VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands
Abstract
:1. Introduction
1.1. Red-Edge and NIR-Shoulder SVIs
1.2. SVIs and LAI Empirical Models: Does Trait-Covariation Matter?
- To compare the ability of different SVIs including information from the RE and the NIR-shoulder spectral regions to estimate LAI at both temporal and spatial scales using ground hyperspectral data
- To analyze the potential of Sentinel band combinations across the RE and the NIR-shoulder spectral regions using S-2 and S-3 simulated bands to estimate LAI in two grassland ecosystems of the Alps with contrasting structures
- To determine the impact of grassland structural and biochemical heterogeneity on LAI estimations by analyzing the spectral reflectance response to co-varying biochemical and structural leaf and canopy traits across the RE and NIR-shoulder spectral domain using an RTM approach
- To identify the best performing S-2 and S-3 SVIs for monitoring grasslands with heterogeneous structure by describing the impact of co-varying leaf and canopy structural traits on the relationships between LAI and SVIs calculated from S-2 and S-3 bands, as well as comparing RTM and empirical approaches.
2. Materials and Methods
2.1. Study Sites
2.2. Ground Biophysical Measurements
2.3. Hyperspectral Reflectance Measurements
2.3.1. Best Band Combination and Hyperspectral NDIs
2.3.2. Multispectral Sentinel 2 and 3 SVIs
2.3.3. Global Sensitivity Analysis
2.3.4. SVIs Performance Using Simulated Spectra Under Different Temporal and Spatial Scenarios
2.3.5. Statistical Analysis
3. Results
3.1. Relationship between the Measured Spectra and LAI
3.2. Best Band Combination and Hyperspectral NDIs
3.3. The Performance of Multispectral Sentinel 2 and 3 SVIs
3.4. Global Sensitivity Analysis of the Spectral Bands
3.5. SVIs Calculated from Modeled PROSAIL Reflectance Simulations vs. LAI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martens, S.N.; Ustin, S.L.; Norman, J.M. Measurement of tree canopy architecture. Int. J. Remote Sens. 1991, 12, 1525–1545. [Google Scholar] [CrossRef]
- Serrano, L.; Gamon, J.A.; Penuelas, J. Estimation of canopy photosynthetic and nonphotosynthetic components from spectral transmittance. Ecology 2000, 81, 3149–3162. [Google Scholar] [CrossRef]
- Gianelle, D.; Vescovo, L. Determination of green herbage ratio in grasslands using spectral reflectance. Methods and ground measurements. Int. J. Remote Sens. 2007, 28, 931–942. [Google Scholar] [CrossRef]
- Müller-Linow, M.; Pinto-Espinosa, F.; Scharr, H.; Rascher, U. The leaf angle distribution of natural plant populations: Assessing the canopy with a novel software tool. Plant Methods 2015, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Roelofsen, H.D.; van Bodegom, P.M.; Kooistra, L.; Witte, J.P.M. Predicting leaf traits of herbaceous species from their spectral characteristics. Ecol. Evol. 2014, 4, 706–719. [Google Scholar] [CrossRef]
- Homolová, L.; Maalenovský, Z.; Shaepman, M.E.; García-Santos, G.; Clevers, J.G.P.W. Review of optical-based remote sensing for plant functional ecology. Ecol. Complex. 2013, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Gamon, J.A.; Cavender-Bares, J.; Townsend, P.A.; Zygielbaum, A.I. The spatial sensitivity of the spectral diversity-biodiversity relationship: An experimental test in a prairie grassland. Ecol. Appl. 2018, 28, 541–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakowska, K.; MacArthur, A.; Gianelle, D.; Dalponte, M.; Alberti, G.; Gioli, B.; Miglietta, F.; Pitacco, A.; Meggio, F.; Fava, F.; et al. Assessing Across-Scale Optical Diversity and Productivity Relationships in Grasslands of the Italian Alps. Remote Sens. 2019, 11, 614. [Google Scholar] [CrossRef] [Green Version]
- Vescovo, L.; Gianelle, D. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Adv. Space Res. 2008, 41, 1764–1772. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Hornero, A.; Hernández-Clemente, R.; Beck, P.S.A. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS J. Photogramm. Remote Sens. 2018, 137, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Toward generic models for green LAI estimation in maize and soybean: Satellite observations. Remote Sens. 2017, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sens. 2014, 6, 6221–6241. [Google Scholar] [CrossRef] [Green Version]
- Rouse, R.W.H.; Haas, J.A.W.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 1 January 1974; pp. 309–317. [Google Scholar]
- Fava, F.; Colombo, R.; Bocchi, S.; Meroni, M.; Sitzia, M.; Fois, N.; Zucca, C. Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 233–243. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1492. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Peñuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. International Journal of Remote Sensing The red edge of plant leaf reflectance. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Atzberger, C.; Darvishzadeh, R.; Schlerf, M.; Le Maire, G. Suitability and adaptation of PROSAIL radiative transfer model for hyperspectral grassland studies. Remote Sens. Lett. 2013, 4, 55–64. [Google Scholar] [CrossRef]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef] [Green Version]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Fitted PROSAIL parameterization of leaf inclinations, water content and brown pigment content for winter wheat and maize canopies. Remote Sens. 2019, 11, 1150. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Niedrist, G.; Asam, S.; Tonon, G.; Tomelleri, E.; Zebisch, M. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 2019, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Pettai, H.; Oja, V.; Freiberg, A.; Laisk, A. Photosynthetic activity of far-red light in green plants. Biochim. Biophys. Acta Bioenerg. 2005, 1708, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; van Iersel, M.W. Photochemical Acclimation of Three Contrasting Species to Different Light Levels: Implications for Optimizing Supplemental Lighting. J. Am. Soc. Hortic. Sci. 2017, 142, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Shang, J.; Liu, J.; Ma, B.; Zhao, T.; Jiao, X.; Geng, X.; Huffman, T.; Kovacs, J.M.; Walters, D. Mapping spatial variability of crop growth conditions using RapidEye data in Northern Ontario, Canada. Remote Sens. Environ. 2015, 168, 113–125. [Google Scholar] [CrossRef]
- Sakowska, K.; Gianelle, D.; Zaldei, A.; Macarthur, A.; Carotenuto, F.; Miglietta, F.; Zampedri, R.; Cavagna, M.; Vescovo, L. WhiteRef: A new tower-based hyperspectral system for continuous reflectance measurements. Sensors 2015, 15, 1088–1105. [Google Scholar] [CrossRef] [Green Version]
- Vescovo, L.; Wohlfahrt, G.; Balzarolo, M.; Pilloni, S.; Sottocornola, M.; Rodeghiero, M.; Gianelle, D. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. Int. J. Remote Sens. 2012, 33, 2178–2195. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.Y.; Huang, W.J.; PU, R.L.; Wang, J.H. Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region. J. Integr. Agric. 2014, 13, 760–769. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; Migliorati, M.D.A. Assessing the feasibility of using sentinel-2 imagery to quantify the impact of heatwaves on irrigated vineyards. Remote Sens. 2019, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Peng, Y.; Nguy-Robertson, A.; Arkebauer, T.; Gitelson, A.A. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sens. 2017, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-Up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Guérif, M.; Baret, F.; Skidmore, A.; Gitelson, A.; Schlerf, M.; Darvishzadeh, R.; Olioso, A. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant Cell Environ. 2016, 39, 2609–2623. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Papale, D.; Migliavacca, M.; Cremonese, E.; Cescatti, A.; Alberti, G.; Balzarolo, M.; Belelli Marchesini, L.; Canfora, E.; Casa, R.; Duce, P.; et al. Carbon, water and energy fluxes of terrestrial ecosystems in Italy. In Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2014; Volume 131, pp. 11–45. [Google Scholar]
- Wohlfahrt, G.; Hammerle, A.; Haslwanter, A.; Bahn, M.; Tappeiner, U.; Cernusca, A. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management. J. Geophys. Res. Atmos. 2008, 113, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlfahrt, G.; Sapinsky, S.; Tappeiner, U.; Cernusca, A. Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agric. For. Meteorol. 2001, 109, 1–12. [Google Scholar] [CrossRef]
- Migliavacca, M.; Perez-Priego, O.; Rossini, M.; El-Madany, T.S.; Moreno, G.; van der Tol, C.; Rascher, U.; Berninger, A.; Bessenbacher, V.; Burkart, A.; et al. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 2017, 214, 1078–1091. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Rivera, J.P.; van der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Sakowska, K.; Juszczak, R.; Gianelle, D. Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission. J. Sens. 2016, 2016, 4612809. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Sabater, N.; Rivera, J.P.; Muñoz-Marí, J.; Vicent, J.; Camps-Valls, G.; Moreno, J. Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sens. 2016, 8, 673. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of Leaf Area Index in mountain grasslands in the Alps from MODIS satellite imagery. Remote Sens. Environ. 2015, 165, 159–174. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Dong, Y.; Zhang, H.; Li, Y.; He, D.; Ding, A.; Yin, S.; Cui, L.; Chang, Y. Potential investigation of linking PROSAIL with the Ross-Li BRDF model for vegetation characterization. Remote Sens. 2018, 10, 437. [Google Scholar] [CrossRef] [Green Version]
- Melendo-Vega, J.R.; Martín, M.P.; Pacheco-Labrador, J.; González-Cascón, R.; Moreno, G.; Pérez, F.; Migliavacca, M.; García, M.; North, P.; Riaño, D. Improving the performance of 3-D radiative transfer model FLIGHT to simulate optical properties of a tree-grass ecosystem. Remote Sens. 2018, 10, 2061. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Z.; Li, W.; Yang, M. Two General Extension Algorithms of Latin Hypercube Sampling. Math. Probl. Eng. 2015, 2015, 450492. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential Use of Spectral Reflectance Indices as a Selection Tool for Grain Yield in Winter Wheat under Great Plains Conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef] [Green Version]
- Babar, M.A.; Van Ginkel, M.; Klatt, A.R.; Prasad, B.; Reynolds, M.P. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 2006, 150, 155–172. [Google Scholar] [CrossRef]
- Gutierrez, M.; Reynolds, M.P.; Raun, W.R.; Stone, M.L.; Klatt, A.R. Spectral water indices for assessing yield in elite bread wheat genotypes under well-irrigated, water-stressed, and high-temperature conditions. Crop Sci. 2010, 50, 197–214. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Claudio, H.C.; Cheng, Y.; Fuentes, D.A.; Gamon, J.A.; Luo, H.; Oechel, W.; Qiu, H.-L.; Rahman, A.F.; Sims, D.A. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote Sens. Environ. 2006, 103, 304–311. [Google Scholar] [CrossRef]
- Ustin, S.L.; Jacquemoud, S.; Pablo, J.Z.-T.; Asner, G.P. Remote Sensing of the Environment: State of the Science and New Directions. In Remote Sensing for Natural Resources Management and Environment Monitoring; Ustin, S.L., Ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 679–729. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.H.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Van der Tol, C.; Gonzalez-Cascon, R.; Moreno, G.; Carrara, A. senSCOPE: Modeling radiative transfer and biochemical processes in mixed canopies combining green and senescent leaves with SCOPE. BioRxiv Ecol. 2020. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; van Wieren, S. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Zou, X.; Mõttus, M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sens. 2017, 9, 994. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhou, D.; Fang, J. Satellite-based Studies on Large-Scale Vegetation Changes in China. J. Integr. Plant Biol. 2012, 54, 713–728. [Google Scholar] [CrossRef]
- Balzarolo, M.; Peñuelas, J.; Veroustraete, F. Influence of landscape heterogeneity and spatial resolution in multi-temporal in situ and MODIS NDVI data proxies for seasonal GPP dynamics. Remote Sens. 2019, 11, 1656. [Google Scholar] [CrossRef] [Green Version]
- Aldakheel, Y.Y.; Danson, F.M. Spectral reflectance of dehydrating leaves: Measurements and modelling. Int. J. Remote Sens. 1997, 18, 3683–3690. [Google Scholar] [CrossRef]
- Wen-long, B.; Qing-wei, Y.; Ya-jun, C.; Lu, Z.; Wei, L.; Hui-min, L.; Yong-qing, Y. Effects of Drought Stress on Photosynthetic Characteristics of Kentucky Bluegrass. J. Northeast Agric. Univ. (Engl. Ed.) 2013, 20, 19–23. [Google Scholar] [CrossRef]
- Casas, A.; Riaño, D.; Ustin, S.L.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
- Miraglio, T.; Adeline, K.; Huesca, M.; Ustin, S.; Briottet, X. Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sens. 2019, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
Study Site | Year | Observation Period | No. of Observations | Measurement Time Window | Observation Scale | Measurements |
---|---|---|---|---|---|---|
IT-MBo | 2013 | May 2013–July 2013 | 8 | Averaged over solar noon (11:00–13:00 of local solar time) | Temporal | Spectral |
fAPAR | ||||||
2014 | June 2014–July 2014 | 14 | Averaged over solar noon (11:00–13:00 of local solar time) | Temporal | Spectral | |
fAPAR | ||||||
2017 | July 2017 | 10 | Acquisition around solar noon (12:00–14:00 of local solar time) | Spatial | Spectral | |
fAPAR | ||||||
AT-Neu | 2018 | April 2018–May 2018 | 49 | Averaged over solar noon (11:00–13:00 of local solar time) | Temporal | Spectral |
fAPAR |
SVIs Group | SVIs | Other Names | Formula | References |
---|---|---|---|---|
VIS-NIR | NDVI865.665 | (8a − B4)/(8a + B4) | [15] | |
MTCI | (8a − B5)/(B5 − B4) | [53] | ||
Red-Edge | RENDVI783.740 | (B7 − B6)/(B7 + B6) | [41] | |
RENDVI783.705 | NDre2 | (B7 − B5)/(B7 + B5) | [40,41] | |
RENDVI865.740 | NDVIre2n | (8a − B6)/(8a + b6) | [9,40] | |
NIR-Shoulder | NSDI779.754 1 | (O16 − O12)/(O12 + O16) | Proposed in this study | |
NSDI865.783 | NDVIre3n | (8a − B7)/(8a + B7) | [40] |
PROSAIL Parameters | Symbol | Unit | Minimum Value | Maximum Value | Avg/Fixed Value |
---|---|---|---|---|---|
Leaf structural parameter | N | - | 1.5 | 1.9 | 1.7 |
Leaf chlorophyll content | Cab | µg cm−2 | 40 | 70 | 55 |
Carotenoid content | Car | µg cm−2 | 3.75 | 12.65 | 8.2 |
Brown pigment | Cbrown | - | 0 | 0.2 | 0.1 |
Leaf water content | Cw | mg cm−2 | 0.01 | 0.05 | 0.03 |
Leaf dry matter | Cm | mg cm−2 | 0.005 | 0.01 | 0.007 |
1 Leaf area index | LAI | m2·m−2 | 0.3 | 3.7 | 2 |
Leaf angle distribution | LAD | (deg) | 0 | 90 | 45 |
Hotspot | H | - | 0.01 | ||
Soil Reflectance | soil | - | 0 | 1 | 0 |
Solar zenith angle | θS | (deg) | 25 | ||
Observation zenith angle | θv | (deg) | 0 | ||
Relative Azimuth Angle | φ | (deg) | 0 |
PROSAIL Simulation Scenarios | 1t/1s | 2t/2s | 3t/3s | 4t/4s |
---|---|---|---|---|
Scenarios at the Temporal Scale (1t–4t) | LAI varying between minimum and maximum values (temporal scale field observations) | LAI co-varying between minimum and maximum values (temporal scale field observations) | LAI co-varying between minimum and maximum values (temporal scale field observations) | All PROSAIL parameters co-varied. |
LAD: 0–90 | LAD: 0–90 | |||
N: 1.5–1.9 | ||||
Cm: 0.005–0.01 | ||||
Scenarios at the Spatial Scale (1s–4s) | LAI varying between minimum and maximum values (spatial scale field observations) | LAI co-varying between minimum and maximum values (spatial scale field observations) | LAI co-varying between minimum and maximum values (spatial scale field observations) | All PROSAIL parameters co-varied. |
LAD: 0–90 | LAD: 0–90 | |||
N: 1.5–1.9 | ||||
Cm: 0.005–0.01 |
SVIs | Temporal Scale Observation | Spatial Scale Observations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IT-MBo 2013 (N = 8) | IT-MBo 2014 (N = 14) | AT-Neu 2018 (N = 49) | IT-MBo 2017 (N = 10) | |||||||||
R2 | Adj. R2 | RMSE(m2·m−2) | R2 | Adj. R2 | RMSE(m2·m−2) | R2 | Adj. R2 | RMSE(m2·m−2) | R2 | Adj. R2 | RMSE(m2·m−2) | |
VIS-NIR | ||||||||||||
NDVI865.665 | 0.79 ** | 0.76 | 0.48 | 0.90 *** | 0.90 | 0.27 | 0.55 *** | 0.54 | 1.71 | 0.00 n.s | −0.12 | 0.77 |
MTCI | 0.83 ** | 0.81 | 0.43 | 0.87 *** | 0.86 | 0.32 | 0.81 *** | 0.81 | 1.11 | 0.01 n.s | −0.12 | 0.77 |
Red-Edge (RE) | ||||||||||||
RENDVI783.740 | 0.85 ** | 0.83 | 0.40 | 0.93 *** | 0.93 | 0.23 | 0.79 *** | 0.78 | 1.18 | 0.03 n.s | −0.09 | 0.76 |
RENDVI783.705 | 0.82 ** | 0.79 | 0.44 | 0.89 *** | 0.88 | 0.30 | 0.67 *** | 0.66 | 1.47 | 0.00 n.s | −0.12 | 0.77 |
RENDVI 865.740 | 0.86 ** | 0.83 | 0.39 | 0.96 *** | 0.96 | 0.17 | 0.20 ** | 0.18 | 2.28 | 0.05 n.s | −0.06 | 0.75 |
NIR-Shoulder | ||||||||||||
×NSDI779.754 | 0.88 ** | 0.86 | 0.37 | 0.95 *** | 0.95 | 0.20 | 0.09 * | 0.07 | 2.44 | 0.04 n.s | −0.08 | 0.75 |
NSDI865.783 | 0.28 n.s | 0.16 | 0.89 | 0.15 n.s | 0.07 | 0.82 | 0.58 *** | 0.57 | 1.66 | 0.06 n.s | −0.06 | 0.75 |
SVIs | Scenario 1t, 2t, 3t, 4t | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1t (N = 100) | 2t (N = 100) | 3t (N = 100) | 4t (N = 100) | |||||||||
R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | |
VIS-NIR | ||||||||||||
NDVI865.665 | 0.73 *** | 0.72 | 0.65 | 0.56 *** | 0.56 | 0.82 | 0.52 *** | 0.51 | 0.86 | 0.57 *** | 0.57 | 0.81 |
MTCI | 0.98 *** | 0.97 | 0.20 | 0.95 *** | 0.95 | 0.26 | 0.85 *** | 0.84 | 0.49 | 0.39 *** | 0.38 | 0.97 |
Red-Edge (RE) | ||||||||||||
RENDVI783.740 | 0.95 *** | 0.95 | 0.27 | 0.93 *** | 0.93 | 0.34 | 0.90 *** | 0.90 | 0.40 | 0.64 *** | 0.63 | 0.75 |
RENDVI783.705 | 0.81 *** | 0.81 | 0.54 | 0.65 *** | 0.65 | 0.73 | 0.60 *** | 0.60 | 0.78 | 0.62 *** | 0.62 | 0.76 |
RENDVI 865.740 | 0.98 *** | 0.98 | 0.18 | 0.87 *** | 0.87 | 0.45 | 0.77 *** | 0.77 | 0.59 | 0.44 *** | 0.43 | 0.93 |
NIR-Shoulder | ||||||||||||
×NSDI779.754 | 0.99 *** | 0.99 | 0.15 | 0.93 *** | 0.93 | 0.32 | 0.86 *** | 0.86 | 0.46 | 0.56 *** | 0.55 | 0.83 |
NSDI865.783 | 0.79 *** | 0.79 | 0.56 | 0.20 *** | 0.19 | 1.11 | 0.10 ** | 0.09 | 1.18 | 0.20 *** | 0.19 | 1.11 |
SVIs | Scenario 1s, 2s, 3s, 4s | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1s (N = 100) | 2s (N = 100) | 3s (N = 100) | 4s (N = 100) | |||||||||
R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | R2 | Adj. R2 | RMSE (m2·m−2) | |
VIS-NIR | ||||||||||||
NDVI865.665 | 0.86 *** | 0.86 | 0.27 | 0.18 *** | 0.17 | 0.65 | 0.13 *** | 0.12 | 0.67 | 0.19 *** | 0.18 | 0.65 |
MTCI | 0.97 *** | 0.97 | 0.12 | 0.85 *** | 0.85 | 0.28 | 0.43 *** | 0.42 | 0.55 | 0.11 *** | 0.10 | 0.68 |
Red-Edge (RE) | ||||||||||||
RENDVI783.740 | 0.98 *** | 0.98 | 0.09 | 0.82 *** | 0.82 | 0.31 | 0.62 *** | 0.61 | 0.45 | 0.22 *** | 0.21 | 0.64 |
RENDVI783.705 | 0.92 *** | 0.92 | 0.21 | 0.27 *** | 0.26 | 0.62 | 0.24 *** | 0.23 | 0.63 | 0.21 *** | 0.21 | 0.64 |
RENDVI 865.740 | 0.99 *** | 0.99 | 0.07 | 0.38 *** | 0.38 | 0.57 | 0.15 *** | 0.14 | 0.67 | 0.10 ** | 0.09 | 0.68 |
NIR-Shoulder | ||||||||||||
×NSDI779.754 | 0.99 *** | 0.99 | 0.06 | 0.65 *** | 0.65 | 0.42 | 0.33 *** | 0.32 | 0.59 | 0.18 *** | 0.17 | 0.65 |
NSDI865.783 | 0.80 *** | 0.80 | 0.32 | 0.08 ** | 0.07 | 0.69 | 0.10 ** | 0.09 | 0.69 | 0.05 ** | 0.04 | 0.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, H.A.; Gianelle, D.; Rocchini, D.; Dalponte, M.; Martín, M.P.; Sakowska, K.; Wohlfahrt, G.; Vescovo, L. VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sens. 2020, 12, 2254. https://doi.org/10.3390/rs12142254
Imran HA, Gianelle D, Rocchini D, Dalponte M, Martín MP, Sakowska K, Wohlfahrt G, Vescovo L. VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sensing. 2020; 12(14):2254. https://doi.org/10.3390/rs12142254
Chicago/Turabian StyleImran, Hafiz Ali, Damiano Gianelle, Duccio Rocchini, Michele Dalponte, M. Pilar Martín, Karolina Sakowska, Georg Wohlfahrt, and Loris Vescovo. 2020. "VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands" Remote Sensing 12, no. 14: 2254. https://doi.org/10.3390/rs12142254
APA StyleImran, H. A., Gianelle, D., Rocchini, D., Dalponte, M., Martín, M. P., Sakowska, K., Wohlfahrt, G., & Vescovo, L. (2020). VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sensing, 12(14), 2254. https://doi.org/10.3390/rs12142254