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Abstract: High-resolution remotely sensed imageries have been widely employed to detect
urban villages (UVs) in highly urbanized regions, especially in developing countries. However,
the understanding of the potential impacts of spatially and temporally differentiated urban
internal development on UV detection is still limited. In this study, a partition-strategy-based
framework integrating the random forest (RF) model, object-based image analysis (OBIA) method,
and high-resolution remote sensing images was proposed for the UV-detection model. In the core
regions of Guangzhou, four original districts were re-divided into five new zones for the subsequent
object-based RF-detection of UVs with a series features, according to the different proportion of
construction lands. The results show that the proposed framework has a good performance on UV
detection with an average overall accuracy of 90.23% and a kappa coefficient of 0.8. It also shows the
possibility of transferring samples and models into a similar area. In summary, the partition strategy is
a potential solution for the improvement of the UV-detection accuracy through high-resolution remote
sensing images in Guangzhou. We suggest that the spatiotemporal process of urban construction land
expansion should be comprehensively understood so as to ensure an efficient UV-detection in highly
urbanized regions. This study can provide some meaningful clues for city managers identifying the
UVs efficiently before devising and implementing their urban planning in the future.

Keywords: urban villages; highly urbanized region; partition strategy; random forest; high-resolution
remote sensing images

1. Introduction

Over the past half-century, urbanization has brought about irreversible changes worldwide,
which have promoted social development and human progress [1,2]. However, it has also led to the
problem of informal urban settlements (IUS) such as slums and urban villages (UVs) [3]. Besides
poor infrastructure and typical morphological characteristics such as high density, small roof sizes,
low building heights, less green space, and irregular patterns within cities, IUSs are also characterized
by a large amount of floating and low-income population, as well as poor sanitation and disordered
security in many megacities, especially in some developing countries [4–9]. Therefore, it is essential for
city managers to obtain reliable and timely information of these IUSs within the cities before making
effective policies for promoting sustainable urban development by means of reconstructing these
IUSs [10,11].
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Although IUSs appear as a worldwide phenomenon, it is a challenge to develop a universal
definition of IUS because of different contexts between regions or countries, such as culture, social system,
and geography [12,13]. In China, the term “urban village” is often used to describe the IUSs derived
from villages near built-up areas while farmlands surrounding the villages were gradually swallowed
up under the process of China urbanization, and the residences remained [14]. Besides unsanitary
conditions, poor structural quality of housing, overcrowding, and insecure residential status [11,15],
UVs, as the remainder of the rural-to-urban transformation, have moderate socioeconomic levels
which are higher than that of the countryside, although lower than that of planned urban areas [12,16].
It has been widely acknowledged that IUSs differently appear in many cities, regions, or countries [12],
however, the IUSs’ differences within the city caused by changes in planning policies during the
urbanization process and the location relative to the urban expansion center, which are also significant
for the accurate detection of IUSs, have often been neglected in the past.

With the increasing demand for large-scale monitoring in IUSs, remote sensing technologies,
in particular high-resolution imagery, are widely used in retrieving and mapping IUSs [11,13,17].
Traditionally, the mapping of IUSs is implemented through visual interpretation based on remote
sensing imageries by manual digitizing, which can provide high-quality maps of IUSs [12,17,18].
However, it relies on the experience of people who carry out the work and is labor intensive. It is also
difficult to extract IUSs by pixel-based image analysis [12]. UVs are integral and complex communities
with dense buildings; however, the pixel-based approach cannot consider the IUSs or the building as
a whole [19].

In recent years, object-based image analysis (OBIA) has been a dominant paradigm in IUSs
detection with high-resolution images [12,15]. This approach can fully utilize implicit information in
the image and establish spatial context, and is thus widely used for detecting urban targets [12,19–22].
For example, by referring to Hofmann’s work [22], Kohli and her team proposed a generic slum
ontology framework, and proved the potential of the OBIA method to detect slums under this
framework. Their experiment in three subsets of Ahmedabad showed final accuracies ranging from
47% to 68% [23,24]. Similar methods were implemented for slums and UV detection in other cities,
with an accuracy of over 68% [21,25,26]. For OBIA, image segmentation which can produce segments
that correspond with target objects for subsequent analysis is a vital prerequisite [27]. Several studies
focused on the optimal building or UV segmentation, such as using auxiliary data, combining spectral
and spatial information and semantic image segmentation with convolutional neural networks (CNN),
and these methods achieved significant effects [15,21,27–29]. Additionally, scene-based classification
has made great advancements in UV detection in recent years [5]. A scene is a user-defined image block
with various objects. Similarly, scene-based classification has an advantage in complex structures [30].
Huang and his team conducted a systematic study of scene-based methods for detecting UVs in
Shenzhen and Wuhan with a kappa value of over 0.82 [5,31,32]. Liu also proposed a scene-based
framework to implement dominant urban land use identification (including UVs) of the Haizhu District,
Guangzhou, and the kappa value was around 0.83 [33]. As shown above, the object or scene-based
method are effective in detecting UVs or slums.

Meanwhile, machine learning such as random forest (RF), support vector machine (SVM),
and CNN are increasingly popular in IUSs detection for their good performance in classification
with over 90% accuracy [15,34–36], although they need a large amount of high-quality training data,
and are computationally demanding [17]. The most appropriate machine learning algorithm sometimes
depends on the study area, subject, and equipment. Considerable research has been conducted on the
detection of UVs and slums by scholars, and the accuracy is gradually raised by continuously developed
technologies. However, it is not surprising to find that most studies selected a small representative
area in the city as the study area, and the performance of most methods was locally adaptive and poor
in another regions, as it is influenced by the local context and the history of city-level development.

Therefore, our study aims to (1) develop a UV-detection framework based on a partition strategy
considering the course of spatial expansion of construction land in the core districts of Guangzhou,
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and to (2) explore the suitability of UV detection derived from the object-based classification with
random forest (RF) algorithms using GF-2 images among the partitioned zones. The objective
of this study can provide a useful framework for the extensive detection of UVs, and serve as a
reference for monitoring urban environment and health, thereby propelling urban renewal and
sustainable development.

2. Study Area and Data

Guangzhou, the “South Gate” of China, is located in Guangdong Province, covering a total area of
7434 km2 (Figure 1). As the economic and cultural center of South China, Guangzhou has been steadily
promoting the urbanization process, and the urbanization rate reached 86.46% in 2019 according to the
Guangzhou Economic and Social Development Statistics Bulletin. Influenced by the establishment
of Shenzhen Special Zone and Pearl River Delta since 1980s, immigrants poured to Guangzhou to
seek employment, and the urban construction land has continuously sprawled over the past decades.
This is one of the reasons why there are so many UVs in Guangzhou today [37]. According to our field
survey, the UVs in Guangzhou usually have a relatively high building density with internal buildings
less than 9 floors, and these UVs are often surrounded by skyscrapers. The landlords in UVs may add
extra floors to the original building, resulting in the diversity of roof materials. In this study, we focus
on the core area of Guangzhou, including the Yuexiu, Liwan, Haizhu, and Tianhe districts, for their
particularly high urbanization levels among all districts in Guangzhou.
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Figure 1. Location of study area. (a,b) The overview; (c) core area of Guangzhou; (d,e) Shipai village in
the Tianhe district, Guangzhou (source: author).

Four remote-sensing images by GF-2 satellite PMS1 sensor, accessed on 15 September, 2017,
were used in this study (derived from China Centre for Resources Satellite Data and Application,
http://www.cresda.com/CN/). The GF-2 satellite, launched in August 2014, was independently
developed by China and has a high spatial resolution, high position accuracy, and fast maneuverability.
The GF-2 satellite image has four multi-spectral bands with 4 m resolution (blue, green, red, near-infrared
(NIR) bands) and one panchromatic band with 1 m resolution. Orthorectifications, radiometric
calibration and fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) were performed
for all images. We also fused multispectral and panchromatic images by gram-schmidt spectral
sharpening for preferable extraction, and the final spatial resolution was up to 1 m. Moreover, road and
water data from Open Street Map (OSM, https://www.openstreetmap.org/) served as auxiliary data in
the process of detection.

http://www.cresda.com/CN/
https://www.openstreetmap.org/
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3. Methods

In this study, we proposed an object-based UV-detection framework with a partition strategy
as illustrated in Figure 2. In this framework, the core districts of Guangzhou were first divided into
five zones (A–E). Then, some significant features were selected to characterize the UVs in each zone.
Finally, the RF model, integrating the segmented objects and selected features, was employed to extract
the UVs from the GF2/PMS images. The classification and analysis were conducted by eCognition9.0
and R-3.5.3, and the image processing was performed using ArcGIS 10.3 and ENVI5.3. These processes
can be found in detail below.
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3.1. Partition Strategy

In comparison to other formal communities, IUSs often present a more crowded and cluttered
pattern [11,12,17]. Among countries, cities, and even within a city, however, the IUSs are featured by
different morphological characteristics, such as different densities and building heights (Figure S1,
Supplementary Materials) [5,38]. For example, densities of IUSs in Asian cities tend to be higher
than those of sub-Saharan Africa (SSA) cities [12]. Likewise, UVs are distinctive among cities due to
different contexts and histories. Here, UVs in Guangzhou, Shenzhen, and Wuhan are briefly compared
(Figure 3). The long history and rapid urbanization of Guangzhou led to the high density and diversity
of UVs, which reflect characteristics of the city at different periods of development [39]. In comparison,
although Shenzhen is an emerging city with a late start in urban construction, the UVs in Shenzhen
are more systematic and orderly than those in Guangzhou [5,40]. Different from Guangzhou and
Shenzhen, Wuhan is an inland city in central China, and the UVs in Wuhan have obvious sloping
red roofs [41].

In addition, the spatial pattern, planning policies, and management of the city are temporally
different in the courses of urban development, causing various appearances of UVs across the
city [42,43]. For example, three slums in Mumbai present distinct structural heterogeneity at block level
determined by their location, the time that they existed, and whether they have been renewed [43].
Similarly, the districts in Guangzhou have undergone a multi-stage urban expansion over the past few
decades, which resulted in some obviously differentiated regions, including old areas (Yuexiu and
northern Liwan), newly and rapidly urbanized areas (eastern Haizhu and southern Tianhe), and several
transition zones between the old and new areas [44]. For this point, the formation and appearance
of UVs in these districts should be differentially considered for UV detection. Hence, the study area
was divided into several new zones before detecting UVs in them by means of high-resolution remote
sensing images. According to the general expansion trend of local construction land revealed by
an earlier study [45], the proportion of construction land at the 1 × 1 km level derived from our
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previous work [46] was calculated in ArcGIS (10.3 ESRI) in order to fulfil the partition strategy. In this
way, the original four districts were clearly re-divided into five zones with various proportions of
construction land (Figure 4).
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3.2. Multi-Resolution Image Segmentation

Object-based image analysis is an efficient technology for identifying complex targets in which
segments are used as elementary units [47]. The method provides more information about objects,
such as spectral information, shape, texture, as well as interlayer relationship, and it can preserve target
boundaries [48]. Image segmentation is a significant step for OBIA. It partitions an image into several
segments composed of neighboring pixels with similar features as basic units for classification [15].
The multi-resolution segmentation used in this study is one of the most popular approaches in
segmenting remote sensing images. The multi-resolution segmentation procedure starts with a single
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pixel and consecutively merges the surrounding pixels based on relative homogeneity criteria, until the
set “scale” is reached [49]. The detail explanation of parameters can be found in an earlier study [50].

The segmentation for different ground targets can be implemented by adjusting the scale parameter,
color/shape, and smoothness/compactness weights. In this study, segmentation layers at building level
and block level were created for feature computation and classification. Meanwhile, considering the
complexity of UVs, some natural community boundaries (e.g., road network and water data from
OSM and continuously distributed vegetation data extracted by normalized difference vegetation
index (NDVI)) were applied as auxiliary data to constrain the shape of the segmented patches [21].
Three parameters of the building level segmentation layer were set to 100, 0.8, and 0.5 by further trial
with reference to the estimation of scale parameter (ESP) tool results [51]. On the basis of the building
level segmentation, parameters were adjusted to 320, 0.9, and 0.8 to obtain the block level segmentation.
The building level segments can be used as sub-objects of the block level segments to participate in
feature computation, and the block level segments were applied to subsequent classification.

3.3. Feature Selection

According to several notable characteristics summarized in many previous studies [12,23,29,52]
and the conversion between observation, expert knowledge, and image-based indicators [7,23], a set
of image features were selected and applied to distinguish the UVs from non-UVs (including formal
communities, commercial and industrial areas) in this study (Table 1). Meanwhile, all features were
computed and assigned to the block level segmentation objects.

Differing from formal communities or commercial and industrial areas, UVs have several typical
characteristics in terms of spectrum, pattern, and opening space.

Spectrum: The unauthorized extension on the top floor of the building in order to increase rent
incomes results in more heterogeneous roof materials in UVs than those in formal communities or
commercial and industrial areas [53]. Therefore, we selected the mean and standard deviation (SD)
for four original image bands and the first principal component (PCA) possessing the most image
information after dimension reduction, as well as the brightness, maximum difference (Max_Diff)
between bands, and standard deviation of sub-objects (Mean of SO: StdDev) to distinguish UVs
and non-UVs.

Pattern: The most typical characteristic of UVs in the image is the narrow, crowded, and disordered
building layout. Therefore, the area, density, shape index, gray level co-occurrence matrix (GLCM),
and mean area of sub-objects (Area of SO: Mean) were considered to express the pattern of UVs.
In addition, although there are many texture features based on GLCM, some of them are similar.
Consequently, only the GLCM texture features listed in Table 1, which have shown effectiveness for
UV detection in previous studies [18,34,46], were used.
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Table 1. Feature selection based on morphological characteristics.

Group Morphological Characteristic Feature Description (Refer to [54,55])

Spectrum

UV:
Diversity roof colors/materials
Formal community:
Similar roof color
Commercial and industrial area:
Bright roof

Mean Blue [24] Mean of pixel values in blue band

Mean Green Mean of pixel values in green band

Mean Red Mean of pixel values in red band

Mean NIR Mean of pixel values in near-infrared
(NIR) band

Mean PCA Standard deviation of pixel values in
PCA layer

SD Blue [34] Standard deviation of pixel values in
blue band

SD Green Standard deviation of pixel values in
green band

SD Red Standard deviation of pixel values in
red band

SD NIR Standard deviation of pixel values in
NIR band

SD PCA Standard deviation of pixel values in
PCA layer

Brightness [56], Average of means of all layers

Max Diff [24,56] Maximum difference between
all layers

Mean of SO: Stddev [54] Standard deviation of sub-objects in
PCA layer

Pattern

UV:
Small roof sizes; high density; narrow
passage
Formal community:
Regular pattern; same building orientation
Commercial and industrial area:
Individual building; special architectural
styles

Area [24] Number of pixels

Density [54]

Distribution in space of the pixels of
an image object, the more an object is
shaped like a filament, the lower its
density

Shape Index [29]
Smoothness of object border, the
smoother the border of an object is,
the lower its shape index

GLCM_Correlation [44] Measure of the linear dependency of
gray levels of neighboring pixels

GLCM_Entropy [34] Measure of the disorder of an image

GLCM_StdDev [34] Measure of the dispersion of values
around the mean

Area of SO: Mean [54] Average area of sub-objects

Opening Space

UV:
Lack of green space and water; less shadow
Formal community:
Abundant green space between buildings;
visible shadow
Commercial and industrial area:
Surrounded by green/opening space;
apparent shadow

NDVI [18] Normalized difference
vegetation index

Veg_P Proportion of vegetation within the
15 m buffer of the object

Shadow_P Proportion of shadow within
the object

Opening space: Generally, formal communities have sufficient green space to create a suitable
living environment. However, due to the lack of management, there is little opening space, such as
public green space and outdoor activity areas within UVs. Thus, opening space features were
characterized by NDVI, Veg_P, and Shadow_P.

There were 23 specific features in total, and most of them were available from the Trimble
eCognition 9.0, except Veg_P and Shadow_P, which were computed in ArcGIS 10.3. The details are
shown in Table 1.
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3.4. Classification Process

3.4.1. Sample Selection

The vegetation, water, and road in the GF-2/PMS imageries were masked by auxiliary data
mentioned in Section 3.2 before selecting the samples for training and testing the UV-detection model.
In other words, these samples (UVs and non-UVs) were merely chosen from the construction land in
this study. There were 270 samples moderately selected in total, including 81 UVs and 189 non-UVs
samples equally distributed in five zones, according to the total number of segments in each zone
(Figure 5 and Table 2). Meanwhile, these samples were randomly grouped into training (70%) and
testing (30%) sets.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 20 
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Table 2. Composition of samples in each zone.

Statistical Object A B C D E Total

Segment 26,543 20,186 14,011 11,100 7381 79,221

Sample UV 21 24 13 11 12 81
non-UV 44 48 32 34 31 189

3.4.2. Model Building

In this study, the RF algorithm (RandomForest package in R) was used to classify UVs and
non-UVs. For RF, multiple independent decision trees are combined to improve the prediction accuracy,
and the final classification is determined by voting [57]. The RF classifier can process high-dimensional
data without feature selection and assess the importance of features. Therefore, the training samples
with selected features were directly used as input data to train the model.

The performance of models is influenced by vital parameters. The RF model includes two main
parameters: ntree and mtry; the former denotes the number of trees and the latter decides the number
of random variables used at each split [58,59]. We traversed possible values to find the optimal one
that minimizes the model error. The performance of the training model with different parameter
values was validated through 10-fold cross-validation whereby all samples were randomly divided
into 10 folds and each fold was in turn used for test data, and the final accuracy was the average of
the 10 validation results. In addition, we employed mean decrease Gini (MDG) to measure feature
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importance in RF because of its robustness to small perturbations of the data. Mean decrease Gini is
the sum of all decreases in Gini impurity due to the split formed by given variables, and is widely used
for ranking features [60].

3.4.3. Accuracy Assessment

To evaluate the efficiency of the current UV-detection method, we obtained a series of ground
truth UVs data using some field survey photos and the Google Earth images with higher resolutions
as references. We create a fishnet (2 × 2 km) for ensuring the spatial distribution uniformity of the
ground validation data. In this way, about 130 grids were equally yielded across the study area. As a
whole, each grid included one UV and one non-UV point. Consequently, sufficient ground samples for
validation were guaranteed.

Then, the classification result from the RF model was compared with the ground truth by
computing the confusion matrix between them. Meanwhile, the overall accuracy, kappa coefficient,
and producer/user accuracies were calculated based on the confusion matrix for the assessment of the
actual classification result. Furthermore, the performance of the RF model was compared with that of
the support vector machine (SVM) model which is also popular in ground object detection based on
remote sensing images [61].

4. Results

4.1. Evaluation of the UV-Detection Model

According to the overall accuracies (higher than 80%) as given in Table 3, the current UV-detection
of both RF and SVM models displayed good performances in five zones, with the exception of the
relatively low accuracy (68.75%) of the SVM model in the E zone. Meanwhile, the overall accuracies of
either the RF or SVM models were clearly different between the training and testing sets in each zone.
At this point, the RF models possessed relatively small differences between the training accuracies
and the test accuracies, although the SVM models possessed somewhat higher training accuracies.
These results show that the UV-detection models of the RF algorithm were reliable and stable.

Table 3. Model performance for each zone.

Performance Evaluation Metric A B C D E

RF
Training accuracy/% 82.61 92.16 93.55 96.88 81.48
Testing accuracy/% 84.21 85.71 92.86 92.31 93.75

SVM
Training accuracy/% 97.83 98.04 96.77 100 100
Testing accuracy/% 84.21 80.95 92.86 92.31 68.75

In the further evaluation compared with the ground datasets, these two models differed in
kappa coefficients and producer/user accuracies (Table 4). With distinctly higher kappa coefficients,
the RF model performed better in zones C (0.88), D (0.75), and E (0.83) than SVM (0.83, 0.55, and 0.59,
respectively), although the coefficients of the RF model were slightly lower in A (0.82) and B (0.69)
compared with those of the SVM (0.83 and 0.70, respectively). In comparison with the RF models,
the SVM models presented an obviously worse performance in terms of producer accuracies in D and E.
The probable reason may be the overfitting of the SVM model in zones D and E caused by less training
data and an overly accurate description of training samples. Although UVs have more consistent
basic characteristics in zones D and E than in A and B, and distinctly differ from the surroundings,
a small amount of noise in certain training samples would have a strong effect on the SVM model,
resulting in the reduction in generalization ability. By contrast, the RF model can reduce the probability
of overfitting due to their classification principle. Hereby, the RF models presented better adaptability
of UV detection in this study.
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Table 4. Classification accuracy of random forest (RF) and support vector machine (SVM).

Evaluation Metric A B C D E

Producer accuracy
(%)

RF 85.01 72.94 82.12 82.63 88.60
SVM 86.05 75.49 82.12 64.44 64.09

User accuracy
(%)

RF 93.63 95.94 100 96.50 96.28
SVM 93.05 94.82 90.07 98.43 99.03

Kappa coefficient RF 0.82 0.69 0.88 0.75 0.82
SVM 0.83 0.70 0.83 0.55 0.59

Mean overall accuracy RF: 90.23% SVM: 85.22%
Mean kappa coefficient RF: 0.80 SVM: 0.70

The bold numbers indicate that the model corresponding to the bold number has better UV detection performance
(higher kappa coefficient) in the zone.

4.2. Assessment of Partition Strategy

In terms of the overall accuracies and kappa coefficients, the performance of the partition strategy
was further assessed through comparing the UV-detection results using samples in the individual zone
(partition strategy) with those of the total samples in five zones (non-partition strategy). The overall
accuracies and kappa coefficients of UV detection with the partition strategy (90.23% and 0.80 on
average) and that with the non-partition strategy (89.98% and 0.79) were approximate. However,
there were significant differences in accuracies among these zones. The summed sets of the respective
samples in the five zones presented a better detection ability in zones A, B, and D, with relatively
higher kappa coefficients, whereas the detection ability was significantly weakened in zones C and E
(Figure 6), which may be attributed to the properly distinct UV types in zones C and E, as well as the
relatively complex typical samples of the five zones. In addition, in zone B, the detection accuracies
based on both assessments of samples from the individual zone and the total five zones were poor,
which was probably caused by its particularly complex UV types. The RF classifiers with the respective
samples in each zone displayed good capability of identifying the UVs with larger kappa coefficients
larger than 0.75 for zones A, C, D, and E, which indicated that the partition strategy was potentially
meaningful for detecting all of the UVs in the study area.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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There was a total of 23.76 km2 of UVs detected by the proposed framework distributed in five
zones (Figure 7), accounting for about 7.34% of the total area (Table 5). As far as the proportion of UVs
in the total UV area is concerned, about 65% of the total UVs was distributed in the zones of A (20.99%)
and B (43.84%). By contrast, the zones of C and E possessed the lowest proportions (about 10%) since
these two zones are far from the city center and are mainly covered by hills (C) or farmlands (E).
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Furthermore, each zone has significantly different UV distribution characteristics. In zone A, UVs are
scattered across the west of the zone, which is the old center of Guangzhou. While the UVs in zone B
tend to be concentrated in the east of the zone, that is, in the middle of the Haizhu district, but they
are more dispersed in the west. The number of UVs in zones C, D, and E is relatively small, however,
the extent of a single UV is larger, and there are still woodlands and farmlands around UVs in zones C
and D.
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Table 5. Statistics on the UV-detection result.

Area Statistic A B C D E Total

UVs area (km2) 4.99 10.42 2.47 3.54 2.35 23.77
Zone area (km2) 81.78 99.12 63.02 46.35 33.71 323.98
Proportion of UVs in the zone (%) 6.10 10.51 3.92 7.64 6.97 7.34
Proportion of UVs in total UV (%) 20.99 43.84 10.39 14.8 9.88 20.99

4.3. Comparison of Feature Significances

During the RF-extraction of UVs, 23 features made various contributions in terms of MDG.
As ranked in Figure 8, Area and GLCM_Entropy always possessed much higher values of MDG.
Meanwhile, some features referring to heterogeneity within UVs (e.g., Mean of SO: StdDev, SD_Blue)
and the afforestation degree (e.g., Veg_P, NDVI) were also among the top 10 important features.
Because of the varied appearances of UVs in the five zones, however, the sequences of the 23 features’
contributions were somewhat different from each other (Figure 8 zones A−E). In particular, some of
the rest features tended to be more appropriate for the RF-extraction of UVs in different zones (e.g.,
GLCM_Entropy in A; Area in B, C, and D; and Area of SO: Mean in E). This indicates that the 23 features
had different significances for the RF-extraction of UVs in the five zones with various UV types.
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4.4. Adaptability of Samples and Models in an Individual Zone

Samples and models from a specific zone had different adaptabilities to other zones. Figure 9
shows the variations in the kappa coefficient arising from using samples and models of other zones.
A positive value denotes that the sample/model of the source zone possessed higher detection accuracies
than those of the target zone, while a negative value represents a worse performance. We also used
“capacity” and “suitability” to display results in depth. Capacity refers to the mean of variations
when other samples/models were applied to one zone (in the vertical direction), while suitability is
the mean of variations when one sample/model was used in other zones (in the horizontal direction).
As depicted in Figure 9, the kappa coefficients of each zone declined with certain degrees when the
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sample from the zone was applied to other zones. Meanwhile, zone D had a better capacity when the
other four zones samples were applied to it, as indicated by the approximate (zone A) or increased
(zones B, C, and E) kappa coefficients. By contrast, zone E displayed the worst capacity as indicated by
its largely decreased kappa coefficients. However, the samples in zone E possessed the best suitability
of UV detection in the other zones, and samples in zone D presented the worst. The result shows that
it is feasible to transfer samples and models among the five zones; however, the accuracies are affected
by the similarity of UVs and the richness of samples between two zones.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 20 
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5. Discussion

As a typical informal urban settlement, UV has attracted much attention from the public, for which
high-resolution remote sensing images have been widely employed in recent years [12]. In this study,
the RF and SVM methods, as well as the partitioned GF-2/PMS imageries were employed to detect the
UVs in the central region of Guangzhou City. Several interesting findings were achieved and would
provide useful clues for local city managers identifying these IUSs and devising better urban planning.

It has been pointed out that the central region, including one more district than Yuexiu, Liwan,
Haizhu, and Tianhe, underwent spatiotemporally different urban expansion during Guangzhou’s
fast urbanization over the past few decades [45]. Similarly, our analysis showed that these four
districts were featured by spatially differentiated distribution of current construction lands. At present,
there have been numerous emerging scientific, financial, and service companies in the southeastern
part of the Tianhe district during the past ten years [62], leading to a dramatic land use change process
and remains of original villages with relative large extents. By contrast, due to the impact of planning
policies and geographical location, there are still large-scaled forests conserved in the northeastern
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Tianhe district [39]. Likewise, differing from the western Haizhu district, which is close to the old
city center with rapid development, amounts of farmland and water areas were still reserved in
the east. These urban development patterns reflected by spatial disparities of current construction
lands (e.g., west–east in Haizhu and north–south in the Tianhe district) lead to UV differentiations in
the core area of Guangzhou. Accordingly, it was reasonable to divide the core area into five zones.
Because the diversity of UVs among zones was fully considered, the partition-based detection of UVs,
in comparison to the UV detection from the integral region, presented relatively higher accuracies (i.e.,
mean values of the overall accuracies and kappa coefficients) by means of the RF method. That is to
say that the partition strategy may be a necessary solution to reasonably increase the accuracy of UV
detection in Guangzhou, which has spatial and temporal differentiation in urban internal development,
in virtue of high-resolution remote sensing images.

With relatively higher mean MDG values, 10 common features, including area, GLCM_entropy,
Mean of SO: StdDev and so on, made more important contributions to the UV detection, while other
characteristics were variously ranked in each partition. There may be two reasons for their differences.
One explanation is that the most significant characteristics of UVs are the lack of green open space
and the heterogeneity of roofs caused by building upward expansions for the pursuit of higher
earnings [18,63]. Another is that the UVs, the byproducts of a long-term and multi-period urbanization
in these five zones, owned their landscape genetics labeled by different spectral characteristics of the
roofs and their edges [43,64]. As a result, either the respective samples of each zone or the total sample
sets integrated in the RF model possessed a good capability of extracting the UVs with larger kappa
coefficients than 0.65, although the performance of the summed set in zones C and E was relatively
weakened. Therefore, these common and/or typical features were reasonable for selecting the zonal
UV-samples and extracting the UVs through the classifiers.

Moreover, the samples in zone E presented the best suitability of extracting the UVs in the zones
C and D, and was relatively worse in zones A and B, which may be attributed to the strong (for zones
C and D) or weak (for zones A and B) comparability of UV typical features in zone E. On the other
hand, zone D had a better capacity of accepting the samples (and models) transferred from the four
source zones due to its richness of remained UV types during the recent acceleration of urbanization
(Figure 4). Accordingly, we speculate that the efficiency of the selected samples and models transferred
from the source zones into the target ones were potentially affected by not only the comparability of
UV features but also the capacity of accepting exogenous samples. This finding is similar to previous
studies that have found that the suitability of existing samples and models tended to be restricted
in other regions because of different development histories, the local context, and the composition
of built-up areas [24]. For example, the urban areas and the UVs are intermingled with each other
in emerging cities (e.g., Shenzhen), while downtown usually formed before decades of urbanization
(as well as the emergence of UVs) in the city with a long history (e.g., Wuhan) [5]. This was the
challenge for the transferring ability of the existing samples or methods, and might be improved by
some appropriate adjustments of typical (i.e., different) features and their weights. Even so, it can be
seen that the feasibility of transferring existing samples and models for UV detection in some other
regions would be guaranteed by the partition strategy to some degree.

In addition, some similar urban areas with widely distributed UVs, including the other districts
(e.g., Baiyun District) in Guangzhou and some neighboring cities including Foshan, Dongguan,
and Shenzhen, would benefit from the solution proposed for detecting the UVs in the central
Guangzhou through the partition strategy and a series of zonal UV-samples with common and typical
features derived from high-resolution remote sensing images. According to the spatial distribution of
current construction lands, there were some zones potentially possessing a good capacity of accepting
the samples and models in this study. For example, the samples and models in zones C and E could
be appropriately transferred into some zones of the Baiyun district and the northern Dongguan,
while those in A–B may be more suitable for the UV detection in the Chancheng district (the core
area of Foshan City which has become an important economic center on a par with Guangzhou
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since the Ming Dynasty [65]), as well as zones C and E for eastern Shenzhen (e.g., Longgang district,
an emerging district [38]) (Figure 10). The solution, however, may not be suitable for regions with
different development histories and distinct settlement landscapes (e.g., Wuhan) [66]. In this way,
our study would provide some meaningful clues for city managers efficiently identifying the UVs
before implementing their urban planning in the future.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 20 
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There are some limitations to the study. First of all, the 2015 construction land data used for
partition could be appropriately renewed through the 2017 land use data so as to reduce the influence
on UV-detection in each zone caused by the gap of time phase with remote sensing images, although the
effectiveness of the partition strategy has been well explored in this study. Secondly, the feasibility of
transferring existing samples and models for UV detection in some other regions has been properly
confirmed, however, it is still necessary to improve transferring performance through the adjustment of
features and weights, so as to support the application of the methodology in the whole of Guangzhou
or similar regions. Thirdly, although UV detection using physical characteristics of UVs based on
remote sensing images has achieved satisfying accuracy, the old residential quarters with high building
density were easily confused with UVs for their similarity in images. The utilization of point of interest
(POI) and cellular signaling data may be effective additional data, which could reflect social attributes
of UVs (e.g., the existence of an ancestral hall and numerous chophouses) [14,53,67]. Despite the
limitations mentioned above, our work would provide a solid foundation for subsequent studies.

6. Conclusions

In this case study, we proposed a partition-strategy-based UV-detection framework integrating
the RF model, OBIA method, and high-resolution remote sensing images. In the core districts of
Guangzhou, the RF models in this framework displayed good performances of detecting the UVs.
It can be concluded that a partition strategy considering the course of urban expansion is an essential
solution to raise the UV-detection accuracy in the typical cities with spatiotemporally featured land
urbanization. We suggest that the distribution of construction lands need to be sufficiently employed
to further understand the spatiotemporal process of urbanization in Guangzhou and similar urban
areas, and to make a proper partition for implementing effective UV detection and transferring of
samples and models into other partitioned zones. This study provides some meaningful clues for city
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managers identifying the UVs efficiently before devising and implementing their urban planning in
the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2334/s1.
Figure S1: Informal urban settlements in some countries: (a) Rocinha, Rio, Brazil; (b) Dharavi, Mumbai, India;
(c) Kibera, Nairobi, Kenya; (d) Shipai village, Guangzhou, Guangdong, China (source: Google Earth).
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