Application of Empirical Land-Cover Changes to Construct Climate Change Scenarios in Federally Managed Lands
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data and Methodology
2.2.1. Input Data
2.2.2. Data Preparation
2.2.3. Business as Usual (BAU) and Representative Concentration Pathway (RCP) 8.5 Scenarios
2.2.4. State and Transition Model Framework
3. Results
3.1. Historical Land Cover and Climate
3.2. Overall Trends from 2018 to 2050
3.3. Management Unit Trends from 2018 to 2050
4. Discussion
4.1. Historical Change
4.2. Projected Change
4.3. Results in the Context of Past Research
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Shi, H.; Rigge, M.; Homer, C.G.; Xian, G.; Meyer, D.K.; Bunde, B. Historical Cover Trends in a Sagebrush Steppe Ecosystem from 1985 to 2013: Links with Climate, Disturbance, and Management. Ecosystems 2018, 21, 913–929. [Google Scholar] [CrossRef]
- Rigge, M.; Shi, H.; Homer, C.; Danielson, P.; Granneman, B. Long-term trajectories of fractional component change in the Northern Great Basin, USA. Ecosphere 2019, 10, e02762. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.; Sayler, K.L.; et al. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Shoyama, K.; Yamagata, Y. Predicting land-use change for biodiversity conservation and climate-change mitigation and its effect on ecosystem services in a watershed in Japan. Ecosyst. Serv. 2014, 8, 25–34. [Google Scholar] [CrossRef]
- Robinson, D.T.; Brown, D.G.; Parker, D.C.; Schreinemachers, P.; Janssen, M.A.; Huigen, M.; Wittmer, H.; Gotts, N.; Promburom, P.; Irwin, E.; et al. Comparison of empirical methods for building agent-based models in land use science. J. Land Use Sci. 2007, 2, 31–55. [Google Scholar] [CrossRef]
- Hemstrom, M.A.; Wisdom, M.J.; Hann, W.J.; Rowland, M.M.; Wales, B.C.; Gravenmier, R.A. Sagebrush-Steppe Vegetation Dynamics and Restoration Potential in the Interior Columbia Basin, USA. Conserv. Biol. 2002, 16, 1243–1255. [Google Scholar] [CrossRef]
- Soulard, C.E.; Sleeter, B.M. Late twentieth century land-cover change in the basin and range ecoregions of the United States. Reg. Environ. Chang. 2012, 12, 813–823. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Crookston, N.L.; Sáenz-Romero, C.; Campbell, E.M. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems. Ecol. Appl. 2012, 22, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Barker, B.S.; Pilliod, D.S.; Rigge, M.; Homer, C.G. Pre-fire vegetation drives post-fire outcomes in sagebrush ecosystems: Evidence from field and remote sensing data. Ecosphere 2019, 10, e02929. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Tietjen, B.; Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Hall, S.A.; Duniway, M.C.; Hochstrasser, T.; Jia, G.; Munson, S.M.; Pyke, D.A.; et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob. Chang. Biol. 2017, 23, 2743–2754. [Google Scholar] [CrossRef]
- Still, S.M.; Richardson, B.A. Projections of Contemporary and Future Climate Niche for Wyoming Big Sagebrush (Artemisia tridentata subsp. wyomingensis): A Guide for Restoration. Nat. Areas J. 2015, 35, 30–43. [Google Scholar] [CrossRef]
- Creutzburg, M.; Henderson, E.; Conklin, D. Climate Change and Land Management Impact Rangeland Condition and Sage-Grouse Habitat in Southeastern Oregon. AIMS Environ. Sci. 2015, 2, 203–236. [Google Scholar] [CrossRef]
- Homer, C.G.; Xian, G.; Aldridge, C.L.; Meyer, D.K.; Loveland, T.R.; O’Donnell, M.S. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: Learning from past climate patterns and Landsat imagery to predict the future. Ecol. Indic. 2015, 55, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Wayne, G. The Beginner’s Guide to Representative Concentration Pathways. Skept. Sci. 2013, 25. Available online: https://denning.atmos.colostate.edu/ats760/Readings/RCP_Guide.pdf (accessed on 20 July 2020).
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Meyer, L.; Brinkman, S.; van Kesteren, L.; Leprince-Ringuet, N.; van Boxmeer, F. Technical Support Unit for the Synthesis Report. 169. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 20 July 2020).
- Ford, P.L.; Reeves, M.C.; Frid, L. A Tool for Projecting Rangeland Vegetation Response to Management and Climate. Rangelands 2019, 41, 49–60. [Google Scholar] [CrossRef]
- Sanford, T.; Frumhoff, P.C.; Luers, A.; Gulledge, J. The climate policy narrative for a dangerously warming world. Nat. Clim. Chang. 2014, 4, 164–166. [Google Scholar] [CrossRef]
- Rowland, M.M.; Wisdom, M.J.; Suring, L.H.; Meinke, C.W. Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates. Biol. Conserv. 2006, 129, 323–335. [Google Scholar] [CrossRef]
- Thornton, P.E.; Thornton, M.M.; Vose, R.S. Daymet: Annual Tile Summary Cross-Validation Statistics for North America, Version 3. ORNL DAAC 2016. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Rigge, M.; Shi, H.; Meyer, D. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sens. Environ. 2015, 168, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Boyd, C.S.; Davies, K.W.; Collins, G.H. Impacts of Feral Horse Use on Herbaceous Riparian Vegetation Within a Sagebrush Steppe Ecosystem. Rangel. Ecol. Manag. 2017, 70, 411–417. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T.; Spittlehouse, D.L.; Murdock, T.Q. A Comprehensive, High-Resolution Database of Historical and Projected Climate Surfaces for Western North America. Bull. Am. Meteor. Soc. 2013, 94, 1307–1309. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef]
- Rigge, M.; Homer, C.; Cleeves, L.; Meyer, D.K.; Bunde, B.; Shi, H.; Xian, G.; Schell, S.; Bobo, M. Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sens. and In Situ Data. Remote Sens. 2020, 12, 412. [Google Scholar] [CrossRef] [Green Version]
- Rigge, M.; Homer, C.; Shi, H.; Meyer, D.K. Validating a Landsat Time-Series of Fractional Component Cover Across Western U.S. Rangelands. Remote Sens. 2019, 11, 3009. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.J.; Frid, L. Predicting landscape vegetation dynamics using state-and-transition simulation models. In Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, Portland, OR, USA, 14–16 June 2011; Kerns, B.K., Shlisky, A.J., Daniel, C.J., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2012; General Technical Report (GTR); PNW-GTR-869. [Google Scholar]
- Daniel, C.J.; Frid, L.; Sleeter, B.M.; Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 2016, 7, 1413–1423. [Google Scholar] [CrossRef] [Green Version]
- Soulard, C.E.; Rigge, M. Spatially-Explicit Land-Cover Scenarios of Federal Lands in the Northern Great Basin: 2018–2050. Data Release U. S. Geol. Surv. 2020. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.G.; Aldridge, C.L. Effects of Land Cover and Regional Climate Variations on Long-Term Spatiotemporal Changes in Sagebrush Ecosystems. Gisci. Remote Sens. 2012, 49, 378–396. [Google Scholar] [CrossRef]
- Bradley, B.A. Assessing ecosystem threats from global and regional change: Hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 2010, 33, 198–208. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Lauenroth, W.K.; Bradford, J.B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography 2012, 35, 374–384. [Google Scholar] [CrossRef]
- Creutzburg, M.K.; Halofsky, J.E.; Halofsky, J.S.; Christopher, T.A. Climate Change and Land Management in the Rangelands of Central Oregon. Environ. Manag. 2015, 55, 43–55. [Google Scholar] [CrossRef]
- Beschta, R.L.; Donahue, D.L.; DellaSala, D.A.; Rhodes, J.J.; Karr, J.R.; O’Brien, M.H.; Fleischner, T.L.; Deacon Williams, C. Adapting to Climate Change on Western Public Lands: Addressing the Ecological Effects of Domestic, Wild, and Feral Ungulates. Environ. Manag. 2013, 51, 474–491. [Google Scholar] [CrossRef]
- Bashari, H.; Smith, C.; Bosch, O.J.H. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agric. Syst. 2008, 99, 23–34. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K. Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. J. Biogeogr. 1998, 25, 721–733. [Google Scholar] [CrossRef]
- Albano, C.M.; McClure, M.L.; Gross, S.E.; Kitlasten, W.; Soulard, C.E.; Morton, C.; Huntington, J. Spatial patterns of meadow sensitivities to interannual climate variability in the Sierra Nevada. Ecohydrology 2019, 12, e2128. [Google Scholar] [CrossRef]
- Soulard, C.E. Land-Cover Trends of the Central Basin and Range Ecoregion; Scientific Investigations Report. Data Release U. S. Geol. Surv. 2006. [Google Scholar] [CrossRef]
PRCP Correlation | ||||
---|---|---|---|---|
Negative | None | Positive | ||
TMIN Correlation | Negative | 1 | 2 | 3 |
None | 4 | 5 | 6 | |
Positive | 7 | 8 | 9 |
Precipitation | |||
Relationship | Herbaceous | Shrub | Bare Ground |
Negative (p < 0.10) | 2.3 | 5.4 | 22.1 |
Positive (p < 0.10) | 22.1 | 18.8 | 3.2 |
Negative | 23.4 | 30.1 | 66.5 |
Positive | 68.3 | 61.5 | 25.6 |
None | 8.2 | 8.4 | 7.9 |
Minimum Temperature | |||
Relationship | Herbaceous | Shrub | Bare Ground |
Negative (p < 0.10) | 18.2 | 11.5 | 6.8 |
Positive (p < 0.10) | 5.9 | 9.3 | 14.3 |
Negative | 36.5 | 41.4 | 51.2 |
Positive | 54.2 | 48 | 39.1 |
None | 9.3 | 10.6 | 9.7 |
A. Shrub-BAU | 2050 Category | B. Shrub-RCP 8.5 | 2050 Category | ||||||||
1–20% | 21–40% | 41–60% | 61–100% | 1–20% | 21–40% | 41–60% | 61–100% | ||||
2018 Category | 1–20% | - | 1023(63) | 147(49) | 6(0) | 2018 Category | 1–20% | - | 708(38) | 23(30) | 40(35) |
21–40% | 772(13) | - | 79(18) | 2(0) | 21–40% | 521(10) | - | 82(6) | 26(7) | ||
41–60% | 36(1) | 30(1) | - | 0(0) | 41–60% | 2(0) | 30(1) | - | 10(1) | ||
61–100% | 5(0) | 2(0) | 1(0) | - | 61–100% | 0(0) | 0(0) | 0(0) | - | ||
C. Herb-BAU | 2050 Category | D. Herb-RCP 8.5 | 2050 Category | ||||||||
1–20% | 21–40% | 41–60% | 61–100% | 1–20% | 21–40% | 41–60% | 61–100% | ||||
2018 Category | 1–20% | - | 816(30) | 90(30) | 0(0) | 2018 Category | 1–20% | - | 812(48) | 96(35) | 0(0) |
21–40% | 1026(18) | - | 113(24) | 0(0) | 21–40% | 1027(20) | - | 121(32) | 0(0) | ||
41–60% | 7(0) | 19(1) | - | 0(0) | 41–60% | 7(0) | 18(2) | - | 0(0) | ||
61–100% | 0(0) | 0(0) | 0(0) | - | 61–100% | 0(0) | 0(0) | 0(0) | - | ||
E. Bare BAU | 2050 Category | F. Bare-RCP 8.5 | 2050 Category | ||||||||
1–20% | 21–40% | 41–60% | 61–100% | 1–20% | 21–40% | 41–60% | 61–100% | ||||
2018 Category | 1–20% | - | 105(4) | 39(2) | 1(0) | 2018 Category | 1–20% | - | 104(2) | 39(2) | 1(0) |
21–40% | 199(39) | - | 449(7) | 55(6) | 21–40% | 221(26) | - | 445(7) | 56(7) | ||
41–60% | 55(15) | 508(19) | - | 683(62) | 41–60% | 60(8) | 517(16) | - | 674(65) | ||
61–100% | 9(7) | 86(8) | 498(22) | - | 61–100% | 13(6) | 89(9) | 492(19) | - |
2018 Cover | 2018–2050 Slope | |||||||
---|---|---|---|---|---|---|---|---|
Scenario | Cover Type | Elevation | Bare | Herb. | Shrub | Bare | Herb. | Shrub |
BAU | Bare | 0.43 | −0.69 | 0.69 | 0.45 | 1.00 | −0.83 | −0.74 |
BAU | Herbaceous | −0.40 | 0.64 | −0.79 | −0.25 | −0.83 | 1.00 | 0.24 |
BAU | Shrub | −0.27 | 0.42 | −0.25 | −0.48 | −0.74 | 0.24 | 1.00 |
RCP 8.5 | Bare | 0.41 | −0.64 | 0.65 | 0.42 | 1.00 | −0.77 | −0.77 |
RCP 8.5 | Herbaceous | −0.40 | 0.63 | −0.78 | −0.24 | −0.77 | 1.00 | 0.20 |
RCP 8.5 | Shrub | −0.23 | 0.36 | −0.22 | −0.41 | −0.77 | 0.20 | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulard, C.E.; Rigge, M. Application of Empirical Land-Cover Changes to Construct Climate Change Scenarios in Federally Managed Lands. Remote Sens. 2020, 12, 2360. https://doi.org/10.3390/rs12152360
Soulard CE, Rigge M. Application of Empirical Land-Cover Changes to Construct Climate Change Scenarios in Federally Managed Lands. Remote Sensing. 2020; 12(15):2360. https://doi.org/10.3390/rs12152360
Chicago/Turabian StyleSoulard, Christopher E., and Matthew Rigge. 2020. "Application of Empirical Land-Cover Changes to Construct Climate Change Scenarios in Federally Managed Lands" Remote Sensing 12, no. 15: 2360. https://doi.org/10.3390/rs12152360
APA StyleSoulard, C. E., & Rigge, M. (2020). Application of Empirical Land-Cover Changes to Construct Climate Change Scenarios in Federally Managed Lands. Remote Sensing, 12(15), 2360. https://doi.org/10.3390/rs12152360