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Abstract: The objective of this research is to assess the potential of satellite imagery in detecting soil
heterogeneity, with a focus on site-specific fertilization in rice. The basic hypothesis is that spectral
variation would express soil fertility variations analogously. A 100-ha rice crop, located in the Plain of
Thessaloniki, Greece, was selected as the study area for the 2016 cropping season. Three RapidEye
images were acquired during critical growth stages of rice cultivation from the previous year (2015).
Management zones were delineated with image segmentation of a 15-band multi-temporal composite
of the RapidEye images (three dates × five bands), using the Fractal Net Evolution Approach
(FNEA) algorithm. Then, an equal number of soil samples were collected from the centroid of each
management zone before seedbed preparation. The between-zone variation of the soil properties was
found to be 33.7% on average, whereas the within-zone variation 18.2%. The basic hypothesis was
confirmed, and moreover, it was proved that zonal applications reduced within-zone soil variation
by 18.6% compared to conventional uniform applications. Finally, between-zone soil variation was
significant enough to dictate differentiated fertilization recommendations per management zone by
24.5% for the usual inputs.
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1. Introduction

“Precision Agriculture (or precision farming) is a management strategy that gathers, processes
and analyzes temporal, spatial and individual data and combines it with other information to
support management decisions according to estimated variability for improved resource use efficiency,
productivity, quality, profitability and sustainability of agricultural production” [1]. Precision agriculture
applications follow four distinct steps: Variability detection; variability interpretation; decision making;
and site-specific implementation. The first step is concluded with the delineation of management
zones, i.e., relatively uniform spatial units, which differ significantly from their neighboring ones [2].

Among other technologies, remote sensing is known to assist a lot in zone delineation based
on detecting variability of vegetation, or soil properties, or both [3]. Specifically, in Mediterranean
countries, remote sensing has dominated as the main source of information for precision agriculture
applications over yield mapping, as optical satellite data can play a very important role, due to the
good weather conditions [4,5].

Using historic satellite or airborne imagery, Zhang et al. (2010) [6] developed a web-based mapping
application to automatically delineate the optimal number of management zones in the United States
of America. Moreover, Wetterlind et al. (2008) [7] developed an empirical model for cereal farms,
to increase the accuracy of estimates derived from sparsely sampled soil data by using soil electrical
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conductivity (EC) maps and satellite near-infrared (NIR) imagery as calibration data. The model
demonstrated improved accuracy for organic matter and clay content estimations using 1 sample
per 38.8 hectares, which is quite lower than a conventional sampling grid of 0.5 samples per hectare.
Soil variability is a fundamental parameter affecting precision agriculture applications; and according
to Cemek et al. 2007 [8], it can be attributed either to natural variations in soil (intrinsic sources),
to farm management effects (extrinsic sources), or even to anthropogenic pollution [9].

Pinheiro et al. (2017) [10] predicted soil chemical and physical properties using reflectance
spectroscopy successfully on subtropical and temperate soils. Implementing semi-supervised regression
(SSR), Liu et al. (2017) [11] estimated soil organic content with visible-infrared spectroscopy using
a set of soil samples for training a support vector machine. Using airborne hyperspectral data and
soil chemical datasets, Steinberg et al. (2016) [12] achieved to predict iron oxide, clay, and soil organic
carbon content in Spain and Luxembourg. Ceddia et al. (2017) [13] managed to predict cesium and
subsurface clay content even under forest coverage using the Normalized Difference Vegetation Index
(NDVI) derived from RapidEye and ALOS PALSAR backscattering coefficient. Multi-temporal imaging
spectroscopy data from the Airborne Prism Experiment (APEX) were utilized by Diek et al. (2016) [14]
successfully, to increase total mapping area of bare soils in heterogeneous agricultural landscapes.
For reducing the effect of soil background to vegetation information extracted from remotely sensed
images, Ahmadian et al. 2016) [15] utilized a fixed quantile tau to retrieve the soil-line parameters.

Rice (Oryza sativa L.) is the major food source for almost half of the population of the world,
following wheat and maize in annual production [16]. In rice cultivation systems, the dynamic mixture
of plants, soil, and water results in a very particular spectral response over time [17], and therefore,
multi-temporal approach for precision agriculture purposes is a necessity.

Using multi-temporal satellite data, though, is not new in rice crop mapping and monitoring.
Chen et al. (2012) [16] applied local maxima of NDVI values on intra-annual MODIS satellite time-series
to detect rice crop phenology in Vietnam, successfully predicting sowing and harvesting dates, with only
slight divergences of 7.5 and 8.2 days, respectively, in terms of root mean squared error (RMSE).
Shihua et al. (2014) [18] also applied local maxima in MODIS time-series, using the enhanced vegetation
index (EVI) as an indicator of critical phenology changes, this time with a success of ±10 days compared
to ground observation data. However, these works were related mainly to monitoring large rice crop
areas rather than precision farming applications.

Lately, several types of high-resolution satellite imagery are becoming available to precision
farming purposes. Technological advances, however, are usually limited by various engineering or
economic factors [19]. According to Sozzi et al. (2018) [20], RapidEye imagery is a type which can be
exploited profitably by farms larger than 40 hectares, while at the same time, it has the advantage
of a more frequent revisit time and an additional band close to the Red Edge compared to similar
image types.

The objective of this study was to examine if the segmentation of multi-temporal RapidEye imagery
is an adequate process to detect soil variation in rice crop, with a view to assisting in site-specific
fertilization. The study was conducted in a 100-ha rice farm located in the Plain of Thessaloniki,
Greece. The basic hypothesis of the methodology was that delineating management zones with the
segmentation of images acquired throughout critical stages of rice cultivation, would reveal systematic
soil variation, provided that the farmer has followed steadily uniform farming practices until then.

2. Materials and Methods

2.1. Study Site

Rice has been cultivated in Greece since classical times [21]. Today, the Plain of Thessaloniki,
a low-lying coastal area of 22,400 ha, is the main rice-production zone of Greece. The climate is the
typical Mediterranean, with temperate summers suitable for rice cultivation, even for genotypes of
indica type. Rice is monocrop in the area by about 75% rotated with maize, cotton, and alfalfa.
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The alluvial soils of the plain are mostly silty clay, poorly drained, classified as Typic
Xerofluvents [22], i.e., recent, floodplain soils developed under Mediterranean climatic conditions
(moist cold winters and dry warm summers) [23]. However, salinity levels remain quite low to imply
any soil degradation hazard according to recent experiments conducted by [24] Litskas et al. (2014).

Sowing is carried out in mid-May, while harvesting is carried out in late September to early
October, depending on grain moisture levels (which must be from 19% to 21%). The plain produces the
highest recorded yield (10 ton/ha on average) among all the rice-producing plains in Greece (8.89 ton/ha
on average) [25].

Thirty-five fields of 100 hectares total extent, around the town of Chalastra (40.6265N, 22.7307E,
6 m mean altitude) in the east part of the Plain of Thessaloniki, Greece were used for the study (Figure 1).
The mean extent of the fields was 2.82 ha, with 0.58 minimum and 4.46 maximum. The fields were
under rotation with maize or cotton systematically after 2008.
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Figure 1. The study fields located around Chalastra, in the east part of Thessaloniki Plain, Greece.

Available historic yield data are recorded since 1998. These data, together with the farmer’s
experience, indicate:

• Significant yield variation between the rice fields (coefficient of variation 5.6% on average; larger
than 10% for years 2009, 2010, and 2015);

• An overall steady diminishing trend of rice yield by about 6% with temporary ups and downs
over the years (coefficient of variation 12.4% on average; maximum at 19.5%).
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These figures were taken as undisputed signs of spatiotemporal instability in rice growth between
the fields of the farm and imposed problematic soil fertility potential. Farmer’s knowledge can be
a reliable source of information about crop variation in different ways; for example, an indication by
the farmer of the high, medium, and low yield zones, or clusters of different soil characteristics [26,27].

Below are the most important dates regarding the fertilization of the studied fields for the
cultivation season of 2016:

• Leveling: second half of April;
• Seeding: 5–7 May;
• Development fertilization: 11–14 May;
• Tillering fertilization: 14–15 June;
• Booting fertilization: 11–12 July;
• Panicle heading fertilization: 9–10 August;
• Harvesting: mid-October.

Other farming practices, such as weeding or pest management, are irrelevant to the subject,
and thus, are not reported here.

2.2. Image Data

Three RapidEye images were acquired on 30 May 2015, 04 July 2015, and 26 August 2015,
corresponding to critical growth stages of rice cultivation in the studied fields, i.e., before tillering,
close to booting and after panicle heading, respectively. RapidEye constitutes of a 5-satellite constellation
at 630 km in sun-synchronous orbit, each carrying an identical multispectral push broom imager.
RapidEye was the first commercial imagery to supply an individual band in the red edge wavelengths,
which is linked to critical crop parameters, such as chlorophyll content, biomass, and water content [28].
The spectral bands of the RapidEye imagers are specified as follows:

• B1: Blue (B): 440–510 nm
• B2: Green (G): 520–590 nm
• B3: Red (R): 630–685 nm
• B4: Red Edge (RE): 690–730 nm
• B5: Near Infrared (NIR): 760–850 nm

The RapidEye image dataset in hands was a radiometrically corrected and orthorectified product
(3A-level), in the WGS84 projection system, UTM zone 34 north, with a 5-m pixel size. The images
were composited into a new 15-band image (5 bands × 3 dates), which then underwent principal
component analysis (PCA), thus allowing information concentration into a single band. The latter
made a comparison of spectral and soil variations in the spatial domain, possible.

Before proceeding with data exploration and analysis, the pixels falling in an internal 15-m buffer
from the fields’ boundaries were masked out, to neutralize the border effect. This effect is due to:
(a) Existence of mixed pixels, i.e., pixels covering features not belonging exclusively to the cultivated
part of the fields; and/or (b) misapplication of farming practices at the perimeter of the fields, which is
quite common in most open-field cultivations.

2.3. Image Analysis

A methodology appropriate for detecting local variance in imagery is image segmentation, which
is defined as the process of image division into spatially continuous, disjoint, and homogeneous
regions, called image objects [29]. In this study, the produced objects corresponded to the proposed
management zones.
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The Fractal Net Evolution Approach (FNEA) algorithm (also known as Multiresolution
Segmentation), is one of the most common segmentation algorithms. With FNEA, image objects are
created by grouping single pixels through a stepwise region-growing procedure of minimizing internal
heterogeneity of each object until a pre-defined threshold (called ‘scale factor’) is reached [30]. Scale
factor influences the desired object size and shape [31], according to one spectral and two shape criteria
(namely, compactness and smoothness) [32].

Indication of the optimum scale factor for a project is a difficult task, related to the specific objectives
and availability of image data. Indicatively, Cánovas-García and Alonso-Sarría (2015) [33] applied
multiresolution segmentation on a high-resolution image of a large and heterogeneous agricultural area
to optimize scale factor. Assessment of within- and between-zone variation was based on statistical
metrics. Dragut et al. (2010) [34] invented a software program (ESP) for evaluating the scale factor
using local variance (LV) of object heterogeneity of the scene as a critical metric. Laliberte and Rango
(2009) [35] evaluated known texture measures for their correlation to different segmentation scales in
mapping rangeland vegetation with 5-cm pixel true-color aerial photography. Manakos et al. (2016) [36]
investigated the optimum scale parameter for delineating ecological habitat types using a large set of
textural features extracted from WorldView2 satellite imagery.

A sequence of segmentation levels was produced with FNEA, for the following experimental
scale factors: 25, 50, 100, 150, 200, 250, and 300. The number of objects produced per scale factor (either
before or after noise filtering) was found to follow a decreasing power-based line (Figure 2); this type
of equation between scale factor and number of objects has been proved to be typical with image
segmentation of RapidEye images, as well as with other image types [37,38].
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Figure 2. A power-based relation between segmentation scale factor and number of produced objects
(or zones); and a quadratic relation between scale factor and mean object size, extracted from the
multi-seasonal RapidEye image.
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Optimal scale factors were indicated as those where within-zone variation is minimized, while
between-zone variation is maximized; thus, where the difference between the two variations is
maximized. The coefficient of variation was used as a measure of spectral variation derived from the
first principal component (PC1) of the image. This approach is stemming from the ideas of Woodcock
and Strahler (1987) [39] about the local variance of image datasets in pixel-based analysis, adapted
here to geographic object-based image analysis (GEOBIA).

2.4. Soil Mapping

A survey for site-specific soil sampling was conducted in late April 2016 before seedbed preparation.
Using a GPS device, the soil was sampled at the centroids of the delineated management zones (a kind
of cluster sampling). Cylindrical soil columns 30 cm deep were extracted and were sent for the full
analysis to the certified soil laboratory of the Soil and Water Resource Institute, Hellenic Agricultural
Organization DEMETER.

Autocorrelation tests of all physical and chemical soil properties at the sampled locations indicated
that the soils of the farm were highly clustered in all cases (Moran’s I test; z-score values were ranging
from 2.67 to 42.7). This fact implies that denser soil sampling would not provide significantly more
critical information on the spatial distribution of soil properties in the specific farm.

Ordinary Kriging (OK) was applied as an interpolation method to produce continuous surfaces
of soil properties from the point samples. Kriging has proved to produce realistic spatial patterns,
while achieving high accuracies in soil mapping at various scales [40]. Moreover, the evidence of
strong spatial autocorrelation in the point dataset was in favor of using Kriging, instead of any other
interpolator [41]. According to Pozdnyakova and Zhang (1999) [42], Kriging constitutes an appropriate
method to study the spatial distribution of soil properties.

Furthermore, Ordinary Kriging was preferred over Universal Kriging, as the former is considered
superior when anisotropy or strong trends are missing from the data, as it was depicted in the
semivariograms of all the examined variables. A spherical model was followed with 12 neighboring
points. Seventeen soil maps were produced from the samples, one per soil property.

Finally, each of the Kriging soil surfaces was upscaled into a zone-mean spatial layer, showing
a single value (the mean) per zone. They were also upscaled to an entire farm-mean layer, showing
a single value (the mean) for the entire farm. The rate of change for every cell between the entire
farm-mean and the zone-mean layers (a downscaling process), as well as the rate of change of the
original Kriging surfaces and the zone-mean layers (an upscaling process) were calculated, using the
following formula (and for each soil property):

rCi = (|Oi −Zi|)/Oi (1)

where rCi is the rate of change of cell i values (in %), Oi is the value of cell i in the original Kriging soil
surface, Zi is the value of cell i in the rescaled layer.

The outputs of Equation (1) indicate how more or less precise will be the zone-specific applications
(resulting in either from the downscaling or the upscaling process) compared to the uniform or to the
ideal, fully site-specific applications, respectively. In the former case (downscaling), within-zone soil
variation is expected to be reduced (compared to the variation in the entire farm), whereas, in the latter
case, within-zone soil variation is expected to be increased (compared to a cell-by-cell variation).

2.5. Analysis Summary

Summarizing the analysis steps, first, the management zones were delineated with image
segmentation of the multi-temporal RapidEye imagery. Then, an equal number of soil samples were
extracted from the centroid of each zone, and soil surfaces were produced with interpolation (continuous
surfaces). Both image and soil variations were computed within and between the management zones,



Remote Sens. 2020, 12, 2604 7 of 20

using the coefficient of variation (CV%), a metric allowing comparisons between different types of data
(here spectral and soil data).

Finally, the soil surfaces were averaged per zone (zonal surfaces) and for the entire farm (uniform
surfaces). The rate of change of every cell value of the zonal surfaces if replacing the uniform surfaces
was recorded as a reduction of soil variation because of zoning (a downscaling process); whereas,
the rate of change of every cell value of the zonal surfaces if replacing the continuous surfaces was
recorded as an increase of soil variation because of zoning (an upscaling process). The overall approach
can be considered as a multi-scale variation assessment framework (Figure 3).
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ArcGIS Pro©was used for organizing the geodatabase, for elementary image analysis (image
compositing, Principal Component Analysis, etc.), interpolation, and geostatistics; eCognition
Developer © was used for image segmentation; excel spreadsheets were used for descriptive
statistical analyses.

3. Results and Discussion

3.1. Spectral Signature

The CV% of the 15-band RapidEye image composite in the whole farm was 46.4% on average
(for all bands and all dates), with variation values ranging from 29.2% to 56.3% between image bands.
Band-3 (red wavelength) on 4 July showed the biggest variation value (79.2%). The image of 26-August
had the lowest CV% in all bands compared to the other dates (Table 1).

Table 1. Spectral variation (in CV%) of the original RapidEye images per band and date.

Bands\Dates 30-May-2015 4-Jul-2015 26-Aug-015 Mean

B1 23.2 46.0 18.5 29.2
B2 33.6 52.9 25.7 37.4
B3 53.8 79.2 47.1 60.0
B4 50.7 57.4 38.2 48.8
B5 59.7 55.5 53.9 56.3

Mean 44.2 58.2 36.7 46.4

The spectral signatures of rice crop within the studied farm (in terms of averaged spectral
values per band) were only slightly different between the recorded dates; they differed mainly for B5
(near-infrared) for the signature of 30-May (Figure 4).
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Figure 4. Spectral signatures and spectral variation (CV%) detected in the RapidEye images per band
and date within the rice fields of the farm.

3.2. Management Zones

The use of the coefficient of variation indicated scale factor 25 as optimum, while scale factors 50
and 150 were very close to optimum. However, scale 25 was excluded as containing a large proportion
of noisy objects (i.e., objects-slivers at the edge of the fields); thus, only scale factors 50 and 150 remained
as candidates for the optimum scale. As Karau and Keane (2007) [43] argue, small scale factors are
associated with “subtle changes resulting from management actions”, whereas only “large enough scale
factors reflect the variation of ecological processes”. Small scale factors in this study were determined
as those producing objects smaller than 1000 m2, a threshold defined empirically with the farmer’s
consultation [44].

Scale factors 200 and beyond were far from optimum, as within-zone variation is increasing
steadily, while between-zone variation is dropping at the same time. Existence of multiple optimum
scales is not surprising as it is known that more than one critical parameter influences agricultural
environment [45]. Karydas et al. (2009) [46] are in favor of the necessity to assess heterogeneity
at multiple spatial scales in agricultural environments. At scale factor 300, the mean object size
(after noise-filtering) was found to be larger than the mean field size, therefore the application of
within-field management would not be possible; therefore, scale factor 300 was the maximum one tried.

In such complex environments, [27] Oliver et al. (2013) argue that local variance alone is not
enough to indicate optimum scale in multiresolution segmentation and that a second metric was
required. As they suggest, the optimum scale should be defined in the view of a combination of
two metrics, specifically where local variation is quite low and –at the same time- the 1st derivative
of local variance vs. scale is maximized (Figure 5). Similar conclusions were drawn by [35,47,48]
Laliberte and Rango (2009), Clausi (2002), and Barber and LeDrew (1991), who observed that contrast
and dissimilarity were those texture features with the highest correlation (increasing and decreasing,
respectively) with all segmentation scales.
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Figure 5. Within-zone and between-zone variation (computed as CV%) for an experimental sequence
of segmentation scale factors (25 to 300) for the multi-temporal RapidEye PC1 image.

According to the above, the scale factor where within-zone variation is minimized (1.19%) and
at the same time the first derivative of within-zone variation reaches the maximum value (42.9%),
corresponds to scale factor 150 (Figure 5). At this scale factor, the number of produced zones was
66. This number corresponds to one soil sample per 1.5 ha (or 0.66 samples per ha); according to [7]
Wetterlind et al. (2008), a conventional grid density for cereals correspond to 1 sample per 2 ha
(or 0.5 samples per ha). The between-zone variation in the PC1 image was calculated (also, as CV%)
to 35.3% (from 46.4% of the global variation), whereas, the within-zone spectral variation was 2.2%
on average, ranging between 1.2% and 5.5%, with almost half of the zones having values lower than
2%. These figures are indicative of the effect of zoning on the spectral data. In four cases (out of 66),
the zones originally derived from the segmentation of the RapidEye composite were split manually
further taking advantage of an image acquired with an Unmanned Aerial System (UAS) in the 2016
period for different purposes (crop monitoring) (Figure 6).

3.3. Soil Surfaces

The results of the laboratorial analyses indicate that the soils were generally within normal
physicochemical standards for rice cultivation. The farm soils belong to the Silty Loam, Loam, Clay Loam,
and Silty Clay Loam types, which guarantee undisturbed rice cultivation, as they can retain moisture
and heat (Figure 7). Also, findings of electrical conductivity in the farm soils show to be quite far away
from risky thresholds (3.5 mS/cm), in accordance with findings of [24] Litskas et al. (2014) for the entire
Thessaloniki Plain.

The organic matter in the farm was found, on average, slightly higher than the critical threshold
of 2%. This can be attributed to the fact that during the last five years, the farmer has been practicing
crop residue incorporation in the soil with tillage [44]. Among physical properties, only soil acidity
exceeded slightly the suggested upper threshold (7.5), a fact that has to be taken into account in the
farmer’s fertilization strategy.
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The variation of the properties measured in soil samples ranged within a wide interval (from 1.8%
for soil acidity up to 160% for phosphorus), while their overall variation was 33.7% (Table 2). Wilding
(1985) [49] has classified heterogeneity degree of soil properties within a farm management system in
three generic categories:

• When exhibiting CV < 15%, soil can be considered as “least variable”.
• When exhibiting 15% < CV < 35%, soil can be considered as “moderately variable”.
• When exhibiting CV > 35%, soil can be considered as “most variable”.

Table 2. Analyzed soil properties in the samples and their mean and variation values.

Soil Property Mean Variation (CV%)

Texture

Main soil type: SL
Sand: 25.8%
Silt: 50.7%

Clay: 23.5%

Soil types: SL, L, CL, SCL
Sand: 37.4
Silt: 17.3

Clay: 26.6
Soil acidity (pH) 7.864 1.8

Electrical conductivity 1.334 mS/cm 42
Organic matter 2.2% 17.6

Total CaCO3 6.8% 15.7
Bulk density 1.405 g/cm3 4
Nitrogen (N) 5.4 ppm 46.1

Phosphorus (P) 22.6 ppm 160
Potassium (K) 181.4 ppm 33.5

Magnesium alt. (Mg) 369 ppm 29.7
Calcium alt. (Ca) >2000 ppm N/A

Iron, available (Fe) 76.6 ppm 26.4
Zinc, available (Zn) 0.74 ppm 57.9

Manganese, available (Mn) 11.9 ppm 30.9
Copper, available (Cu) 6.5 ppm 16.5
Boron, available (Bo) 0.54 ppm 42.6

OVERALL - 33.7

According to the above classification, it can be noted that six properties were found to be highly
variant within the farm (sand content, electrical conductivity, nitrogen content, phosphorus content,
available zinc content, and available boron content); another nine properties were moderately variant
(silt content, clay content, organic matter content, total CaCO3 content, potassium content, alternative
magnesium content, available iron content, available manganese content, and available copper content);
and only two of the measured properties were at low variant levels (soil acidity and bulk density);
calcium was not possible to be evaluated for variance as the records were provided in lumped form by
the laboratory (as “>2000 ppm”). As the overall variation of soil properties based on the collected
samples was 33.7%, the farm soil can be considered as moderate to high variable, according to Wilding
(1985) [49].

Application of Ordinary Kriging (OK) for each of the soil properties sampled (except Ca), resulted
in 17 surfaces. Because the sample size was not big enough for independent validations of the Kriging
surfaces, the mean standardized error (MSE) was used as an indicator of unbiased spatial predictions
by means of data cross-validations. The resulting MSE values were very low, a fact showing that the
surfaces derived from the applied Kriging models, were unbiased for all examined soil properties
(Table 3).
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Table 3. The mean standardized errors (MSE) derived for the Kriging surfaces.

Soil Property MSE Soil Property MSE

Clay −0.005214 P 0.033579
Silt 0.000665 K 0.005395

Sand −0.000453 Mg 0.003338
pH 0.009780 Fe −0.001615
EC −0.004224 Zn −0.005279
OM −0.005083 Mn 0.002426
BD 0.013420 Cu −0.001592
N 0.005503 Bo 0.000483

Furthermore, comparison of the means of the sample set and the interpolated surfaces (per soil
property), revealed ignorable differences; in all cases, differences were lower than 3%, with only P,
Mg, and N reaching differences around 11%, 6%, and 4%, respectively (Figure 8).
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Figure 8. Log-log plot of means of the sample set and the surfaces per soil property.

3.4. Assessment of between and within-Zone Variation

The between-zone variation of the soil surfaces was found to be 18.2% on average, a value
characterizing the specific soils as “moderately variable” (i.e., >15%) [49]; the maximum value was
recorded for phosphorus (119.4%). It was significantly lower, however, than the variation recorded
between the soil samples (33.7%). The within-zone soil variation ranged from 0.4% to 9.3% with
an average of 4.5%, while for most nutrients it was very low; N, P, K, and Zn had 2.2, 11.2, 1.9, and 2.7,
respectively, far smaller values from their corresponding between-zone variation values (25.7, 121.3,
21, 21.2, respectively) (Figure 9).

Spectral within-zone variation ranged from 1.2% to 5.5% with an average at 2.2%. The mean of
the ratio of the two variations (soil/spectra) was 2.21 and the median 1.92. There was no evidence that
a single soil property could explain alone the within-zone spectral variation captured by the imagery
(Figure 10).
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Figure 9. Plot of between- and within-zone variation for the analyzed soil properties.
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3.5. Rescaling Effect Assessment

Upscaling the Kriging soil surfaces into zone-mean layers and to entire farm-mean layers resulted
in a set of fifty-one new soil surfaces (3 scales × 17 soil properties) (Figure 11).

Application of Equation (1) on the parameters of the downscaling process from the uniform
single-valued layers to zonal layers, resulted in a mean variation reduction of 12.5%, with P being far
the highest value (72%) and Clay content, EC, N, K, and Zn having values over 10%. The rest of the
properties were all below 10%, with pH having the lowest value (0.37%). Mean variation increase
(due to upscaling from the continuous layers to zonal layers) was 1.93 on average and reached 10.6%
for P (far the highest value), while all the rest of the properties were found quite below 2.5%. As it
can be conceived from these results, variation reduction was far higher than variation increase in all
cases from three to ten times (about six times on average), with the mean difference between variation
reduction from variation increase to be 10.6% (Figure 12). Practically, this means that the zone-specific
applications will be far more precise compared to the uniform ones and at the same time only little less
precise compared to ideal, fully site-specific applications.
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Figure 11. An indicative example of soil surface upscaling: (a) The original potassium (K) surface in
a part of the farm; (b) the corresponding layer of the potassium mean per management zone.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 

 

  

(a) (b) 
Figure 11. An indicative example of soil surface upscaling: (a) The original potassium (K) surface in a 
part of the farm; (b) the corresponding layer of the potassium mean per management zone. 

Application of Eq(1) on the parameters of the downscaling process from the uniform single-
valued layers to zonal layers, resulted in a mean variation reduction of 12.5%, with P being far the 
highest value (72%) and Clay content, EC, N, K, and Zn having values over 10%. The rest of the 
properties were all below 10%, with pH having the lowest value (0.37%). Mean variation increase 
(due to upscaling from the continuous layers to zonal layers) was 1.93 on average and reached 10.6% 
for P (far the highest value), while all the rest of the properties were found quite below 2.5%. As it 
can be conceived from these results, variation reduction was far higher than variation increase in all 
cases from three to ten times (about six times on average), with the mean difference between variation 
reduction from variation increase to be 10.6% (Figure 12). Practically, this means that the zone-specific 
applications will be far more precise compared to the uniform ones and at the same time only little 
less precise compared to ideal, fully site-specific applications. 

 

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

CL
AY pH EC OM

Ca
CO

3 BD N P K

M
g Fe Zn M
n Cu BVa

ria
at

io
n 

re
du

ct
io

n 
or

 in
cr

ea
se

 (%
)

Soil properties
Variation reduction Variation increase

Figure 12. Plot of variation reduction or increase for soil properties after the rescaling processes.

3.6. Fertility Potential

All the physicochemical soil properties analyzed were found to be within normal value ranges.
Specifically, soil texture was shared between SL, L, CL, or SCL types; soil acidity was slightly above the
upper threshold of 7.5, while electrical conductivity was far below the critical threshold of 3.5 mS/cm;
the organic matter was slightly over the critical value of 2%; while bulk density was close to an expected
value (1.41 g/cm3). Regarding nutrients, only nitrogen, phosphorus, potassium, and zinc had values
out of normal range in extended parts of the farm, whereas, the rest of the nutrients were mostly within
normal ranges. Electrical conductivity was far below from the well-established threshold of 3.5 mS/cm
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for the entire farm. However, if a stricter threshold (e.g., 1.3 mS/cm) were set, 44% of the farm’s soils
would overpass it. It must be noted that electrical conductivity is a commonly used factor of judgment
for underlying soil variation [50].

Using thresholds from the literature [51], every soil surface was divided into three zones: One for
below the low threshold, one for between the low and the high threshold, and one for above the high
threshold. Especially for nutrients, these zones can be called deficiency, adequacy, and excess zones,
respectively (Table 4). In many cases, the excess might be equally harmful with deficiency, as for
example, for phosphorus (Figure 13).

Table 4. Soil properties, their critical thresholds for rice cultivation, and related farm extents.

Soil Property Sample Mean Critical Thresholds Deficiency Zones
(Farm Extent %)

Excess Zones
(Farm Extent %)

Adequacy Zones
(Farm Extent %)

Low High

CLAY 0.23 N/A N/A 100
SAND 0.26 N/A N/A 100

pH 7.86 5 7.5 100 0
EC 1.33 N/A 3.5 0 100
OM 2.18 2 N/A 4 96.1

CACO3 0.07 N/A 10 0 100
BD 1.41 N/A N/A 100
N 5.45 20 40 100 0 0
P 22.61 10 20 39.1 26.7 34.2
K 181.42 132 230 3.8 10.6 85.6

Mg 368.97 46 92 100 0
Fe 76.59 4 25 100 0
Zn 0.74 1 2.5 87.4 0 12.6
Mn 11.93 10 20 0.5 99.5
Cu 6.53 1 1.5 100 0
B 0.55 0.5 1 12.7 87.3
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According to the deficiency, adequacy, and excess maps, it was found that nitrogen was in
serious deficiency throughout the farm, with alternative magnesium and calcium in excess everywhere.
Phosphorus and potassium were partially in deficiency, in adequacy, or excess; potassium was in
deficiency or excess only in very limited extents. In total, 85% of the farm was within favorable
nutrient ranges.

As for the micro-nutrients, iron and copper were in excess throughout the entire farm, whereas
zinc was in moderate deficiency (0.74 ppm) in 87% of the farm soils. According to IRRI (2017) [51],
zinc is critical in chlorophyll production and membrane integrity. Boron was in deficiency only in
a small extent (12%), though very close to the critical threshold, whereas manganese was adequate
almost everywhere, slightly over the acceptable value.

Finally, phosphorus and zinc were in deficiency together throughout about in 40% of the farm
extent. However, simultaneous deficiency of phosphorus and boron was detected only in 4% of
the farmland.

3.7. Recommendations

The findings of the soil analyses indicated that fertility variation either between or within
the studied fields was significant for rice cultivation. The satisfaction of these differentiated crop
requirements was based on the application of distinct fertilizer amounts per zone. In practice, every
zone was taken as a relatively homogeneous unit of application; thus, 66 recipes were prepared and
applied at four critical growth stages (development on 11–14 May, tillering on 14–15 June, booting on
11–12 July, and panicle heading on 9–10 August). The fertilization recipes were computed considering
the following sources of advice:

• Original instructions provided by the soil laboratory of the Soil and Water Resource Institute,
Hellenic Agricultural Organization DEMETER;

• Specialized software, namely, SMART!© [52] (http://www.smart-fertilizer.com/);
• Team’s expertise;
• Farmer’s experience.

Fertilization was the only farming practice to follow a site-specific strategy, whereas the rest of
the practices (seeding, irrigation, weed management, pest management, and harvesting) remained
conventional for 2016 and mainly uniform throughout the farm. The specific amounts and chemical
compositions of the fertilizers per zone were determined according to the minimum requirements per
nutrient, as these were implied by the produced interpolated soil maps.

Indicatively, nitrogen applications ranged from 140 to 342 kg/ha, with a mean of 222 kg/ha and
a coefficient of variation 12.6% (average weighted according to zones’ area); note that N variation
reduction in soil by zoning was 15.09%. Regarding phosphorus, its applications ranged from 0 to
170 kg/ha, with a mean of 91 kg/ha and a coefficient of variation 58.6%; the explained P variation in soil
was 72.14%. Also, potassium applications were quite differentiated, with a mean of 20 kg/ha, a range of
30 kg/ha and a coefficient of variation 42.5%; the explained K variation in soil was 17.48% (Figure 14).

http://www.smart-fertilizer.com/
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4. Conclusions

This research showed that image segmentation applied on a multi-temporal composite of RapidEye
images acquired during critical growth stages of rice crop, was sufficient to delineate management
zones for site-specific soil sampling. However, the application of the local variance method alone
with the PC1 image of the composite, showed to have limitations in indicating the optimal number
of management zones in advance of soil sampling. More sophisticated algorithms are necessary to
indicate the optimum scale factor for segmentation, and thus, the optimal number of zones, in a more
straightforward way; for example, Karydas (2020) [38] has proposed use of fractal geometry in scale
factor optimization for different types of imagery. Also, different types of imagery will be tested for
zone delineation under a new, more automated process framework.

The results indicate that variation in imagery and soil in the studied rice fields were high
and moderate, respectively. The between-zone spectral variation was found to be 35.3%, while
between-zone soil variation was 33.7% on average; the mean within-zone variation was 18.2% for the
soil properties (Figure 15). These levels of variation show that zoning for site-specific soil sampling
was captured reliably by the multi-temporal RapidEye imagery. Moreover, the detected soil variation
was significant enough to dictate zonal fertilization recommendations, which variated by 24.5% for
nitrogen, phosphorus, and potassium (i.e., the macro-nutrients usually included in input fertilizers).
Finally, it was proved that zonal applications reduced soil variation, thus increasing precision in
applications by 18.6%, compared to conventional uniform applications.
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