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Abstract: Climatic extremes have adverse concurrent and lagged effects on terrestrial carbon cycles.
Here, a concurrent effect refers to the occurrence of a latent impact during climate extremes,
and a lagged effect appears sometime thereafter. Nevertheless, the uncertainties of these extreme
drought effects on net carbon uptake and the recovery processes of vegetation in different Tibetan
Plateau (TP) ecosystems are poorly understood. In this study, we calculated the Standardised
Precipitation–Evapotranspiration Index (SPEI) based on meteorological datasets with an improved
spatial resolution, and we adopted the Carnegie–Ames–Stanford approach model to develop a
net primary production (NPP) dataset based on multiple datasets across the TP during 1982–2015.
On this basis, we quantised the net reduction in vegetation carbon uptake (NRVCU) on the TP,
investigated the spatiotemporal variability of the NPP, NRVCU and SPEI, and analysed the NRVCUs
that are caused by the concurrent and lagged effects of extreme drought and the recovery times in
different ecosystems. According to our results, the Qaidam Basin and most forest regions possessed a
significant trend towards drought during 1982–2015 (with Slope of SPEI < 0, P < 0.05), and the highest
frequency of extreme drought events was principally distributed in the Qaidam Basin, with three to six
events. The annual total net reduction in vegetation carbon uptake on the TP experienced a significant
downward trend from 1982 to 2015 (−0.0018 ± 0.0002 PgC year−1, P < 0.001), which was negatively
correlated with annual total precipitation and annual mean temperature (P < 0.05). In spatial scale,
the NRVCU decrement was widely spread (approximately 55% of grids) with 17.86% of the area
displaying significant declining trends (P < 0.05), and the sharpest declining trend (Slope ≤ −2) was
mainly concentrated in southeastern TP. For the alpine steppe and alpine meadow ecosystems,
the concurrent and lagged effects of extreme drought induced a significant difference in NRVCU
(P < 0.05), while forests presented the opposite results. The recovery time comparisons from extreme
drought suggest that forests require more time (27.62% of grids ≥ 6 years) to recover their net carbon
uptakes compared to grasslands. Therefore, our results emphasise that extreme drought events have
stronger lagged effects on forests than on grasslands on the TP. The improved resilience of forests in
coping with extreme drought should also be considered in future research.
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1. Introduction

Approximately 25% of global anthropogenic CO2 emissions are counteracted by terrestrial
ecosystems [1], but the terrestrial carbon cycle is easily affected by climate extremes. The increase in the
frequency and intensity of climatic extremes predicted by global climate models in the 21st century [2]
indicated that anthropogenic activities are changing the climate [3], which has an evident impact on
the composition, structure and functions of terrestrial ecosystems and indirectly alters the terrestrial
carbon balance [4–6]. Extreme drought is a typical extreme climatic event, and it has been reported
in most regions globally, including East Asia [7], Europe [8,9], North America [10,11], Australia [12],
and Amazonia [13]. It can cause tree mortality, decrease vegetation productivity, affect the ecosystem
carbon balance, and even induce ecosystem degradation [6,14–16]. Therefore, it is vital to identify
extreme drought events and assess their effects on the terrestrial carbon balance.

Previous studies have indicated that extreme drought events have concurrent and lagged effects
on the terrestrial carbon balance by altering the respiration and carbon uptake rates for photosynthesis,
and the coupling between them [4,15]. The concurrent effect can lead to a greater reduction in gross
ecosystem productivity than that of ecosystem respiration [4,15,17,18] (cause a net reduction in the
carbon uptake of an ecosystem), as well as a reduced leaf area [15,19] (e.g., early leaf senescence,
leaf shedding, and leaf expansion arrestment), and it is often related to a decrease in the CO2 assimilation
rate due to the reductions in stomatal conductance, mesophyll thickness, and concentrations and
activities of photosynthetic enzymes [4,20,21]. In addition to the concurrent effect, extreme drought
events also exhibit lagged effects on the carbon cycle, such as the re-allocation of existing stored reserves
being regulated to vindicate plant growth and defence [4,22–24], an increase in vulnerability to pest and
pathogen outbreaks [6,15,25], and a higher risk of wild fires due to increased dry wood and defoliation
following the extreme drought year [4,6,15]. These concurrent and lagged effects of extreme drought
can directly or indirectly disturb ecosystem statuses or processes [3,26–28], change the responses of
ecosystems to ambient environmental conditions [3,29,30], and affect species compositions and their
functional attributes [3,31,32], thereby affecting the net carbon uptake of terrestrial ecosystems [4,6,15].
As the highest and most extensive plateau in the world, spanning from alpine tundra to tropic evergreen
forest ecosystems, the Tibetan Plateau (TP) is considered to be the premonitory region for global
climate change. Ecosystems are sensitive to climate variations on the TP and are easily destroyed by
climatic extremes (e.g., extreme drought). It is worth noting that most studies are principally based
on observations from single experimental sites, while the responses of ecosystems to concurrent and
lagged effects of extreme drought have been ignored at broader spatial scales, especially on the TP.
The TP is ideal as the study region for such research due to the sensitivity of its ecosystems to climate
change, which can be utilised to capture sufficient information.

In recent years, many drought indices have been developed, including the Evaporative
Stress Index [33], Reconnaissance Drought Index [34], Evaporative Demand Drought Index [35],
Evapotranspiration Warning Index [36], Palmer Drought Severity Index [37], Standardised Precipitation
Index [38], and Standardised Precipitation–Evapotranspiration Index (SPEI) [39], and the latter three
drought indices are the most popular. The Palmer Drought Severity Index can simultaneously monitor
wetness and dryness [37], but it has a strong calibration period influence and issues with spatial
comparability that limit its application in other areas, with subjectivity between drought conditions
and index values [39]. The Standardised Precipitation Index is widely accepted because of its sufficient
comparability to various climate zones, benign spatial adaptability, multiple timescales, and simple
structure, but its main criticism is that it only considers precipitation and ignores the influence of
temperature and evapotranspiration [38–40]. The SPEI is a water balance model for precipitation
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and potential evapotranspiration, combining the Palmer Drought Severity Index (with changes in
evaporation demand) and Standardised Precipitation Index (with sufficient spatial comparability
and multitemporal nature) and considering drought sensitivity and global warming scenarios [39].
Currently, the meteorology sites on the TP, which are scattered because of the special terrain and
complex ecosystems, together with the coarse spatial resolution of the Global SPEI database, have led to
uncertainties in the TP drought characteristics; hence, drought monitoring data of improved resolution
are urgently needed to capture drought characteristics on the TP.

In this study, we calculated the SPEI based on precipitation and temperature datasets with
improved spatial resolutions, applied the Carnegie–Ames–Stanford approach (CASA) model to
develop a net primary production (NPP) dataset across the TP during 1982–2015, and quantised the
net reduction in vegetation carbon uptake (NRVCU) based on the NPP dataset. Our primary aims
are to (1) investigate the spatiotemporal variabilities in the NPP, NRVCU, and SPEI; (2) identify the
differences in NRVCU induced by the concurrent and lagged effects of extreme drought in forests,
alpine steppe, and alpine meadow ecosystems; and (3) analyse the recovery time of vegetation net
carbon uptake from extreme drought in different ecosystems.

2. Materials and Methods

2.1. Study Area

The TP (Figure 1) is composed of a series of magnificent mountains on all sides. Encompassing
approximately 25% of China’s mainland, the TP primarily includes the regions of north-western Sichuan,
Qinghai, and Tibet. As ‘Asia’s water tower’ [41], the Plateau possesses a typical thermal/moisture
gradient from the southeast to northwest due to the elevation and monsoonal winds, and it includes
a range of climate-sensitive vegetation along the climate change characteristics, from subtropical
and tropical forests to alpine deserts. Specifically, the annual mean total precipitation increases from
16 mm in the northwest to 1764 mm in the southeast, as observed during the period of 1981–2011,
with a corresponding variation gradient in the annual mean air temperature increasing from −5.0 ◦C in
the northwest to 15.5 ◦C in the southeast [42]. The climate type spatial pattern significantly affects
vegetation productivity and is a pivotal element in determining the carbon cycle.

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 19 

 

a water balance model for precipitation and potential evapotranspiration, combining the Palmer 
Drought Severity Index (with changes in evaporation demand) and Standardised Precipitation 
Index (with sufficient spatial comparability and multitemporal nature) and considering drought 
sensitivity and global warming scenarios [39]. Currently, the meteorology sites on the TP, which are 
scattered because of the special terrain and complex ecosystems, together with the coarse spatial 
resolution of the Global SPEI database, have led to uncertainties in the TP drought characteristics; 
hence, drought monitoring data of improved resolution are urgently needed to capture drought 
characteristics on the TP. 

In this study, we calculated the SPEI based on precipitation and temperature datasets with 
improved spatial resolutions, applied the Carnegie–Ames–Stanford approach (CASA) model to 
develop a net primary production (NPP) dataset across the TP during 1982–2015, and quantised the 
net reduction in vegetation carbon uptake (NRVCU) based on the NPP dataset. Our primary aims 
are to (1) investigate the spatiotemporal variabilities in the NPP, NRVCU, and SPEI; (2) identify the 
differences in NRVCU induced by the concurrent and lagged effects of extreme drought in forests, 
alpine steppe, and alpine meadow ecosystems; and (3) analyse the recovery time of vegetation net 
carbon uptake from extreme drought in different ecosystems. 

2. Materials and Methods 

2.1. Study Area 

The TP (Figure 1) is composed of a series of magnificent mountains on all sides. Encompassing 
approximately 25% of China's mainland, the TP primarily includes the regions of north-western 
Sichuan, Qinghai, and Tibet. As ‘Asia's water tower’ [41], the Plateau possesses a typical 
thermal/moisture gradient from the southeast to northwest due to the elevation and monsoonal 
winds, and it includes a range of climate-sensitive vegetation along the climate change 
characteristics, from subtropical and tropical forests to alpine deserts. Specifically, the annual mean 
total precipitation increases from 16 mm in the northwest to 1764 mm in the southeast, as observed 
during the period of 1981–2011, with a corresponding variation gradient in the annual mean air 
temperature increasing from −5.0 °C in the northwest to 15.5 °C in the southeast [42]. The climate 
type spatial pattern significantly affects vegetation productivity and is a pivotal element in 
determining the carbon cycle. 

 
Figure 1. Locations of the sampling sites and meteorological stations on the Tibetan Plateau. The 
blue and orange lines denote monsoons and mountains, respectively. The colours represent the 
main vegetation types across the Tibetan Plateau, as depicted in the legend. 

 
 

Figure 1. Locations of the sampling sites and meteorological stations on the Tibetan Plateau. The blue
and orange lines denote monsoons and mountains, respectively. The colours represent the main
vegetation types across the Tibetan Plateau, as depicted in the legend.
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2.2. Data

2.2.1. Climate Datasets

In this study, we used the monthly precipitation sum and monthly mean air temperature to calculate
the 12-month SPEI. Anusplin 4.2 (Centre for Resource and Environmental Studies, Australian National
University, Canberra) was utilised to process the spatial interpolations of precipitation and
air temperature at a 1/12◦ resolution for the period 1982–2015. Furthermore, the precipitation,
air temperature, and solar radiation data were utilised to estimate NPP; however, few stations contain
measurement of solar radiation on the TP. We used the daily air pressure, air temperature, relative
humidity, and sunshine duration to estimate the monthly solar radiation, and the specific methods and
details were based on those of previous studies [43,44]. The grid data of the monthly solar radiation
were generated based on the Kriging interpolation method in ArcGIS 10.2 (ESRI, Inc., Redlands, CA,
USA); the data resolution and period were consistent with those of the precipitation and air temperature
data. These meteorological datasets were acquired from the China Meteorological Administration
(http://cdc.cma.gov.cn), and the number of meteorological stations used in this study is 107 (Figure 1).

2.2.2. Aboveground Site Biomasses

During the summer (from the end of July to mid-August) in 2015, we clipped the aboveground
parts of plants at 115 sampling sites on the TP (Figure 1). Of the sampling sites, 55 sites were from
alpine meadow, 55 sites were from alpine steppe, and 5 sites were from alpine desert steppe ecosystems.
At each site (10 m × 10 m), we set up three 50 cm × 50 cm paired plots to harvest aboveground plant
samples. To obtain a constant mass for the aboveground biomass in the laboratory, the aboveground
parts of the plants were oven-dried at 65 ◦C after sun-drying them in a field and weighing them to the
nearest 0.1 g.

2.2.3. Satellite-Derived Datasets

Normalised difference vegetation index (NDVI3g, 1982–2015) data were used in this study to
estimate the gridded TP NPP at a 1/12◦ × 1/12◦ resolution. The data were acquired from the Advanced
Very High Resolution Radiometer observation instruments created by the Global Inventory Modeling
and Mapping Studies group [45]. In addition, one satellite and atmospheric data-driven global
annual NPP product, with a 0.05◦ spatial resolution for the period 2000 to 2015, was obtained from
the Numerical Terradynamic Simulation Group, University of Montana (http://files.ntsg.umt.edu/

data/NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/) and used as a comparison
for the NPP produced in this study. Here, the Moderate Resolution Imaging Spectroradiometer
(MODIS)-derived NPP product was resampled (via the bilinear interpolation method) in a 1/12◦ × 1/12◦

grid to match the estimated NPP.

2.2.4. Soil Characteristics Database

To investigate the effects of soil physical and chemical attributes on the vegetation net carbon uptake,
we used the soil characteristics database including alkali-hydrolysable N (mg/kg), available P (mg/kg),
available K (mg/kg), cation exchange capacity (me/100 g), soil organic matter (g/100 g), pH (H2O), total N
(g/100 g), and total P (g/100 g), which was developed for a land surface model that included eight vertical
variation layers with a 30 arc seconds resolution and was produced by the Land–Atmosphere Interaction
Research Group at Sun Yat-sen University (http://globalchange.bnu.edu.cn/research/soil2). In this study,
we used the first layer (0–0.045 m). The soil moisture data were obtained from the National Earth System
Science Data Center (http://www.geodata.cn/data/datadetails.html?dataguid=5864857&docId=1865)
at a 5-km resolution, and this data was rebuilt by downscaling based on soil moisture data from the
European Space Agency Climate Change Initiative.

http://cdc.cma.gov.cn
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/
http://globalchange.bnu.edu.cn/research/soil2
http://www.geodata.cn/data/datadetails.html?dataguid=5864857&docId=1865
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2.2.5. Vegetation Distribution Map

The TP vegetation distribution map used in this study was extracted from the 1:1,000,000 China
vegetation map, which was obtained from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/data.aspx?DATAID=122) and reclassified into nine categories: grassland,
shrubland, cropland, evergreen needle-leaf forest, deciduous needle-leaf forest, evergreen broad
leaf forest, deciduous broadleaf forest, mixed forest, and other (water bodies, snow and ice, etc.).
Furthermore, the spatial patterns of these major vegetation types (alpine meadow, alpine steppe,
and forests) are displayed in Figure 1.

2.3. Methods

2.3.1. Drought Indices

The SPEI is a standardised drought index that represents a simple climatic water balance
(precipitation and potential evapotranspiration) with comparable results for multifarious climate
regimes [40]. Furthermore, the SPEI possesses a flexible timescale and allows the monitoring of different
drought types including hydrological, agricultural, and meteorological droughts [46]. Hence, the SPEI
is applicable for TP drought monitoring. Unfortunately, there is the disadvantage that the SPEI requires
at least 30 years of data to be employed [47], whereas some developing countries do not yet possesses
>30 years of ground observations. Additionally, the resolution of the existing SPEI dataset (provided
by the Global SPEI database at a 0.5◦ resolution) cannot satisfy the requirements for regional research.
In this study, precipitation and potential evapotranspiration datasets from 1982 to 2015 were used to
calculate the 12-month SPEI, and the detailed potential evapotranspiration calculation was based on
previous studies using the air temperature data [39,48]. Here, we intend to explore the concurrent
and lagged effects of extreme drought on the vegetation net carbon uptake. Therefore, we selected a
12-month time-scale because long-term extreme drought has a significant lagged effect on plants, and
the potential evapotranspiration can be better captured through long-term observation [39]. The SPEI
drought severity categories are displayed in Table 1, and the comparison between the existing and
calculating SPEI is supplemented in Figure S1.

Table 1. Drought severity categories for the Standardised Precipitation–Evapotranspiration Index (SPEI).

Description SPEI Value

Non-drought >0
Mild drought −1∼0
Moderate drought −1.5∼−1
Severe drought −2∼−1.5
Extreme drought <−2

2.3.2. NPP Data Reconstruction and Accuracy Validation

In this study, the CASA model was used to estimate the gridded TP NPP at a 1/12◦ × 1/12◦

resolution [49–51]. The NPP is the product of absorbed photosynthesis active radiation (APAR) by the
green vegetation and actual light use efficiency (ε).

NPP(x, t) = APAR(x, t) × ε(x, t) (1)

where NPP(x,t) (gC m−2) denotes the vegetation NPP at pixel x at time t, and the APAR(x,t) (MJ m−2) and
ε(x,t) (gC MJ−1) represent the APAR by the green vegetation and actual light use efficiency, respectively.
The specific and detailed parameter calculation method was discussed in previous studies [50,52].
The validation can be executed either by comparing the estimated NPP with the gauged data NPP or
with other modelling results. Here, the gauged NPP is obtained from the conversion of aboveground
biomass in 2015: (1) the belowground biomass is calculated based on the ratio of belowground to

http://www.resdc.cn/data.aspx?DATAID=122
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aboveground biomass for alpine meadow (7.92), alpine steppe (4.25), and alpine desert steppe (7.89)
ecosystems [53]; (2) the sum of belowground and aboveground biomass is the total biomass, which is
multiplied by a coefficient of 0.45 to get gauged NPP with carbon unit [54]. To ensure the availability of
the estimated NPP, several validation statistical indices were used between the gauged and estimated
NPP (or MODIS-derived NPP) in 2015, and the specific formulas derived from previous research [55].

2.3.3. The Quantification of NRVCU

Drought events have a stronger inhibition on gross photosynthesis than total ecosystem respiration,
which leads to an NRVCU. Here, the NPP was applied to denote the vegetation net carbon uptake,
and the multi-year average of NPP was used as the normal net carbon uptake level of vegetation.
Then, the multi-year average NPP was subtracted from the annual NPP in each grid, the negative value
is the NRVCU [6], the zero and positive value denote no NRVCU and are assigned to 0. Furthermore,
the net reduction rate of vegetation carbon uptake (NRRVCU) is captured by the ratio of NRVCU
to NPP.

2.3.4. Grid Trends, Interannual Variabilities, and Anomalies of NPP, NRVCU, and SPEI

The temporal trends (from 1982 to 2015) of NPP, NRVCU, and SPEI in each grid are computed using a
linear least square regression method according to that of previous research [56]. Additionally, the standard
deviations of the annual NPP and NRVCU during the studied period were calculated for each grid
using the methodology in Anav et al. (2015) [57]. The counts of extreme drought (SPEI < −2) for
each pixel during the study period were processed based on ArcGIS 10.2 software. The interannual
variabilities of NPP, NRVCU, and SPEI for each grid were based on the following equations from
Ahlström et al. (2015) [58,59]:

fg =

∑
t

agt |At |

At∑
t
|At|

(2)

At =
∑

g
agt (3)

where agt denotes the NPP (or NRVCU or SPEI) anomaly (long-term deviation) for the grid g at time
t, and At denotes the total anomaly of NPP (or NRVCU or SPEI) in the TP. Here, fg is the averaged
relative value agt/At for grid g weighted by the absolute TP NPP (or NRVCU or SPEI) total anomaly
|At|, and it includes both the sign and extent of the local contribution with a range from −1 to 1.

2.3.5. The Response of Vegetation Net Carbon Uptake to Extreme Drought

Extreme drought complexly impacts the vegetation net carbon uptake; thus, an understanding of
the probable mechanisms and processes involved in extreme effects is crucial. As Figure 2 illustrates,
the vegetation net carbon uptake decreases during the extreme drought period (e.g., reduced productivity
or increased mortality), which is called the concurrent effect. However, there can be no suppression
in a region with strong drought resilience (such as this region with abundant soil water and nutrient
substance). Afterwards, the vegetation net carbon uptake gradually recovers as precipitation returns
over time. The duration of the recovery process for vegetation net carbon uptake is the recovery time
(∆t in Figure 2). The damage magnitude caused by extreme drought determines the disparate recovery
time and lagged regrowth. The NRVCU over the time following the year of an extreme drought
was primarily due to the lagged effect (e.g., reduced bud development). In this study, the difference
in NRVCU induced by the concurrent (during extreme drought period) and lagged effects (in the
year following the extreme drought) and the recovery time were explored in alpine steppe, forest,
and alpine meadow ecosystems, and the selected area exhibited no extreme drought events in the
10 years before/after the extreme drought year.
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Figure 2. Schematic diagram about the response of vegetation net carbon uptake (VNCU) to extreme
drought [4]. The red dotted line indicates the normal level of vegetation net carbon uptake.

3. Results

3.1. Spatiotemporal Patterns of NPP, NRVCU, and SPEI on the TP

In this study, the regional NPP dataset was developed during 1982–2015, and its reliability is
apparent. Validation statistical indices for the dataset were calculated between the gauged and estimated
(or MODIS-derived) NPP. The mean error (155.72), relative bias (−48.77), Nash–Sutcliffe coefficient
efficiency (0.24), root mean square error (278.01), and correlation coefficient (0.80) of the estimated
NPP have a better performance than that of the MODIS-derived NPP (−205.26, 64.29, 0.03, 314.09,
and 0.74) when compared to the gauged NPP (Figure 3a). According to the regional NPP dataset, the
NPP demonstrates a descendant gradient in the southeast–northwest direction, with the lowest value
(<100 gC m−2 year−1) in the northwest and the highest value (>1400 gC m−2 year−1) in the southeast
(Figure 3b). The NRVCU gradient variation is consistent with that of NPP, with the highest values
(>90 gC m−2 year−1) principally occurring in the southeast and lowest values (<10 gC m−2 year−1)
being primarily distributed in the northwest (Figure 3c).
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Figure 3. (a) The validation statistical indices (ME: mean error, BIAS: relative bias, NSE: Nash–Sutcliffe
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gauged and estimated (or MODIS-derived) net primary production (NPP). (b) The spatial pattern of
the multi-year average NPP on the Tibetan Plateau during 1982–2015. (c) The spatial pattern of the
multi-year average of net reduction in vegetation carbon uptake across Tibetan Plateau during 1982–2015.

During the study period, the annual total net reduction in vegetation carbon uptake of
the TP decreased from 0.13 PgC in 1982 to 0.05 PgC in 2015, with a significant downtrend of
−0.0018 ± 0.0002 PgC year−1 (P < 0.001, Figure 4a). Inversely, the annual total precipitation and annual
mean temperature significantly increased at a rate of 1.0952 ± 0.3577 mm year−1 (P = 0.004, Figure 4c)
and 0.0546 ± 0.0069 ◦C year−1 (P < 0.001, Figure 4d), respectively. During the studied period, the largest
extreme drought area occurred in 2009 (2.8 × 105 km2, Figure 4b), whereas in 1996, 2005 and 2012, there
were no extreme drought events on the TP. The interannual variation of the annual total net reduction
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in vegetation carbon uptake was negatively correlated with the annual total precipitation (R2 = 0.19,
P = 0.006, Figure 4e) and annual mean temperature (R2 = 0.60, P < 0.001, Figure 4f). Furthermore,
precipitation and temperature demonstrated a significant positive correlation (R2 = 0.16, P = 0.01,
Figure 4g).
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Figure 4. Interannual change in (a) the annual total net reduction in vegetation carbon uptake
(ATNRVCU) during 1982–2015, (b) annual area of extreme drought, (c) annual total precipitation,
and (d) annual mean temperature. The correlation analysis between (e) ATNRVCU and annual total
precipitation, (f) ATNRVCU and annual mean temperature, and (g) annual total precipitation and
annual mean temperature.

The NPP temporal trend, interannual variability (IAV), and standard deviation demonstrated a
heterogeneous geographical distribution for the 1982–2015 period. Most of the area (70.86%) presented
an increasing trend, and approximately 35% of the study region displayed a significantly increasing
trend (P < 0.05, Figure 5a), with a high positive trend mainly in the southeast and low negative value
chiefly in the central region. In addition, the alpine steppe ecosystem mainly demonstrated the positive
NPP trend (75.7%, Slope > 0; Figures 5a and S2a). The IAV of most regions (91.03%, IAV > 0) was
consistent with the TP NPP, with the maximum mainly distributed in the forest ecosystem (the average
value is 0.007%; Figures 5b and S2b). Similarly, high values (>180 gC m−2 year−1) of the NPP standard
deviation principally occurred in the southeast, with the lowest values (<20 gC m−2 year−1) occurring
in the northwest (Figure 5c). We also found that approximately 55% of the NRVCU grids experienced
a downward trend, and a significant region (P < 0.05) accounted for 17.86%, and the sharpest declining
trend (Slope ≤ −2) was primarily concentrated in the southeast (Figure 5d). The alpine meadow and
alpine steppe ecosystems appeared to contribute the most to the IAV of the NRVCU (45.66% and
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15.89%, respectively; Figure S2e), which was predominately distributed in the eastern and central
parts of the study area (Figure 5e). The NRVCU standard deviation exhibited the same pattern as that
of the NPP (Figure 5f). Furthermore, we also measured the SPEI temporal trend, which exhibited
a significant trend towards drought that primarily occurred in the Qaidam Basin and most forest
ecosystems (P < 0.05, Slope < 0, Figure 5g). Most of the study region (87.92%) experienced a consistent
IAV in the TP SPEI (positive value in Figure 5h). Of the extreme drought events in the TP (SPEI < −2),
the Qaidam Basin exhibited the highest event frequency (count ≥ 3, Figure 5i).
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Figure 5. Spatial patterns of (a,d,g) temporal trends; (b,e,h) interannual variability (IAV);
and (c,f) standard deviations of the net primary production (NPP), net reduction in vegetation
carbon uptake (NRVCU) and Standardised Precipitation–Evapotranspiration Index (SPEI) during
1982–2015. (i) Count of extreme drought events at the grid level across the Tibetan Plateau during
1982–2015. Insets in the upper right for panels (a,d,g) denote the significant linear trends (P < 0.05)
at the grid scale during the study period; red and blue points represent the decrease and increase
tendencies, respectively.

3.2. The Concurrent and Lagged Effects of Extreme Drought Leading to an NRVCU

We further examined the NRVCU induced by the concurrent and lagged effects in the alpine
steppe, alpine meadow, and forest ecosystems. A dominant influencing difference was discovered
in the alpine steppe and alpine meadow ecosystems (P < 0.05). Of the grids, 83.01% and 55.43%
experienced an NRVCU that was induced by the concurrent effect in the alpine steppe and alpine
meadow ecosystems, respectively (Figure 6a,b). However, an NRVCU caused by the lagged effect
only accounted for 8.25% and 12.90% of grids in the alpine steppe and alpine meadow ecosystems,
respectively (Figure 6a,b). For the concurrent and lagged effects in forests, there was no significant
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difference (P > 0.05) in the NRVCU. Approximately 67% of grids experienced an NRVCU caused by
the concurrent effect. Similarly, the lagged effect led to an NRVCU for 64.03% of the grids (Figure 6c).
Furthermore, the NRRVCU possessed the same characteristics as those of the NRVCU (Figure 6d–f).
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Figure 6. The net reduction in vegetation carbon uptake (NRVCU) caused by the concurrent and
lagged effects of extreme drought for (a) alpine steppe, (b) alpine meadow, and (c) forest ecosystems.
(d,e,f) denote the net reduction rate of vegetation carbon uptake (NRRVCU) of alpine steppe, alpine
meadow, and forest ecosystems, respectively. Red and blue bars (lines) represent the concurrent and
lagged effects, respectively. The asterisk (*) indicates a significant difference between the concurrent
and lagged effects at P < 0.05.

3.3. The Vegetation Net Carbon Uptake Recovery from Extreme Drought

After the extreme drought event, the vegetation net carbon uptake gradually recovered, with
different recovery times across vegetation types (Figure 7). The alpine meadow ecosystem possessed a
higher proportion of grids (44.57%) with no suppression when faced with extreme drought, followed by
forests (32.76%) and alpine steppe (16.99%). The alpine steppe ecosystem’s net carbon uptake recovered
faster than the other two types (alpine meadows and forests), with more than 75% of grids recovering
from the extreme drought within 1 year (Figure 7a). Compared to the alpine steppe ecosystem, the
alpine meadow required a longer time period to recover the vegetation net carbon uptake (Figure 7b),
with more than 50% of grids returning to normal levels within 4 years. Regarding forests, only 39.61%
of grids recovered from the extreme drought within 5 years (Figure 7c), and more than 25% of grids
require at least 6 years to recover.
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4. Discussion

4.1. NRVCU Spatiotemporal Patterns

The interannual changes in annual total net reduction in vegetation carbon uptake experienced a
significant downward trend during the 1982–2015 period (Slope < 0, P < 0.001, Figure 4a). A correlation
analysis demonstrated that the NRVCU gradually decreased as the annual total precipitation and
annual mean temperature increased (Figure 4c,d). The favourable water and heat conditions, such as
abundant soil moisture and mineral elements that are salutary for the vegetation net carbon uptake,
provided important resources for vegetation growth [4,60–64]. The soil water supply determines
whether the vegetation photosynthesis operates normally when the CO2 concentration and light are
sufficient [4,21,60]; thus, increased precipitation played a crucial role in ameliorating the vegetation net
carbon uptake (Figures 4e and S3a). Additionally, soil water is an indispensable intermediary that
guarantees the transportation of nutrients [60], which seems to support our findings regarding the
NRVCU on the TP (Figure 4a). In addition to water, temperature is another climate variable affecting
the vegetation net carbon uptake (Figures 4f and S3b). The increase in temperature facilitates vegetation
growth without encountering water limitations [59]. In addition, climate warming can stimulate the
enzymatic activities of photosynthesis [60,65], with an evident promotion in the vegetation net carbon
uptake. The increase in soil respiration as the climate warms is suitable for plant productivity due to the
acceleration of mineralisation and the decomposition of organic matter [60,66,67], which explained why
the NRVCU gradually declined (Figure 4a). Finally, an increased temperature may extend the length
of the vegetative growing season [60,68], which is responsible for an increase in plant productivity,
thereby restraining the NRVCU. In general, although a few studies have shown a downward trend of
precipitation at individual meteorological station [69], the general improvements in the water and heat
conditions visibly enhanced the capacity of the vegetation net carbon uptake on the TP (Figure 4a,c–g,
Figure S3a–c).

The multi-year (1982–2015) average NRVCU on the TP presented a distinct geographical
pattern (Figure 3c), with a gradient variation from the southeast (>90 gC m−2 year−1) to northwest
(<10 gC m−2 year−1) that was highly consistent with the multi-year average NPP (Figure 3b).
The variation pattern potentially reflects the climate variability affecting plant productivity (Figures S4
and S5). The TP climate is primarily controlled by the East Asia monsoon [59,70] because the
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Himalaya mountains obstruct the Indian monsoon, together with the route of westerlies (Figure 1),
which determined the gradually reduced gradient of precipitation (Figure S4a) from the southeast
to northwest and thereby dominated the plant productivity patterns related to the climate gradient
(Figure 3b). In this context, the vegetation net carbon uptake may possess a greater reduction in the
southeastern TP when normal ecosystem functioning is restrained by external factors, which seems to
support our findings (Figure 3c). Similarly, the finding that vegetation growth is easily affected by the
TP climate is also supported by previous studies [70,71]. The tendency towards drought (Slope < 0 of
SPEI, Figure 5g) is a determinant that led to the greater NRVCU in forests than in other ecosystem types
(Figure 3c), while the same SPEI trend (Slope < 0, Figure 5g) in the Qaidam Basin did not induce the large
NRVCU that can be attributed to lower plant productivity in this alpine desert region (Figures 1 and 3b).
In terms of arid regions, plants in the northwestern TP possessed a lower photosynthesis rate, leaf area,
species diversity, nitrogen content, growth rate, and the growing season length, which resulted in a
weak net carbon uptake capacity of vegetation [72–74]. However, plant is equipped with an adaptive
ability to grow in poor environmental conditions (Figures S4, S6, and S7); thus, it experiences a lower
NRVCU (Figure 3c) than that in a nutrient-rich environment (e.g., southeastern TP) when a drought
occurs. Furthermore, the NRVCU variation trends presented an increase in forests and eastern regions
but a decrease in the northwestern and southeastern TP (Figure 5d); this was supported by the SPEI
variation trends (Figure 5g). The IAV of NRVCU on the TP was primarily dominated by alpine meadow
and alpine steppe ecosystems (Figures 5e and S2e), suggesting that the pattern of precipitation and
temperature variability are driving the NRVCU for alpine steppe and alpine meadow ecosystems,
respectively (Figures S4a,b,d,e and S5a–d).

4.2. Response of the Vegetation Net Carbon Uptake to Extreme Drought

The ecosystems experienced different negative feedbacks to the extreme drought event. We found
that the differences in NRVCU (and NRRVCU) between the concurrent and lagged effects induced by
extreme drought were significant (P < 0.05) for the alpine steppe and meadow ecosystems, while forests
exhibited the opposite trend (Figure 6). Grasslands generally have a simpler structure and fewer
species than forests [6]. The aboveground portion of the ecosystem is more prone to blights when
encountering extreme drought [6,75–77], but it can quickly recover as precipitation occurs and soil
moisture replenishes [6,76,78]. There are also many annual plants in grasslands [79] that can typically
develop without nutrient restrictions in the year following an extreme drought. These characteristics
determined the lower NRVCU for the lagged effects and thus the significant reduction difference
for vegetation net carbon uptake between the concurrent and lagged effects caused by extreme
drought (Figure 6a,b,d,e). In comparison, the forests possessed a more complex structure and higher
productivity [80], which increased their resilience to extreme drought because they can capture
deeper underground water [4,81]. Although forests have a more resilient system than grasslands,
their mortality can significantly increase when an extreme drought imposes stress that is greater than
the acceptable threshold [4], thereby inducing a serious lagged effect after the extreme drought year.
Therefore, the vegetation net carbon uptake may not quickly recover to the previous level due to forest
dieback [4], fire disturbances [6], pest and pathogen breakouts [82], etc., which may explain why the
discrepancy in NRVCU between the concurrent and lagged effects induced by extreme drought was
inconspicuous (P > 0.05) in forests (Figure 6c,f).

Not only do the difference in NRVCU (and NRRVCU) between the concurrent and lagged effects
induced by extreme drought but also the recovery time distinctly differed in alpine steppe, alpine
meadow, and forest ecosystems, highlighting ecosystem characteristics related to the soil moisture [60],
soil physical and chemical properties [4], nutrients [83], light, non-structural carbohydrates [6], etc.
We found that the alpine meadow ecosystem possessed a greater proportion (44.57%) of the study
region that exhibited no suppression during the extreme drought year (Figures 6 and 7), followed by
the forest (32.76%) and alpine steppe (16.99%) ecosystems. The alpine meadow ecosystem is closely
connected with the prevailing grassland one where climatic conditions are unfit for woody plants to
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exist and with the comparatively higher turnover rates than forests [4] that can be more resilient to
extreme drought without nutrient restrictions (Figures S6 and S7). For the alpine steppe ecosystem
in arid regions (e.g., the northwestern TP), vegetation encountered an insufficient nutrition and soil
moisture supply [84] and the vegetation net carbon uptake was easily disturbed by the extreme drought,
but it quickly returned to the previous level within 1 year (more than 75% of grids, Figure 7a) due to
the its adaptive capacity for drought [4]. When comparing the recovery times of forests and grasslands,
we found that forests required a longer time to recover their net carbon uptakes, and more than 25%
of grids experienced the lagged maintain (recovery time ≥6 years, Figure 7c). The longer recovery
time of vegetation net carbon uptake for forests is primarily attributed to the lagged effect caused by
extreme drought; for example, the forest dieback during the extreme drought year led to decreased
photosynthesis and lagged carbon emissions following the extreme drought [3,4,13]. Forests were
also more assaulted by pest and pathogen breakouts than grasslands were [4,82], which severely
restrained vegetation growth and caused an NRVCU [6]. In addition, the extreme drought altered
carbon allocation, with more carbon being assigned to roots (or leaves) than to bole growth [82],
which led to growth decline. The lagged effect of extreme drought can also cause the remnants of
xylem cavitation that impair the water transport process and thereby restrict normal net carbon uptake
rates of vegetation [82]. These lagged effects are related to plant growth, and they extend the recovery
time of vegetation net carbon uptake.

4.3. Importance and Uncertainties

In our study, with the improvement in spatial resolution, the SPEI was considered to be the water
balance between precipitation and potential evapotranspiration, and it measured the drought sensitivity
magnitude across the TP during 1982–2015, which captured a credible drought spatiotemporal
variability when compared with the sparse and uneven station distribution and insufficient ground-based
observations [40,85,86]. For the SPEI quantisation process, the potential evapotranspiration was
introduced to calculate the SPEI, and global warming scenarios were considered [39]. Additionally,
the complicated terrain also affected the climate, especially the precipitation and temperature, which are
indispensable datasets for calculating the SPEI. Fortunately, the Anusplin 4.2 was used to process their
spatial interpolations related to terrain. Moreover, we adopted a light use efficiency model (i.e., the CASA
model) to estimate NPP across the TP during 1982–2015, which can decrease uncertainties owing to
extrapolations and interpolations and to mirror the vegetation growth statuses and ecosystem function
changes and health conditions as the interference of the external environment [87]. Based on the NPP
dataset, the NRVCU was quantified at the spatiotemporal scale, which revealed the net carbon flux
variations of vegetation on the TP, with a reliable interannual variation being related to climate change.
Finally, the difference between the concurrent and lagged effects induced by extreme drought on
the NRVCU highlighted the different response mechanisms of vegetation both during and after the
extreme drought events, which is salutary for future studies regarding the effect of climate change on
vegetation net carbon uptake.

Despite progress being made via this study, large uncertainties remain. The SPEI calculation
requires a long-term meteorological dataset of at least 30 years, and the optimal duration is
50–60 years [40]. We adopted a duration of 34 years from 1982 to 2015, which is shorter than
the optimal duration and may lead to decreased accuracy. The SPEI possesses multiple timescale
characteristics, and this study employed a 12-month timescale because the lagged effect requires a
long-term interference of extreme drought and potential evapotranspiration that is well-monitored via
a long timescale [39] but can ignore the replenishment of soil water in the growing season, which is
important for vegetation growth across the TP. In terms of NPP, our product has greater NPP estimates
for forests compared with the gauged (or MODIS-derived) NPP, and it may overestimate the NRVCU;
meanwhile, the latest version of MODIS-derived NPP (v006) and more sampling sites of forest should be
adopted to verify the feasibility of estimated NPP. In fact, human activities and natural mechanisms are
vital factors to NPP [51]; thus, future research can consider the influences of these factors on NPP that
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could be an interesting topic. Additionally, the spatial interpolation method of solar radiation adopted
the Kriging method, which could induce the indeterminacy to estimate NPP, and a machine learning
algorithm should be considered in the future research. Moreover, the selected lagged effect primarily
occurred in the year following the extreme drought event. A longer lagged effect on vegetation net
carbon uptake and respiration should be explored for forests owing to their complicated structures
and ecosystem functions. Finally, many factors could affect drought resilience, and future research
should capture such information in detail.

5. Conclusions

In the present study, we adopted the SPEI based on meteorological data with ameliorative spatial
resolution to measure drought magnitude across the TP during 1982–2015. The estimated NPP,
based on a light use efficiency model (i.e., the CASA model), was employed to quantise the NRVCU,
and the response of the vegetation net carbon uptake to extreme drought was investigated in different
ecosystems. The SPEI spatiotemporal patterns indicated that the Qaidam Basin and most forest regions
on the TP demonstrated drought trends. The improvement in the water regime and thermal conditions
restrained the NRVCU on the TP during the 1982–2015 period. The concurrent and lagged effects
of extreme drought on the NRVCU exhibited significant differences in the alpine steppe and alpine
meadow ecosystems, but no discrepancy was found for forests, which was primarily due to their
vegetation properties and environmental conditions. Forests requires a longer time period to recover
their net carbon uptakes than that of alpine steppe and alpine meadow ecosystems because of their
complex ecosystem structure. This study provides information regarding the lagged effect of extreme
drought on the vegetation net carbon uptake on the TP. In future studies, incorporating the process
mechanisms such as the lagged effect of extreme drought on the vegetation net carbon uptake may be
helpful in managing net carbon fluxes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/15/2347/s1,
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SPEI in 1985, 1995, and 2005. Figure S2. (a)–(h) represent the temporal trends; interannual variability (IAV);
and standard deviations for the net primary production (NPP), net reduction in vegetation carbon uptake (NRVCU),
and Standardised Precipitation–Evapotranspiration Index (SPEI) in the (A) alpine steppe, (B) alpine meadow,
and (C) forest ecosystems. Horizontal lines in box plots denote the 95th, 75th, average value, 25th, and 5th
percentiles from top to bottom. Figure S3. The correlation analysis between (a) monthly mean net reduction in
vegetation carbon uptake (NRVCU) and monthly mean precipitation, (b) monthly mean NRVCU and monthly
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Spatial correlation between (a) net reduction in vegetation carbon uptake (NRVCU) and precipitation, (b) NRVCU
and temperature. The significance level between (c) NRVCU and precipitation, (d) NRVCU and temperature.
Figure S6. Correlation analysis between vegetation net carbon uptake and (a) alkali-hydrolysable N, (b) available P,
(c) available K, (d) cation exchange capacity, (e) soil organic matter, (f) PH, (g) soil moisture, (h) total N, and (i) total
P. Figure S7. (a) Alkali-hydrolysable N, (b) available P, (c) available K, (d) cation exchange capacity, (e) soil organic
matter, (f) PH, (g) soil moisture, (h) total N, and (i) total P in (A) alpine steppe, (B) alpine meadow, and (C) forest
ecosystems. Horizontal lines in the box plots denote the 95th, 75th, average value, 25th, and 5th percentiles from
top to bottom.
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