using multisource remote sensing: A case study of the
Upper Brahmaputra River. Remote Sens. Environ. 2018, 219, 115–134. [CrossRef]

26. Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.L.; Wang, Z.J.; Li, X.P.; Zhou, J.; Liu, W.B.; Kuria, D. Estimating
continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016, 179,
36–53. [CrossRef]

27. Temimi, M.; Lacava, T.; Lakhankar, T.; Tramutoli, V.; Ghedira, H.; Ata, R.; Khanbilvardi, R. A multi-temporal
analysis of AMSR-E data for flood and discharge monitoring during the 2008 flood in Iowa. Hydrol. Process.
2011, 25, 2623–2634. [CrossRef]

28. Ling, F.; Cai, X.B.; Li, W.B.; Xiao, F.; Li, X.D.; Du, Y. Monitoring river discharge with remotely sensed imagery
using river island area as an indicator. J. Appl. Remote Sens. 2012, 6, 14. [CrossRef]

29. Sichangi, A.W.; Wang, L.; Hu, Z.D. Estimation of River Discharge Solely from Remote-Sensing Derived Data:
An Initial Study over the Yangtze River. Remote Sens. 2018, 10, 1385. [CrossRef]

30. Pavelsky, T.M. Using width- based rating curves from spatially discontinuous satellite imagery to monitor
river discharge. Hydrol. Process. 2014, 28, 3035–3040. [CrossRef]

31. Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O′Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge
estimation at ungauged river sites using remote sensing. Hydrol. Process. 2014, 28, 1043–1054. [CrossRef]

32. Tourian, M.J.; Schwatke, C.; Sneeuw, N. River discharge estimation at daily resolution from satellite altimetry
over an entire river basin. J. Hydrol. 2017, 546, 230–247. [CrossRef]

33. Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers.
Science 2010, 328, 1382–1385. [CrossRef] [PubMed]

34. You, Q.L.; Kang, S.C.; Wu, Y.H.; Yan, Y.P. Climate change over the yarlung zangbo river basin during
1961–2005. J. Geogr. Sci. 2007, 17, 409–420. [CrossRef]

35. Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major
rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [CrossRef]

36. Iwadra, M.; Odirile, P.T.; Parida, B.P.; Moalafhi, D.B. Evaluation of future climate using SDSM and
secondary data (TRMM and NCEP) for poorly gauged catchments of Uganda: The case of Aswa catchment.
Theor. Appl. Climatol. 2019, 137, 2029–2048. [CrossRef]

37. Munzimi, Y.A.; Hansen, M.C.; Asante, K.O. Estimating daily streamflow in the Congo Basin using
satellite-derived data and a semi-distributed hydrological model. Hydrol. Sci. J. 2019, 64, 1472–1487.
[CrossRef]

38. Xie, Z.; Hu, Z.; Gu, L.; Sun, G.; Du, Y.; Yan, X. Meteorological Forcing Datasets for Blowing Snow Modeling
on the Tibetan Plateau: Evaluation and Intercomparison. J. Hydrometeorol. 2017, 18, 2761–2780. [CrossRef]

39. Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of multiple forcing
data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci.
2017, 21, 5805–5821. [CrossRef]

40. Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM)
sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [CrossRef]

41. Tropical Rainfall Measuring Mission (TRMM). TRMM (TMPA) Rainfall Estimate L3 3 Hour 0.25-Degree x
0.25 Degree V7; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD,
USA, 2011. [CrossRef]

42. He, J.; Yang, K. China Meteorological Forcing Dataset; Cold and Arid Regions Science Data Center:
Lanzhou, China, 2001. [CrossRef]

43. Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J. From near-surface to root-zone soil moisture using an
exponential filter: An assessment of the method based on in-situ observations and model simulations.
Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2013.09.010
http://dx.doi.org/10.1016/j.jhydrol.2004.11.022
http://dx.doi.org/10.1029/2005GL023836
http://dx.doi.org/10.1016/j.rse.2018.10.008
http://dx.doi.org/10.1016/j.rse.2016.03.019
http://dx.doi.org/10.1002/hyp.8020
http://dx.doi.org/10.1117/1.JRS.6.063564
http://dx.doi.org/10.3390/rs10091385
http://dx.doi.org/10.1002/hyp.10157
http://dx.doi.org/10.1002/hyp.9647
http://dx.doi.org/10.1016/j.jhydrol.2017.01.009
http://dx.doi.org/10.1126/science.1183188
http://www.ncbi.nlm.nih.gov/pubmed/20538947
http://dx.doi.org/10.1007/s11442-007-0409-y
http://dx.doi.org/10.1002/jgrd.50665
http://dx.doi.org/10.1007/s00704-018-2726-8
http://dx.doi.org/10.1080/02626667.2019.1647342
http://dx.doi.org/10.1175/JHM-D-17-0075.1
http://dx.doi.org/10.5194/hess-21-5805-2017
http://dx.doi.org/10.1175/1520-0426(1998)015&lt;0809:TTRMMT&gt;2.0.CO;2
http://dx.doi.org/10.5067/TRMM/TMPA/3H/7
http://dx.doi.org/10.3972/westdc.002.2014.db
http://dx.doi.org/10.5194/hess-12-1323-2008


Remote Sens. 2020, 12, 2103 19 of 19

44. Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil
Data. Remote Sens. Environ. 1999, 70, 191–207. [CrossRef]

45. Ding, B.; Yang, K.; Qin, J.; Wang, L.; Chen, Y.; He, X. The dependence of precipitation types on surface
elevation and meteorological conditions and its parameterization. J. Hydrol. 2014, 513, 154–163. [CrossRef]

46. Finsterwalder, S.; Schunk, H. Der Suldenferner. Z. Dtsch. Oesterreichischen Alp. 1887, 18, 72–89.
47. Liu, J.; Zhang, W. Spatial variability in degree-day factors in Yarlung Zangbo River Basin in China. J. Univ.

Chin. Acad. Sci. 2018, 35, 704–711.
48. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.

J. Hydrol. 1970, 10, 282–290. [CrossRef]
49. Soulis, K.X.; Valiantzas, J.D.; Dercas, N.; Londra, P.A. Investigation of the direct runoff generation mechanism

for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth
Syst. Sci. 2009, 13, 605–615. [CrossRef]

50. Rezaei-Sadr, H. Influence of coarse soils with high hydraulic conductivity on the applicability of the SCS-CN
method. Hydrol. Sci. J. 2017, 62, 843–848. [CrossRef]

51. Hawkins, R.H. Runoff curve numbers for partial area watersheds. J. Irrig. Drain. Div. ASCE 1979, 105,
375–389.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0034-4257(99)00036-X
http://dx.doi.org/10.1016/j.jhydrol.2014.03.038
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.5194/hess-13-605-2009
http://dx.doi.org/10.1080/02626667.2016.1262037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Regions 
	Data and Method 
	Datasets 
	Methods 
	Basin-Averaged Precipitation 
	Exponential Filter 
	Linear Least-Squares Regression 
	Segmented Processing of Precipitation Data 
	Calculation of Snowmelt 
	Performance Evaluation 
	Sensitivity Analysis of FLR 


	Method Evaluation 
	Results of Filtration 
	Performance of FLR in Discharge Estimation 
	How the Time Length of Training Data Series Influence FLR 
	Estimates of Historical Discharge Using Segmented CMFD Precipitation Data 
	Factors Impacting the Estimation Accuracy 
	The Impact of Snow Melting on the Discharge Estimation 

	Discussion and Conclusions 
	References

