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Abstract: Current cardiopulmonary activity monitoring is based on contact devices which cannot
be used in extreme cases such as premature infants, burnt victims or rescue operations. In order to
overcome these limitations, the use of radar technologies emerges as an alternative. This paper aims
to enhance the comprehension that non-contact technologies, in particular radar techniques, offer as
a monitoring tool. For this purpose, a modified low cost commercial 122 GHz frequency-modulated
continuous-wave (FMCW) radar is used to better fit the current application domain. The radar signals
obtained are processed using a classic linear filtering algorithm aiming to separate the breathing from
the heartbeat component while preserving signals integrity. In a standoff configuration and with
different subject orientations, results show that the signal obtained with the radar can be used to
extract not only the respiratory and heartbeat rates, but also the heart rate variability (HRV) sequence.
Moreover, results evidence the coupling between breathing and heartbeat, also showing that the HRV
sequence obtained can identify the respiratory sinus arrhythmia (RSA) effect. Finally, the radar is
tested in a simultaneous multi-target scenario, demonstrating its monitoring capabilities in more
complex situations. Nevertheless, there are some challenges left to use the system in a real-life
monitoring environments, such as the removal of random body movements.

Keywords: cardiopulmonary activity; non-contact monitoring; vital sign monitoring; FMCW radar;
HRV; signal separation; RSA; heartbeat; multi-target vital sign detection

1. Introduction

Noncontact monitoring of cardiopulmonary activity has gained attraction in the past decade since
it is a promising solution to overcome difficulties during sleep monitoring, patients in a burn unit,
post-surgery monitoring, newborn infants, or in rescue working, because it makes possible to control
and monitor people remotely, without a wired system [1–3]. It results in a more comfortable situation
for the patient, creating better conditions for more accurate diagnoses. Moreover, there is a growing
percentage of population suffering from cardiovascular diseases [4] and the demographical changes in
the last decades point towards an aging population which implies a large increase in medical costs.
Additionally, home monitoring and telehealth, which are enabled by noncontact monitoring, allow
early detection of worsening conditions which would decrease these costs by reducing the number of
hospital admissions and bed days of care [5–7].

Cardiopulmonary activity monitoring is based on measuring one or more physiological effects
of mechanical or electrical nature occurring in the heart, the lung or both. The most used
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cardiorespiratory monitoring techniques require contact or invasive interactions with the patient
such as the electrocardiogram (ECG) or the photoplethysmogram (PPG), which are the gold standard
techniques for heart monitoring. The ECG is a measure of the electrical changes of the heart over time,
as a result of the muscle cells depolarization during each cardiac cycle [8]. On the other hand, the PPG
is a non-invasive technique for measuring changes in blood flow through tissues by the emission
of infrared light [9]. However, the use of contact sensors is neither possible nor desirable in many
situations. With the aim of overcoming this limitation, some noncontact-based instruments have been
developed such as the ballistocardiograph (BCG) [10], the seismocardiograph (SCG) [11], video-based
motion analysis methods [12], laser-based methods [13], thermal methods [14] or radar monitoring,
which is the main issue in this paper. All of them are based on the body surface displacement caused
by organ motion and deformation and fluid displacement produced by breathing and heartbeat as
explained in [15]. The main characteristics of these noncontact monitoring techniques are listed in
Table 1. Nevertheless, they are not normally used in clinical environments due to lack of reliability,
accuracy and automatization [1]. For that reason, the aim of this work is to enhance the comprehension
that radar technologies offer as a monitoring and diagnosis tool.

Table 1. Main characteristics and limitations of non-contact devices for cardiorespiratory monitoring.

Non-Contact
Devices Working Principle Limitations

Laser-based Method that measures chest displacement
using light.

• Only capable of monitoring one subject at a
time.

• High cost.

Video motion
monitoring

Method that films the displacement of the
body surface.

• Sensitive to illumination.

Thermal-based
Method that, measuring temperature changes,
allows a representation of the heartbeat
and breathing.

• Sensitive to ambient temperature.

• High cost.

Ballistocardiograph

Method that obtains the heartbeat and
breathing due to repetitive movements of the
human body, occurring because of acceleration
of blood as it is ejected and moved in the
vessels during the cardiac cycle.

• Artifacts due to patient motion.

• Complexity of the system: sensors and
accelerometers.

• It requires a direct mechanical coupling
with the subject.

• Only capable of monitoring one subject at a
time.

Seismocardiograph Method that measures the heartbeat and
breathing due to the vibrations of the chest wall.

• Artifacts due to patient motion.

• High sensitivity owing to sensor location
and accelerometer axes orientation.

• It requires a direct mechanical coupling
with the subject.

• Only capable of monitoring one subject at a
time.

Radar-based

Method that captures the chest displacement
due to the frequency shift (velocity measure)
or phase difference (distance measure), which
occurs when the target from which the radar
wave is reflected moves.

• Medium cost.

• Artifacts due to patient motion. 1

1 Radar-tracking algorithms could be used to mitigate artifacts due to patient motion.

Noncontact detection and monitoring of cardiopulmonary activity using radar technology is
known since 1975 [16]. However, until the advances in the late 90’s allowed integrating a radar into a
single chip, which made this technology compact, lightweight, mass-produced and inexpensive [17],
this technology was not actually considered as an option. During the last two decades, studies
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have highlighted the numerous advantages of this method for cardiopulmonary activity monitoring,
which make it the ideal technology for home monitoring or telehealth: measurement from distances
of the order of meters or even through-wall measurements are possible [18], accurate measurements
independent of orientation or point of view [19], and unobtrusive measurements to the subject
(no need of sedation or drugs, no need of standing still, and the subject can be fully clothed [20]),
which means that regular daily activities can be performed while being measured. Table 2 lists
different approaches carried out for vital sign monitoring using continuous-wave (CW) and frequency
modulated continuous-wave (FMCW) radars.

Table 2. Vital sign monitoring with radar techniques.

Radar
Technology

Frequency
(GHz) Reference Signal Results Additional Comments

CW [21] 1.892 Finger pulse
sensor

Respiratory and
heart rate

-

CW [22] 2.4 ECG and
respiratory belt

HRV Analysis of RSA effect

CW [23] 15 Contact pulse
sensor (wrist)

Reconstructed pulse
waveform

Best cardiac motion detection from the front
but better heart-rate accuracy from the back

CW [24] 24 ECG HRV Thorough analysis of HRV extraction

CW [25] 24 Sphygmogram Reconstructed pulse
waveform

Correlation between radar output and
sphygmogram measuring carotid, vein and
ventricle pressure

CW [26] 24 ECG (Heart rate) Heart rate Best performance measuring from the back
of a sitting patient

CW [27] 24 ECG (Identifying
cardiac events)

Respiratory and
heart rate

Correlation between the radar output and
the overall cardiac volume conducted
through skin

CW [28] 228 ECG and
respiratory belt

Respiratory and
heart rate

Measurements up to 50 m

FMCW [29] 24.05–24.25 Piezoelectric finger
sensor

Heart rate Simultaneously heart rate detection of
multiple subjects

FMCW [30] 77–81 - Respiratory and
heart rate

Simultaneously vital sign detection of
multiple subjects, uses MIMO

FMCW [19] 75–85
Philips MP70:
ECG + CO2

changes

Respiratory and
heart rate -

FMCW [31] 118.5–125.5 Respiratory belt
and pulsioximeter

Respiratory and
heart rate -

FMCW
[this work] 114–130 ECG

Reconstructed
breathing and

heartbeat waveforms,
HRV, and respiratory

and heart rate

Simultaneously vital sign detection of
multiple subjects and analysis of coupling
between breathing and heartbeat

Therefore, the main approach of radar-based vital sign detection is the measure of the chest
vibrations resulting from the mechanical effects of breathing and the cardiac cycle. These signals
have been thoroughly analyzed in the literature, allowing a fair characterization of their waveform.
The heartbeat signal has a fundamental frequency between 0.9 Hz and 3 Hz (54 to 180 beats/min),
and an amplitude which is around 0.5 mm measured from the chest. On the other hand, the breathing
signal has a fundamental frequency between 0.1 and 0.7 Hz (6 to 42 breaths/min), and an amplitude
which is in the 4 and 12 mm interval measured from the chest [1]. In addition, it is important to
highlight that the shape of the heartbeat waveform varies significantly depending on where it is
measured, as was stated in [25]. Observing the results extracted in [25,32–34], it can be concluded that
the heartbeat waveform extracted with the radar is highly correlated to the arterial pressure waveform.
Being this pressure waveform widely used for monitoring and cardiac disease diagnosis [35–37].

Moreover, several diagnostic indicators can be extracted from this waveform, for instance,
the heart rate variability (HRV). It is a widely used as a non-invasive tool to assess the autonomic
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nervous system (ANS) activity, being used as a biomarker of some disorders, such as sleep apnea,
sudden cardiac death, diabetic neuropathy or stress [38–42]. The concept behind the HRV was firstly
introduced by Stephen Hales in 1733 [43], when he noticed a variation in the arterial blood pressure
and time length between beats during the respiration cycle of horses. However, it was not until 1847
when this phenomenon was documented by Carl Ludwig [44], stating an increase in the heart rate
during inhalation and a decrease during exhalation. Nowadays, this fact is known as respiratory sinus
arrhythmia (RSA), and it proves that a coupling between breathing and heartbeat exists. Figure 1
illustrates the heart rate variation due to the breathing process, where it can also be observed the
ECG amplitude modulation due to the breathing [45]. Moreover, it shows how during inhalation
the subject chest volume increases, reducing the distance between the radar setup and the region
measured, which is represented with negative amplitude values. Additionally, the HRV and RSA
provide diagnostic capabilities to identify respiratory disorders such as central sleep apnea, chronic
obstructive pulmonary disease or asthma, and refine diagnostic procedures [20,46–48].

Figure 1. Breathing waveform extracted with the 122 GHz radar setup compared with its ECG reference.
The inhalation and exhalation processes are illustrated.

Thus, as previously enunciated, the main idea of this work is to carry out a comprehensive
approach to point out the radar potential in the vital sign monitoring area. The principal objective is
to be able to use the radar system as a monitoring tool. This goal has been addressed with breathing
and heartbeat waveform separation, being able to identify characteristic events, and with the HRV
extraction. Moreover, it has been illustrated the coupling between breathing and heartbeat, in terms
of harmonic power and showing the RSA effect. Finally, the simultaneous monitoring of multiple
subjects is presented, taking advantage of the FMCW technology.

To that end, a commercial radar module working at 122 GHz, within an ISM band [49], is used for
monitoring cardiopulmonary activity, which is described in Section 2.2. The working frequency has
not been chosen arbitrarily, its election is based on two main facts. On the one hand, the frequency
of 122 GHz belongs to an ISM band. On the other hand, increasing the working frequency enhances
the measurement accuracy, since, at high frequencies, small displacements result in significant phase
changes, as it is detailed in Section 2.1. Furthermore, the acquired signal is compared with a 3-lead
ECG that is used as a reference. This comparison shows the correlation between the heart electrical
response, measured with the ECG, and its mechanical response, measured with the radar.



Remote Sens. 2020, 12, 2265 5 of 23

The rest of this paper is organized as follows. Section 2 explains the FMCW radar working
principle, describes the radar module used and the signal processing scheme followed to separate
the vital sign waveforms. Section 3 details three experiments carried out to show the potential of
radar technologies in the frame of vital signal monitoring: firstly, a breathing and heartbeat waveform
extraction in breathing and apnea conditions; secondly, an analysis of breathing and cardiac activity
coupling, in particular the HRV and RSA effect at different body orientations; and lastly, a multi-target
vital sign monitoring. Finally, the presented results are discussed in Section 4, and conclusions are
drawn in Section 5.

2. Materials and Methods

2.1. FMCW Radar Working Principle

A frequency modulated signal is transmitted towards the chest or the back of subjects, lying
or sitting. Chest displacements due to breathing and heartbeat are measured through the phase
modulation present in the received signal, delivering a signal that contains the breathing and heartbeat
effects. Both the instantaneous frequency of the transmitted and the received radar signals can be
observed in Figure 2.

The analytical signal (the real signal is the real part of this analytic signal: sreal(t) = <(sTx(t)) =
cos(2π fct + πγt2 + Φ)) transmitted by a FMCW radar takes the form [50]:

sTx(t) = exp(j(2π fct + πγt2 + Φ)) (1)

where fc is the central frequency, γ = B/T is the chirp rate being B the transmitted bandwidth and T
the repetition period, Φ is the initial phase (which in this section will be considered zero for simplicity),
and t is the so-called fast time for the interval, t ∈ [−T/2, T/2].

Under the “stop and go assumption”, which states that the target does not change its position
during the time interval T, the received signal for a point scatterer at a range R(τi) (where τ is the
so-called slow time (mathematically, the slow time can be expressed as τi = i · T, with i ∈ Z, so it is a
sampled version of the fast time t) and index i refers to each transmit period, T) for each transmitted
chirp is:

sRx(t, τi) ∝
√

σsTx(t−
2R(τi)

c
) (2)

where 2R(τi)
c is the round-trip delay, and σ is the radar-cross section (RCS).

Figure 2. Working principle of FMCW radars. B stands for the transmitted bandwidth, T is the
repetition period and 2 ∗ R(τi)/c is the round-trip delay, i.e., the time that the transmitted signal takes
to be returned to the radar by a target at R(τi).
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After mixing the transmitted signal with the received one, the beat signal is obtained:

sb(t, τi) = sTx(t)s∗Rx(t) =

=
√

σ exp(j(
4πγR(τi)t

c
+

4π fcR(τi)

c
− 4πγR2(τi)

c2 )) =

=
√

σ exp(j2π fb(τi)t + φ(τi) + φ2(τi)))

(3)

The beat signal follows a sinusoidal waveform with a frequency known as beat frequency
fb(τi). Identifying terms in the previous equation, fb(τi) = 2γR(τi)/c, thus, the beat frequency
is proportional to the target range [50]. On the other hand, the phase of the beat signal sb(t, τi) is
denoted as φ(τi) = 4π fcR(τi)/c, and contains information about the target range. Lastly, the term
φ2(τi) = −4πγR2(τi)/c2 represents the residual video phase (RVP) [50], which is found to be negligible
and can be ignored, since it is proportional to 1/c2.

In view of the previous equations, fb(τi) is used for target location, enabling person separation in
multi-target measurements. This target separation is carried out with a digital filter bank, implemented
with an FFT (Fast Fourier Transform). On the other hand, φ(τi) is used to monitor the vibrations
of the thorax produced by the breathing and heartbeat signals. A high central frequency is selected
for the central frequency due to the system increases its sensitivity to small ∆R with this frequency:
∆Φ∝ fc∆R.

2.2. Radar Module

The radar sensor is based on a 122 GHz FMCW radar kit fabricated by Silicon Radar GmbH [51].
This product was chosen for its low cost, high flexibility, and its reduced overall size. The kit itself is
based on a 8 × 8 mm2 monolithic microwave integrated circuit (MMIC) transceiver with just 440 mW
power consumption. Research related to this sensor and its previous versions may be found throughout
the literature [52]. Its main characteristics are listed in Table 3. Within these characteristics, the most
critical parameter for the intended application would be the radar’s phase stability. This value is the
maximum distance displacement produced by phase shifts in the received signal when the radar aims
at a static target. Since the target is static, any registered phase shifts in the received signal must be due
to atmospheric variations or the sensor’s own phase noise. Therefore, this parameter can be interpreted
as a measured limit for the phase-based measurements performed with the radar, where distance
displacements with a corresponding phase shift lower than the sensor’s phase stability cannot be
accurately measured. The phase stability value in Table 3 has been measured by aiming the radar at
a static metal plate during 0.8 s with 150 µs chirps. Figure 3 shows a diagram of the set-up and the
recorded distance histogram.

Table 3. Main characteristics of the radar module used.

Characteristic Value

Center Frequency (GHz) 122
Output Power (dBm) −3 (without antennas)

Bandwidth (GHz) 16 (max)
Sweep Time 12 µs to 18 ms

Beamwidth 1 ±30◦

±4◦ (with the lens)
Phase stability (µm) (max) 1.91

1 A dielectric lens has been fabricated to increase the flexibility of our set-up regarding the radar focusing,
since the field of view (FoV) of the radar in one dimension is: FoV ≈ Beamwidth · R, where R is the target
range. The use of the lens allows a narrower focusing.
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(a) (b)

Figure 3. (a) Diagram of the measurement set-up for phase stability characterization, where the radar
aims at a static metal plate. (b) Recorded histogram of the distance displacements due to phase shifts
according to φ(τi) = 4π fcR(τi)/c.

The radar’s summarized architecture, as well as a photograph, may be seen in Figure 4. Signal
generation is achieved via a PLL (Phase-Locked Loop) synchronized with a voltage-controlled oscillator
(VCO) at 60 GHz and a phase-frequency detector (PFD) fed by a reference clock signal. After doubling
the signal’s frequency, transmission is performed by a dipole antenna. The reflected radiation is
received by another such antenna, both placed directly on the chip [53] The received signal is mixed to
produce I/Q signals which are conditioned in baseband and sampled with an external ADC, connected
to a conventional PC for processing.

(a)

(b)

(c)

Figure 4. (a) Diagram of the radar’s RF and baseband architecture. Items in green have been modified
from the original commercial version. (b) Photograph of the sensor: top view. The connectors on the
sides of the sensor are various I/Q, clock and trigger outputs. The microcontroller includes a USB
connector to receive waveform configuration orders from a PC. (c) Photograph of the sensor: front view.

In order to better fit the desired application, the commercial version of the radar has been
modified to the final architecture and description shown in Figure 4. The main modification has been
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the replacement of the commercial radar’s microcontroller and baseband boards for custom-made
PCBs, enabling its reduction in size to just 5 × 5 cm2 and other improvements such as:

• Continuous FMCW operation: The commercial FMCW radar’s transmission was limited to
intervals managed by its microcontroller. These intervals included off-time between clusters of
FMCW sweeps to allow for on-board signal processing and USB-to-PC data transmission as shown
in Figure 5, which would hinder continuous cardiopulmonary measurements. Figure 5a shows
both types of off-time originally preventing continuous transmission, while Figure 5b confirms
that data is composed of voltage ramps of the same amplitude as before the modifications and
with faster sweeps. In the modified architecture the microcontroller has been removed so that all
processing is offloaded to a PC, with a connected external ADC that continuously samples the
I/Q signals.
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Figure 5. (a) Voltage ramps input into the MMIC’s VCO for FMCW operation in the modified (in blue)
and commercial sensor (in red). (b) Zoomed-in view.

• Cleaner signal reference: The reference oscillator used to feed the PFD has been replaced for
another commercial component from the same manufacturer. Although slightly more expensive,
the new reference provides less phase noise. This is an important feature in an upconversion
architecture such as the one in Figure 4, because the phase noise will be increased in each
multiplication stage, ultimately masking close low-power targets in the spectrum, as shown in
Figure 6. Notice, in Figure 6b, the increase in dynamic range due to the reduction in phase noise
of the new reference oscillator, which allows detection of the previously-masked target at around
1 m distance. This is specially useful in our desired application, since some of the returns from
cardiopulmonary activity can present very low SNR.
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(a) (b)

Figure 6. (a) Diagram of the measurement set-up for spectral noise characterization, where the radar
aims at two targets in its line of sight: a penetrable plastic slab, and a metallic plate behind it. (b) Spectral
comparison among different stages of the radar’s architecture.

• Flexible waveform configurations: The replacement of the microcontroller allows for improved
waveform configurations, including finer bandwidth and sweep time selections. This has enabled
proper alignment of sweep flyback times, and triggering of the ADC’s sampling using an
end-of-ramp signal. Both improvements create better-synchronized waveform generation and
sampling, producing less error in the cardiopulmonary measurements.

• Redesign of signal conditioning: Enabled by the removal of the commercial baseband board,
the baseband signal conditioning has been modified for better adaptation to the desired
application. This includes a redesign of the I/Q filters, which are now electronically-modified
by the microcontroller, to adapt their cutoff frequency and gain to the specific needs of each
measurement scenario.

• Cleaner power supply: In contrast to the commercial architecture, the power source of the noisy
microcontroller (i.e., a USB port) can be made independent from the PLL’s (which can be through
voltage-regulated jack connector or dedicated pins). This provides a cleaner source for waveform
generation, ultimately producing less spurs and/or harmonics in RF bands, which could be
erroneously interpreted as useful cardiopulmonary information.

• Cost reduction: The removal of the commercial kit’s baseband and microcontroller boards allows
acquiring only the commercial MMIC. Including the fabrication of the custom-made PCBs,
the overall cost of the modified sensor is approximately one third of the commercial radar’s price,
dropping down to ∼300e

In comparison to traditional mm-wave waveguide-based transceivers, the compactness, low cost,
and low power consumption of this MMIC-based device make it an ideal sensor for cardiopulmonary
activity monitoring. These properties would allow improvements to the usual fixed single sensor
measurement set-up, such as portable sensors to be used on-field or even inexpensive installation
of several sensors working together in a network [6,7,54] (which could be useful for multi-view
cardiopulmonary measurements).

2.3. Signal Processing Scheme

This section describes the pre-processing needed for the signal conditioning and the linear filtering
algorithm used to extract the breathing and heartbeat waveforms. The signal processing scheme
followed is illustrated in Figure 7, where the signal acquired with the radar requires a pre-processing
step, followed by a classic filtering in the frequency domain to extract the desired signals.
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Figure 7. Block diagram showing the modules used to separate the breathing and heartbeat waveforms.

2.3.1. Pre-Processing Module

A previous conditioning of the signal is necessary before applying the processing algorithms,
since the noise and random motion artifacts need to be mitigated to obtain accurate results.
The pre-processing steps to accommodate the radar signal are described in Table 4. Steps 1–3 are used
to prepare the signal and enhance the dynamic range. After that, an FFT is performed to identify
the frequency range where the target’s beat frequency is located. In step 5, the FFT is clipped in the
predefined frequency range, with the aim of isolating the target from interfering objects in the radar’s
field of view. Then, for each chirp, the phase is computed at the beat frequency, which is selected by
calculating the FFT maximum in the frequency range previously defined. After that FFT sub-sampling,
the sampling frequency of the signal is in the range of 1–2 kHz.

Traditionally, the phase extraction is carried out directly: Φ[n] = arctan(Q[n]/I[n]), where I[n]
and Q[n] are the sampled version of the I/Q signals from the radar (see Figure 4), but it presents
unwrapping errors because it is restricted to its codomain range (−π/2, π/2). So as to solve these
unwrapping limitations, in step 8 of Table 4, the phase extraction is obtained using the extended
differentiate and cross-multiply (DACM) algorithm, which has demonstrated to provide more robust
and accurate demodulation results [55]. Finally, the baseline wander, which results from motion
artifacts due to fine involuntary movements of the patient, is removed using a method based on
empirical mode decomposition (EMD) [56], as shown in Figure 8.

(a)

(b)

Figure 8. (a) Radar signal obtained for an apnea measurement and its baseline. (b) Radar signal after
removing the baseline using the EMD algorithm.
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Table 4. Pre-processing algorithm steps.

Pre-Processing Algorithm

1→ s[n] = I[n] + jQ[n] % Received signal
2→ sw[n] = s[n] ∗ w[n] % w[n]: Window to enhance dynamic range
3→ szp[n] = ZP(sw[n]) % Zero-padding added
4→ S[ f ] = FFT(szp[n]) % FFT of each chirp
5→ [ f 1, f 2] determined from S1[ f ] % Target’s frequency range from first chirp FFT: S1[ f ]
6→ Sclipped[ f , n] = S[ f1 : f2, n] % Clipping of the FFT between f1 and f2
7→ fb[n] = max(Sclipped[ f , n]) % Beat frequency is calculated for each chirp
8→ Φ[n] = DACM(Sclipped[ fb [n],n]) % Phase extraction using DACM algorithm
9→ R[n] = Φ[n]/(4πλ) % Target range is calculated from phase
10→ EMD(R[n]) % The baseline wander is removed using EMD

2.3.2. Processing Module for Signals Separation

After the pre-processing module, the heartbeat and breathing waveforms are extracted using a
linear frequency filtering algorithm. It is the simplest algorithm we can use for this purpose, since it
only depends on the cut-off frequencies of its filters. These frequencies have been carefully chosen
taking into account the nature of the input signal. The filter used to extract the breathing component is
defined between 0.05 Hz, to remove the noise and the DC component, and 0.8 Hz, which is limited by
the lower cut-off frequency of the heartbeat filter. On the other hand, the upper cut-off frequency of
the filter used to extract the heartbeat is dynamically set, ensuring it contains 12 harmonics, number
which has been determined after analyzing the MSE error obtained varying the number of harmonics
that are contained in the filter. Figure 9 shows that 12 harmonics are needed to fairly reproduce the
heartbeat signal. Therefore, the heartbeat filter is defined between 0.8 Hz and 12 · fhb, being fhb the
heartbeat fundamental frequency.

(a) (b)

Figure 9. (a) Spectrum of a measurement in apnea conditions and the harmonics passing through the
filter. (b) MSE expressed in % of the reconstructed heartbeat signal varying the filter cut-off frequency,
fc = k2 · fhb. k2 is the number of harmonics passing through the filter bandwidth and fhb is the
fundamental heartbeat frequency.

The steps of the linear filtering algorithm are listed in Table 5.
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Table 5. Linear filtering algorithm steps.

Linear Filtering Algorithm

0→ The window cut-off frequencies are set % Breathing: 0.05–0.8 Hz, Heartbeat: 0.8–12· fhb Hz
1→Wbr[ f ] and Whb[ f ] % Ideal band-pass filter for each signal
2→ SR[ f ] = FFT{R[n]} % FFT of the pre-processed target range
3→ Sbr[ f ] = SR[ f ] ·Wbr[ f ] % Breathing signal in the frequency domain
4→ Shb[ f ] = SR[ f ] ·Whb[ f ] % Heartbeat signal in the frequency domain
5→ sbr[n] = IFFT{Sbr[n]} % Breathing signal in the time domain
6→ shb[n] = IFFT{Shb[n]} % Heartbeat signal in the time domain

3. Results

This section shows the results obtained from the three different experiments carried out, a scheme
of the experiments carried out is presented in Figure 10. The first experiment shows the capability of
the proposed approach to separate the breathing and heartbeat signals. The second one proves the
existing coupling between the breathing and heartbeat signals, also showing that our approach is able
to extract an estimate of the HRV sequence in a standoff configuration with different body orientations:
anterior and posterior views. And finally, the third experiment has been developed to reproduce a
real-case scenario, where two persons are monitored simultaneously.

Figure 10. Scheme of the experiments carried out.

3.1. Breathing and Heartbeat Information Extraction

Our results show that the system is not only capable of identifying the breathing and heartbeat
rates, but it can capture the contributions from these two organs in the radar signals, and we can
separate these joint contributions into its breathing and heartbeat components. Results also show that
different parameters such as heart rate and more sophisticated ones like the HRV can be derived from
the sequences extracted, which might be useful as monitoring tools.

Firstly, a 22-year-male subject has been monitored in apnea condition, the subject was lying
down at 0.2 m from the radar setup, where the radar is pointing to the subject’s chest (see Figure 11a).
The distance was chosen to reduce the field of view of the radar to a region which mostly (FoV of
10 cm2) belongs to the heart location [26]. The resulting waveform and the reference ECG are shown in
Figure 12.
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(a) (b)

Figure 11. (a) Experimental scenario 1.1 diagram. (b) Experimental scenario 1.2 diagram.

(a) (b)

Figure 12. (a) Heartbeat waveform extracted from a subject holding his breath with its reference ECG,
for a person with a heart rate between 70–71 beats/min. (b) Zoom of one pulse corresponding to the
heartbeat waveform extracted with the radar and its associated ECG.

As previously stated in [26], the extracted heartbeat waveform depends on the orientation of the
radar, so the beat shape can lightly differ between measurements taken using the anterior or posterior
view. However, the characteristic points providing significant diagnostic information can be easily
identified, being congruent with the prototypical shape shown in [57] (Figure 12b). The radar sequence
presents the prototypical plot of the arterial pulse waveform, which is composed of a forward and
backward wave. The forward wave represents the traveling wave generated by contraction of the
left ventricle of the heart, while the reflected wave is the traveling wave generated by reflection from
peripheral arteries [58].

The next experiment represents a more realistic scenario: a 22-year-male is lying down, breathing
normally, and the radar is placed 1 m away from the subject, pointing to its back (see Figure 11b).
Figure 13 shows in green the chest displacement obtained with the radar, where the heartbeat overlays
the breathing waveform, which is the dominant component due to a 10:1 amplitude ratio between
both signals. Thus, the chest displacement roughly corresponds with the breathing signal. Moreover,
the normalized heartbeat (in blue) and the reference ECG (in red) are also displayed. These results
evidence that, despite the heartbeat waveform appears with an amplitude distortion for some periods,
there is a clear synchrony between the ECG and the heartbeat waveform. Besides, Figure 13 shows the
modulations in both the amplitude and in the pulse period sequence of the ECG, which are highly
correlated with the breathing: Breathing directly modulates the amplitude of the ECG; and, exhalations
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increase the pulse periods, whereas inhalations decrease the pulse periods. These effects were expected
and have been widely analyzed in the literature [45,59].

Figure 13. Heartbeat waveform extracted from a breathing subject compared with its reference ECG.
It also shows the relative displacement acquired with the radar, which contains the breathing and
heartbeat signals. The subject has a respiratory rate between 8–9 breaths/min and a heart rate between
77–78 beats/min.

3.2. Analysis of Breathing and Cardiac Activity Coupling

The following results show the capability of the system to measure the coupling between the
breathing and the cardiac activity. This effect can be observed in terms of power, as can be seen
in the spectrum of the joint cardiorespiratory signal (Figure 14a), which identifies the fundamental
frequencies ( fbr, fhb), their harmonics (k1 fbr, k2 fhb), and the mixed frequencies (k1 fbr + k2 fhb) (being
fhb and fbr the fundamental frequency of the heartbeat and respiratory components respectively; and,
k1 and k2 the ordinals of the harmonics). This spectrum can be used to measure the dynamic range
of these two signals (Figure 14b) where it is clear that the amplitude of the fundamental frequency
of the cardiac activity increases during breathing. This coupling can also be shown in the secondary
parameters extracted like the HRV or RSA. These last parameters have been analyzed in Section 3.2.
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(a) (b)

Figure 14. (a) Breathing and heartbeat harmonics identified in a breathing measurement spectrum.
(b) Spectral analysis of the breathing and heartbeat fundamental components when the subject is
breathing and when the subject holds his breath.

Heart Rate Variability

In this section, the experiment consists of measuring a 22-year male in a lying-down position with
the radar pointing either to the chest (anterior view) or to the back (posterior view). These scenarios
are analyzed when the person is breathing or during apnea. Then, the HRV calculated from the ECG is
compared to the HRV obtained from the radar measurement (rHRV). During breathing, the HRV is
compared with the breathing waveform to observe how the breathing affects the heart rate. The existing
correlation between the HRV and the breathing signal was previously analyzed by H. Kobayashi
in [60], where the HRV was computed from the ECG and the breathing signal was acquired with
a spirometer.

The HRV has been computed measuring the R-R distance, while the rHRV has been estimated
using a very simple method based on measuring the distance between rising signal zero-crossings,
with a minimum distance between adjacent zero-crossing of 1

1.2 fhb
, where fhb is the heartbeat

fundamental frequency. Figure 15 shows the rHRV extraction from the radar heartbeat waveform.

Figure 15. Radar points selected to perform the rHRV extraction.

Results obtained with a posterior view are illustrated in Figure 16a, where the HRV and rHRV
sequences are depicted along with the error taking HRV as a reference. The breathing has been
represented so as to show the RSA effect, where the breathing amplitude affects the heart rate.
Moreover, it is observed that the same correlation between the HRV and the breathing signal obtained
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by H. Kobatashi is reproduced in Figure 16a. On the other hand, the same experiment has been carried
out to confirm that in an apnea scenario the heart rate is almost stable, since it is not affected by
breathing. These results can be observed in Figure 16b.

Analogously, the same procedure described above has been carried out to analyze the
measurements with an anterior view. The HRV and rHRV sequences obtained during breathing
are shown in Figure 16c. Moreover, the apnea scenario has also been analyzed Figure 16d.

(a) Breathing subject (posterior view) (b) Subject holding his breath (posterior
view)

(c) Breathing subject (anterior view) (d) Subject holding his breath (anterior view)

Figure 16. From top to down, for the four different scenarios: the HRV and rHRV sequences, and the
error using HRV as a reference are represented as Error. In those scenarios where the subject is not
holding his breath the breathing signal is displayed (a) Scenario 1: Breathing subject with the radar
pointing towards the posterior view. The error mean is 0.21 beats/min and its standard deviation is
7.24. (b) Scenario 2: Subject in apnea with the radar pointing towards the posterior view. The error
mean is −0.28 beats/min and its standard deviation is 1.08. (c) Scenario 3: Breathing subject with the
radar pointing towards the anterior view. Its error mean is −0.17 beats/min and its standard deviation
is 4.12. (d) Scenario 4: Subject in apnea with the radar pointing towards the anterior view. Its error
mean is −0.004 beats/min and its standard deviation is 0.27.

3.3. Multi-Detection

In this section, an experiment is performed to prove the system capability to measure the vital
signs of multiple targets at the same time. Thus, the scenario consists of measuring two males of 21
and 25 years, sitting in front of the radar setup, at 1.2 and 1.6 m (Figure 17a), and Figure 17b shows
that these two persons can be clearly separated in the frequency domain.
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The chest displacement waveforms captured and the rHRV sequences computed for each subject
are displayed in Figure 18.

(a) (b)

Figure 17. (a) Multi-target experiment scenario. (b) Frequency spectrum of the captured radar signal,
where the two targets are clearly separated at 1.2 and 1.6 m.

(a) Radar signal (target 1) (b) rHRV (target 1)

(c) Radar signal (target 2) (d) rHRV (target 2)

Figure 18. (a) Radar signal obtained from target 1 after performing the pre-processing algorithm.
(b) rHRV extracted from the target located at 1.2 m. (c) Radar signal obtained from target 2 after the
pre-processing algorithm. (d) rHRV extracted from the target which is located at 1.6 m.
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4. Discussion

Although the idea of contactless monitoring of cardiorespiratory function using radar techniques
is not new, in the last few years it has become a significant research topic due to the affordability
and size of current radar devices, and due to its potential use in certain applications in which the
monitoring device cannot be attached to the patient. However, despite of the obvious potential, a large
amount of research is still required before being used in the clinic.

This paper presents the results obtained with a commercial low cost 122 GHz FMCW radar device,
whose setup has been modified to fit the current application. We use an FMCW radar to isolate persons
due to its position and then measure the phase differences occurring in the reflected wave with respect
to the one emitted due to displacements of the target. In contrast to other potential radar setups,
which measure the frequency shift due to the velocity changes (i.e., the Doopler effect), the FMCW
scheme is considered more adequate for our purpose of monitoring the cardiorespiratory function
due to its capacity to separate targets in distance, allowing simultaneous multi-target monitoring.
Moreover, the selection of high working frequencies, such as 122 GHz, results in a higher sensitivity to
small target range variations, since the obtained phase is proportional to the range variations through
the radar central frequency, with an accuracy of 2 µm (Figure 3).

The signal obtained with the radar corresponds to the combined displacement effects due to the
breathing and heart beating movements. Initially, both effects are merged together, also in combination
with certain artifacts due to the involuntary movements of the patient. The removal of the artifacts and
the separation of these two sources of information are challenging aspects currently being addressed
in the literature [25–27] with promising results but still in its infancy.

In order to remove the movement artifacts, we have made use of an EMD based algorithm. EMD
is an adaptive time-space analysis method suitable for processing non-linear and non-stationary series.
EMD partitions a series into its Intrinsic Mode Functions (IMF) (also called modes) without leaving the
time domain. EMD has been used in a wide range of applications to remove the mode corresponding
to the baseline wander, having demonstrated a significant ability to solve similar problems [61,62].
Its use in our domain of application has also led to very good results, although other more evolutioned
methods might be used, such as Variational Mode Decomposition (VMD) [63].

In this work, the separation of the breathing from the heartbeat has been carried out using a
simple linear band pass filter with upper cut-off frequencies adjusted to obtain 12 harmonics of the
signal. Although this is probably the simplest scheme that might be used for this purpose, results
have demonstrated that the synchronous relationship with the ECG signal used as a reference is kept
(Figure 15). Results show that the pulse period perturbation effects present in the ECG due to the
breathing process also appear in the heartbeat signal extracted. Such synchronous relationship is
crucial to derive certain monitoring sequences, such as the HRV and/or the RSA, typically extracted
from the ECG. In any case, the information obtained from the pulse periods of the heartbeat signals
represents a contactless alternative approach to estimate the HRV sequences, opening the possibility of
a wide range of monitoring capabilities, as those using the ECG as a source [41,42].

Regarding the shape of the heartbeat sequence obtained, literature has suggested very strong
shape correlations with respect to the arterial pressure wave [26], with two phases clearly identifiables:
one corresponding to the forward wave, and another to the reflected one. Despite these two phases are
easily distinguishable in Figure 12b, our results suggest that the signal obtained is correlated with a
time shifted mixture of the effects introduced by ventricular and atrial pressures [57].

On the other hand, it is important to highlight that shape and time-shift differences of the heartbeat
signal extracted are influenced by the FoV of the radar [26], since it integrates the displacement
information obtained from all points in the whole area illuminated by the radar. The study of
this effect also requires a further research from our side, adapting the FoV of the radar with the
radar configuration.

Despite of the interesting results and the simplicity of the linear filtering approach used, a more
accurate filtering algorithm is required to extract additional in depth conclusions. In any case,
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the objective of this paper has not been the optimization of the source separation algorithms, but also
to provide evidences of the separability of the signals and artifacts, along with providing evidences on
the potential use of the radar signal obtained to derive significant monitoring characteristics that are
widely used in the clinic.

Regarding the possibility to accurately obtain the HRV sequences from the radar acquired signal,
results suggest a strong potential due to the perfect synchronization obtained between the ECG and
the heartbeat extracted. However, a more accurate algorithm is required to identify the starting of
the pulse periods in order to reduce the error. The one used is just based on the identification of the
zero-crossings, this is not an error free procedure due to noisy effects present in the signal or due to
the inherent shape variability of the pulses obtained. As expected, the errors obtained during the
rHRV estimation with respect to the standard HRV are much lower in apnea situations due to the
inherent lower heart rate variability; whereas logically increase in the breathing scenario. In any
case, the scheme proposed to extract the rHRV has provided promising results even in a multi-target
scenario. As was previously stated, multi-target monitoring is the main reason behind the choice of
FMCW radar over other radar technologies to monitor several subjects simultaneously. Moreover,
FMCW technology allows to measure not only the vital signs of each subject, but also retrieves the
location of the subject, allowing its tracking. Information about target’s position is valuable data in
rescue working and tele-health scenarios [6,7].

5. Conclusions

A modified commercial 122 GHz frequency-modulated continuous-wave radar is used in a
standoff configuration to monitor cardiorespiratory activity.

This low cost system allows different hardware configurations to analyze the correlation between
the heart electrical response -measured with an ECG- and its mechanical response measured with the
radar. Additionally, our results evidence the coupling between breathing and heartbeat, also showing
that the HRV sequence derived from the radar signal can identify the RSA effect. Finally, the radar
is tested in a simultaneous multi-target scenario, demonstrating its monitoring capabilities in
assisting living.

Although more complex algorithms have to be developed for alleviating some artifacts and
improving robustness of the measurements, assisting living systems will incorporate radar technology
in its deployment in real life environments.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analogical-digital converter
ANS Autonomic nervous system
APFT Almost-Periodic Fourier Transform
BCG Ballistocardiograph
CW Continuous-wave
DACM Differentiate and cross-multiply
ECG Electrocardiogram
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EMD Empirical mode decomposition
FFT Fast Fourier Transform
FMCW Frequency modulated continuous-wave
FoV Field of view
HRV Heart rate variability
ISM Industrial, scientific and medical
IMF Intrinsic Mode Functions
MIMO Multiple-input multiple-output
MMIC Monolithic microwave integrated circuit
MSE Mean Squared Error
PFD Phase-frequency detector
PLL Phase-locked loop
PPG Photopletysmogram
rHRV HRV from the radar measurement
RSA Respiratory sinus arrhythmia
RVP Residual video phase
SCG Seismocardiograph
SNR Signal-to-noise ratio
VCO Voltage-controlled oscillator
VMD Variational Mode Decomposition
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