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Abstract: Crop growth models play an important role in agriculture management, allowing,
for example, the spatialized estimation of crop yield information. However, crop model parameter
calibration is a mandatory step for their application. The present work focused on the regional
calibration of the Aquacrop-OS model for durum wheat by assimilating high spatial and temporal
resolution canopy cover data retrieved from VENµS satellite images. The assimilation procedure
was implemented using the Bayesian approach with the recent implementation of the Markov
chain Monte Carlo (MCMC)-based Differential Evolution Adaptive Metropolis (DREAM) algorithm
DREAM(KZS). The fraction of vegetation cover (fvc) was retrieved from the VENµS satellite images for
two years, during the durum wheat growing seasons of 2018 and 2019 in Central Italy. The retrieval
was based on a hybrid method using PROSAIL Radiative Transfer Model (RTM) simulations for
training a Gaussian Process Regression (GPR) algorithm, combined with Active Learning to reduce
the computational cost. The Aquacrop-OS model was calibrated with the fvc data of 2017–2018 for
the Maccarese farm in Central Italy and validated with the 2018–2019 data. The retrieval accuracy of
the fvc from the VENµS images were the Coefficient of Determination (R2) = 0.76, Root Mean Square
Error (RMSE) = 0.09, and Relative Root Mean Square Error (RRMSE) = 11.6%, when compared with
the ground-measured fvc. The MCMC results are presented in terms of Gelman–Rubin R statistics and
MR statistics, Markov chains, and marginal posterior distribution functions, which are summarized
with the mean values for the most sensitive crop parameters of the Aquacrop-OS model subjected to
calibration. When validating for the fvc, the R2 of the model for year (2018–2019) ranged from 0.69 to
0.86. The RMSE, Relative Error (RE), Relative Variability (α), and Relative Bias (β) ranged from 0.15
to 0.44, 0.19 to 2.79, 0.84 to 1.45, and 0.91 to 1.95, respectively. The present work shows the importance
of the calibration of the Aquacrop-OS (AOS) crop water productivity model for durum wheat by
assimilating remote sensing information from VENµS satellite data.
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1. Introduction

Spatial crop yield information is valuable both for crop management and for market forecasting [1].
These data only reside in the administrative units. The data is useful but does not provide information
on the scale of the field nor on the variability within the field, which is essential to inform field-specific
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decision-making for the different sectors, including farmers, crop insurance companies, and food
trading agencies [2]. Clear, large-scale yield estimates at the individual field level are therefore an
important activity for research and application in agriculture [3].

Remote sensing-based crop yield estimation methods roughly fall into two categories: empirical or
based on crop models, the latter including data assimilation approaches [4–7]. Empirical methods
generally require training of parametric or non-parametric regression algorithms with in situ data,
which are generally available at a coarse resolution. Thus, these methods provide yield data at a
coarse resolution [2,8]. A few studies [2,9,10] attempted to produce fine-resolution yield maps using
Landsat satellite data by training machine learning regression algorithms with the synthetic yield data;
these methods were computationally efficient but suffered from potential bias, especially when the
synthetic samples were not adequate representatives of the real-world conditions.

Simulation of crop growth models is an important tool for research and management in ecology,
agriculture, and the environment. These models are used to simulate soil-cultivation system actions in
response to climate and agricultural management [11–13]. Agricultural processes, crop interaction
with the atmosphere, and soil over time are described by theoretically based mathematical equations
and empirical studies. Such equations and parametrizations necessarily require truth assumptions,
leading to confusion and inaccuracy of the output variables [14]. Regardless of the model used,
the identification of the parameters that most affect the output is a fundamental problem for most of
the environmental applications when great uncertainty is expected about their values, for example in
regional applications [15–17]. The system parameters, therefore, need to be calibrated before they refer
to regional scenarios. To this end, the integration of crop growth models and remote sensing data is
attracting even greater interest in research [18]. Noteworthy, higher spatial and temporal resolution
remote sensing data improves the predictive power of the calibrated model.

The most common approach for model calibration is based on optimization techniques.
Various optimization methods have been used and the crop model parameters are typically
obtained after the cost function between the simulations and the measured data has been
minimized [18]. There have been different algorithms implemented for model calibration, e.g.,
particle swarm optimization, simplex, least square, genetic algorithms and shuffled complex evolution,
and four-dimensional variational data assimilation (4D-Var) [18–22]. One of the drawbacks of these
algorithms is that they can get trapped into local optima due to the complexity of the optimization
problem. Additionally, they only provide point estimates of the parameters, without indications
of their uncertainty, e.g., not providing confidence intervals. Calibration techniques that follow a
Bayesian formalism, as an alternative optimization method, include a posterior distribution of the
model parameters. These can be derived by conditioning the model’s spatio-temporal behavior on
measurements of the system response observed [23]. If the prior distribution and the probability
function have been established, the posterior distribution can be summarized by, for example, the mean,
covariance, or percentiles of individual parameters. Summarizing the posterior distribution is not
analytically feasible for complex dynamic system models, such as crop models, which are highly
non-linear, and Monte Carlo (MC) simulation methods are needed to generate a sample of the posterior
distribution [23].

The earliest Markov chain Monte Carlo (MCMC) method, i.e., the random walk Metropolis (RWM)
algorithm, was developed by [24]. In this method, a candidate parameter value is initially sampled
from a distribution of asymmetric proposals, centered around the current state of the Markov chain.
The Metropolis probability is then computed for this candidate. When the candidate is approved,
the chain must switch to the new candidate otherwise the chain must remain in the current state.
By repeating this procedure, the Markov chain results in an equilibrium distribution of the parameter.
In [25], the RWM algorithm was generalized by implementing an unequal probability density of the
forward and backward jumps; it has become one of the most revolutionary algorithms in computational
statistics and is called the Metropolis–Hastings (MH) algorithm [26].
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In recent decades, much work has been dedicated to enhancing the performance of the MCMC
methods and enhancing the original RWM and MH algorithms. These are multi-chain and single-chain
approaches. Single-chain methods work a single trajectory and multi-chain methods use various
parallel trajectories to investigate the posterior distributions of the targets. The most common
single-chain approaches are adaptive proposals [27], adaptive Metropolis [28], and delayed rejection
adaptive Metropolis [29]. The use of multiple chains provides robust protection against premature
convergence and provides a wide range of statistical measures to test whether convergence has been
achieved to a restrictive distribution [30]. The most widely used multiple-chain methods are the
Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) [31] and Differential Evolution Markov
Chain (DE-MC) [32]. Using adaptive randomized subspace sampling, multiple chain pairs for proposal
development, and explicit consideration of aberrant trajectories, the efficiency of the DE-MC approach
has been increased. This new method called Differential Evolution Adaptive Metropolis (DREAM) [33]
maintains the detailed balance and ergodicity and has demonstrated excellent performance on a wide
range of issues, including nonlinearity, high dimensionality, and multimodality [34].

Some extensions were also developed based on DREAM, e.g., DREAM(ZS) and MT-DREAM(ZS),
suitable for high-dimensional problems [34,35], as well as DREAM(D) for discrete and combinatorial
posterior distribution problems [36] and DREAM(ABC) for diagnostic model evaluation [37], etc.

We use DREAM(KZS) in the present work, which is an extension to DREAM(ZS) and explicitly
designed to accelerate the convergence of DREAM(ZS) in exploring the high-dimensional target
distributions. The new proposal distribution is based on the simpler ensemble updating scheme [38],
which only updates the model parameters by assimilating all historical measurements. The information
found in the model parameter covariance structure, the measurements, and model performance is
used in the Kalman jump. So, the Kalman jump can generate a more directional update of the model
parameters than the parallel direction jump and the snooker jump in DREAM(KZS) [39].

Durum wheat is one of Italy’s key crops and therefore improving crop yield simulation efficiency
is critical in addressing the challenges of precision farming, such as managing fertilization and
predicting yield before harvest. Previous studies have mainly focused on optimization methods with
satellite data or ground data [40]. Integration with crop models, e.g., with the Aquacrop model [41],
originally developed by the Food and Agriculture Organization (FAO) of the United Nations to simulate
crop yield responses to water, has been shown to provide promising results [42]. Aquacrop simulates
daily canopy cover, biomass, and yield as a function of water productivity. The open-source version
of the Aquacrop model (AOS) was developed by [43], and recently a new version of the AOS,
AOS v6.0a [44], has been made available.

Given the importance of model calibration, our interest was that of assessing the value of high
temporal and spatial frequency remotely sensed data for the calibration of the AOS model on durum
wheat. The aim of this study was thus to find the optimal values of the AOS model parameters for
the study site and assess the Aquacrop-OS model performances by exploiting the fvc retrieved from
high spatial and temporal resolution VENµS satellite images. We implemented the state-of-the-art
Markov chain Monte Carlo-based DREAM algorithm, DREAM(KZS), to get a Bayesian inference on the
crop model parameters for durum wheat, which is the predominant crop in our study region of the
Maccarese farm in Central Italy. Calibration and validation were carried out separately using the fvc
from the VENµS images: The calibration was developed in 2017–2018 for the fvc while the validation
was carried out in 2018–2019 for the fvc for the different fields of the farm.

2. Materials and Methods

The overall workflow is presented in Figure 1.
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Figure 1. Bayesian calibration framework for the Aquacrop-OS (AOS) model using VENµS satellite data.

2.1. VENµS Satellite Data

VENµS (Vegetation and Environment monitoring micro-Satellite) is a joint Earth observation
mission of Israel and France’s space agencies. It was launched in August 2017 with an expected life
span of 3 years. VENµS satellite data is of high temporal (2 days) and spatial resolution (5.3 m) and is
acquired on about 100 sites all around the world [45]. It operates in 12 spectral bands from visible to
near-infrared, suitable for vegetation studies. Due to the signal-to-noise ratio, the Level 2A data, i.e.,
after atmospheric corrections, were provided at 10 m (https://theia.cnes.fr/). In this work, VENµS 10 m
atmospherically corrected surface reflectance data were used to carry out the processing. This 10 m data
for the period November 2017–June 2018 and November 2018–June 2019 were used for the retrieval of
the fvc for our study site (see Section 2.2). Currently, the full archive is being re-processed to provide
the data at 5 m. The VENµS satellite bands are reported in Table 1.

Table 1. VENµS satellite bands information.

Bands Central Wavelength (nm) Bandwidth (nm) Main Applications

B1 420 25 Atmospheric Correction Water
B2 443 40 Aerosols, Clouds
B3 490 20 Atmospheric Correction, Water
B4 555 20 Land
B5 638 24 Vegetation Indices
B6 638 24 DEM, Image Quality
B7 672 16 Red Edge
B8 702 24 Red Edge
B9 742 16 Red Edge

B10 782 16 Red Edge
B11 865 20 Vegetation Indices
B12 910 20 Water Vapor

2.2. Retrieval of fvc from VENµS Satellite Data

The PROSAIL model [46] is a widely used Radiative Transfer Model (RTM) for generating
realizations of top of canopy reflectance by considering the measured biophysical variables of the
crop of interest. The PROSAIL model’s parameter ranges, statistical distribution, and the number of

https://theia.cnes.fr/
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classes were similar to those used in previous research on the biophysical variables for the same study
area [47]. A total of 7 out of the 12 bands (band 4,5,7–11) were selected from the VENµS satellite data
that best approximates the Sentinel-2 8 bands suitable for vegetation studies [48]. Resampling of the
PROSAIL simulations of the VENµS satellite selected bands and the addition of Gaussian noise was
performed to better represent the actual reflectance of the canopy, simulated by the RTM. The detailed
process is described by [47], to which interested readers are referred.

In a previous comparative study of multiple hybrid machine learning algorithms based on
PROSAIL simulations, for the biophysical variables retrieval from Sentinel-2, Gaussian Process
Regression (GPR) with Active Learning (AL) was found to be the best algorithm [47]. We used here the
same implementation with the sampling changed from Sentinel-2 to the VENµS bands for the retrieval
of the fvc from VENµS satellite data.

2.3. Smoothing and Fitting fvc Time Series Data Retrieved From Venµs Satellite Data

The fvc time series was retrieved from the VENµS data for two years of the durum wheat growing
seasons. Initially, the fvc time series were interpolated into daily time intervals using a 4253H twice
filter [49], and then a double logistic function was used to fit the data [50]. The 4253H twice is a median
filter that takes the running median of 4, then 2, then 5, and then 3 data points over the fvc time series
followed by a running weighted average. This procedure is repeated with the residuals and then both
the results are added together [51]. Finally, the peak values were retained by scaling the fvc time series
to the maximum of the un-smoothed fvc time series (see Results section).

2.4. Study Site and Ground Validation Campaigns

The test site of Maccarese (Figure 2) was used in the present study. Maccarese (41.833◦ lat. N,
12.217◦ long. E, 8 m a.s.l.) is a private farm of 3200 ha in a flat area with large fields, located on the
west coast of Central Italy, near Rome. Field campaigns to measure the LAI of the durum wheat
(Triticum durum Desf.) crops were carried out for this location from January 2018 to April 2018 at dates
close to the VENµS acquisitions. The variables were sampled according to an Elementary Sampling
Unit (ESU) scheme, to capture the variability within and among the different fields. Each ESU consisted
of a quadrat 20 m by 20 m in size, to easily accommodate the VENµS 10 m pixel resolution. A total of
15 ESUs, placed at different locations, were employed at the different sampling dates. Each of the ESUs
contained nine points, where the LAI measurements were collected. The LAI was measured using a
LAI-2000 or LAI-2200C Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA). Since LAI 2000/220C
measurements were not always acquired under diffuse light conditions, data were pre-processed by
applying the recommended scattering correction procedure [52].

LAI 2000/2200C measurements were used to derive the fvc, by using the following equation [53]:

f vc = 0.94 ×
(
1 − e−0.43 ×LAI

)0.52
(1)

Table 2 presents the calibration and the validation datasets and Table 3 shows the dates of the
VENµs satellite data acquisitions close to the ground data collection dates.

The aboveground biomass was collected on two different dates, 16 February and 20 April in
the year 2018, in eight different ESUs in different fields (see Figure 2a). The samples were collected
destructively at the center point of each ESU within an area of 1 m2 and were subsequently oven-dried
at 72 ◦C for three days. Finally, the dried samples were weighted and the biomass data was used
to compare the results of the calibration. The yield data was obtained from a New Holland CX860
combine harvester, equipped with a yield mapping system. The data were pre-processed by removing
the spatial outliers and points where the speed of the machine was less than 0.5 km h−1. All points
having a yield greater than 15 t ha−1 and less than 0.2 t ha−1 were also removed from the processing.
Further, very low yielding values were removed among the adjacent high-yield passes, which indicated
that the operator was not working at full cutting width. As a next step, block kriging was carried
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out using a local variogram option; this processing was completed in the open-source software
Variogram Estimation and Spatial Prediction with Error (Vesper), developed by the Australian Center
for Precision Agriculture [54]. The final yield map produced after corrections and processing was used
for pixel-wise validation of the yield predictions obtained after calibration on the same year (2017–2018
cropping season).

Figure 2. Durum wheat fields considered for calibration (a) and validation (b) in the Maccarese Farm
(Central Italy). The backgrounds are the VENµS images of 24 January 2018 (a) and 12 March 2019 (b)
(red = 865 nm, green = 672 nm, and blue = 555 nm; see Table 1).

Table 2. Description of the calibration and validation datasets.

AOS Model Calibration Data AOS Model Validation Data

fvc time series of 2017–2018 retrieved from VENµS
data(20 pixels that represents yield variability)

• fvc time series of 2018–2019 retrieved from
VENµS data

• biomass measured on the ground for the
years 2017–2018

• yield observed from the combine for the
years 2017–2018

Table 3. VENµS acquisitions and ground measurements dates.

Date—Ground Measurements Date—VENµS Acquisition Difference (Days)

31 January 2018 28 January 2018 3
16 February 2018 13 February 2018 3

6 April 2018 8 April 2018 2
20 April 2018 20 April 2018 0
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2.5. Weather Data

The meteorological data used in this study to drive the model simulations were obtained from
a weather station at about 3 km from the farm, from the Agrometeorological Service of the Lazio
Region. For the period 2017–2019, the daily minimum and maximum temperature, relative humidity,
wind speed, rainfall data, and daily solar radiation were provided. The measurement of the regular
reference evapotranspiration was based on the FAO Penman–Monteith method, as described in [55],
and the ET0 calculator [56]. Figure 3 shows the minimum and maximum temperature, rainfall,
and reference evapotranspiration for the 2017–18 and 2018–19 durum wheat growing seasons (October
to July) at the Maccarese site.

Figure 3. (a) Maximum and minimum temperature and (b) daily precipitation and reference
evapotranspiration for two durum wheat growing seasons recorded in Maccarese (Rome, Italy).

2.6. Aquacrop-OS Model and Sensitive Parameters

The Aquacrop crop water productivity model was introduced by [41]. It simulates the relationship
between crop yield and crop transpiration under different conditions. Aboveground biomass is
simulated daily by using the normalized crop water productivity (NCWP) concept. Biomass (bio)
is obtained as the product of the NCWP to the ratio of crop transpiration (CT) and reference
evapotranspiration (ET0; Equation (2)):

bio = NCWP ×
∑ CT

ETo
(2)

Grain yield (yld) is obtained by multiplying the harvest index (HI) by bio (Equation (3)):

yld = bio × HI (3)

The Aquacrop model originally developed by FAO includes a graphical user interface to run the
model, but there have been different versions developed, including a command-line plug-in version
and a GIS version (see http://www.fao.org/aquacrop). This model has been tested on different climates,
geographical locations, and crops under different irrigation and field management practices [57–61].
To allow the customization of the model and to implement the model for different data demanding
applications, an open-source Matlab version, Aquacrop-OS (OS), was developed by [62]. The latest
version of AOS, Aquacrop-OS v6.0a, is used in the present study. Since AOS is slightly different from
the original FAO version in terms of parameters, specific sensitivity analyses and calibrations should
be carried out since the studies carried out on the standard FAO Aquacrop model cannot be directly
applied to AOS.

In previous work on the AOS sensitivity analysis, [63] applied two different methods: the moment
independent density-based PAWN and variance-based Extended Fourier Amplitude Sensitivity Test
(EFAST). A common set of the most influential parameters was found with both methods, although the
rankings of the parameter varied for the same study site. In the present work, we considered the same

http://www.fao.org/aquacrop
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set of parameters and parameter ranges for the Bayesian calibration, using the DREAM(KZS) version of
the DREAM algorithm originally developed by [23].

2.7. Markov Chain Monte Carlo-Based DREAM(KZS) Algorithm

The Bayesian estimation aims to update the distribution of the critical parameters by combining
observations and prior values [64]. Bayes theorem states that, given the new observations, the posterior
probability of a hypothesis is proportional to the product of the prior probability of the hypothesis
and likelihood of the same hypothesis. By adopting a Bayesian formalism, the posterior distribution
of the model’s parameters can be derived by conditioning the model’s spatio-temporal behavior on
measurements of the system response observed:

p
(
x
∣∣∣∣Ỹ)

=
p(x)p(Ỹ

∣∣∣∣x)
p
(
Ỹ
) (4)

where p(x) and p(x|Ỹ) signify the prior and posterior parameter distribution, respectively, and L
(
x
∣∣∣∣Ỹ)

= p(Ỹ|x) denotes the likelihood function. If the parameters are well defined in the prior distribution,

the key issue is the interpretation of the likelihood function. L
(
x
∣∣∣∣Ỹ)

is used to summarize the difference
between the simulations of the model and the data of the measurements. If the error residuals are
assumed to be uncorrelated then the likelihood of the n-vector of residual error can be written as
follows:

L
(
x
∣∣∣∣Ỹ)

= fỹ1
(y1(x)) × fỹ2

(y2(x)) × . . . × fỹn
(yn(x)) =

n∏
t=1

fỹt
(yt(x)) (5)

where fa(b) signifies the probability density function of a evaluated at b, given that a and b represent
the calculation of the likelihood function at each measurement. If we assume further that the residuals
of the error are normally distributed, then Equation (5) can be written as

L
(
x
∣∣∣∣Ỹ, σ̂2

)
=

n∏
t=1

 1
√

2πσ̂2
exp

−1
2

(
ỹt − yt(x)

σ̂t

)2 (6)

where an n-vector with standard deviations of the measurement error of the observations is
σ̂t={σ̂1, . . . ., σ̂n}. This formulation allows for homoscedastic and heteroscedastic measurement errors.

The posterior distribution is often high dimensional and analytically intractable for complex crop
models, and sampling methods are required to estimate the target, and then the desired description of
the posterior distribution can be obtained from the sample [65]. To generate samples from the posterior
distribution, a lot of iterative methods have been developed. In a way, all of these methods rely on
Monte Carlo simulations. As already stated, we implemented the DREAM(KZS) algorithm [39] for
parameter estimation in this work.

2.8. Statistical Analysis and Validation

R̂ statistics, as proposed by [30], was used to determine when the convergence of the sample
chains to a limiting distribution has been achieved. This analysis compares the within and between
chain variance for each parameter using

R̂ j =

√√
N + 1

N

σ̂
2( j)
+

W j
−

T − 2
NT

(7)
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where N is the number of chains, T implies the number of samples in each chain, Wj is the within chain
variance, and σ̂2 j

+ is an estimate of the variance of the jth parameter of the target distribution

σ̂
2( j)
+ =

T − 2
T

W j +
2
T

B j (8)

For each parameter j = {1, . . . , d}, to declare convergence, R̂ j should be ≤ 1.2, or otherwise the value
of T should be increased and the chains should run longer. Since the various N chains are launched
from different starting points, the R̂ diagnostic is a relatively robust estimator [24] (see Results section).

The accuracy of the fvc retrieval using VENµS satellite data is computed in terms of Coefficient of
Determination (R2), Root Mean Square Error (RMSE), and Relative Root Mean Square Error (RRMSE).
Bayesian calibration of the AOS model was carried out using the fvc time series data for multiple
pixels (center pixels of ESU) from eight fields for the years 2017–2018 (Figure 2a) and validation was
carried out for seven fields for the years 2018–2019 (Figure 2b). Different metrics, namely, the RMSE,
Relative Error (RE), Relative Variability (α), Relative Bias (β), Linear Correlation Coefficient (r),
and Kling–Gupta Efficiency (KGE), were used to assess the performance of the validation. As indicated
by [66], the significant metric Normalized Standard Error (NSE) can be divided down into three
distinctive components: a linear correlation between simulations and observations, β normalized by
the standard deviation in the observed values, and α as a measure of the relative variation in the
simulated and observed values. In [66], KGE is defined as

α =
σs

σo
(9)

β =
µs

µo
(10)

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (11)

where σ is the standard deviation and µ is the mean value (with the subscript “s” for simulations and
“o” for observations), α is the relative variability, and β is the relative bias. For calibration, we have
used the fvc time series of the years 2017–2018 and one simulation for each pixel and applied the
process to multiple pixels in each field presented in Figure 2a. The pixels selected were the center
point of each ESU where the biomass sample was collection on the ground. Parameter values obtained
by the calibration process were used for fvc validation for the years 2018–2019 and we have a single
simulation for validation (Figure 2b). The simulated biomass and yield for the years 2017–2018 were
also validated with the ground-measured biomass and the yield data measured at the end of the season.

3. Results

3.1. fvc Retrieval

The advantage of using the GPR algorithm is that it also estimates associated uncertainty along
with the mean values of predictions (fvc). The fvc time series of a pixel as an example is shown in
Figure 4b; the shaded region represents the uncertainty in the estimation. It can also be visualized
that the uncertainty is higher at the peak in comparison to the start or end of the growing season.
The sudden dip in the fvc value (Figure 4b) at the peak represents the partial cloudy date and so
it makes the smoothing and the fitting of the fvc time series necessary before further processing of
assimilation. Figure 4c shows an example of the fvc time series of a pixel with the fvc retrieved from
VENµS satellite data, which has partially the effects of the cloud; this original fvc time series was
processed using a 4253H twice filter followed by fitting a double logistic function to this data to obtain
smooth fvc time series data, which will be ingested in the assimilation procedure.
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Figure 4. (a) Ground-measured fvc and estimated fvc from VENµS data; horizontal error bars represent
variation within an ESU and vertical error bars represent uncertainty estimates using the GPR algorithm.
(b) Example of a seasonal trend of fvc in the 2018 season with the associated uncertainties (shaded
region) and with the mean value of the fvc predictions. (c) Example of an fvc time series estimation
from VENµS data before and after the application of a filter and smoothers.

An example of fvc mean estimation maps with the associated uncertainty expressed as the standard
deviation (SD) around the mean and the relative uncertainty expressed as the coefficient of variation
(SD/mean) for four dates for the durum wheat fields, as shown in Figure 5a (mean fvc), Figure 5b
(associated uncertainty), and Figure 5c (relative uncertainty).
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Figure 5. The fvc mean predictions (a), associated uncertainties (b), and relative uncertainties (c) for
four dates, for durum wheat fields in the 2018 season in Maccarese.
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Figure 5. Cont.

It can be seen from Figure 5a,b that the uncertainty increases during the peak fvc mean estimates,
which can also be assessed in Figure 4b. Relative uncertainty (Figure 5c) may provide a more
meaningful interpretation. It can be observed that the fallow areas or bare soil retrievals have a rather
high relative uncertainty. By applying a threshold, the more uncertain retrievals can be masked out.
Hence, uncertainty can function as a spatial mask that enables displaying only pixels with a high
certainty [67].

3.2. Parameters Identification

Figure 6a,b represents the evolution of the univariate and multivariate R̂ statistics of the 15 crop
model parameters, as proposed by [30] for the analysis of the convergence. The threshold of 1.2 for
convergence diagnosis is represented by the black dashed line.

Figure 6. Evolution of the univariate (a) and multivariate (b) Gelman–Rubin R̂ statistics of the 15 model
parameters. The threshold of 1.2 for a convergence diagnosis is represented by the black dashed line
(see Section 2.8).

To better explore the parameter space, we run N = 4 parallel chains in DREAM(KZS). The length
of the chain was set as 5000, which means that the total number of model evaluations became 20,000
(5000 × 4). We restrict the Kalman jump to the initial 20% of the simulation time as it cannot maintain a
detailed balance and set the probabilities of using the Kalman jump, the parallel direction jump, and the
snooker jump to 20%, 72%, and 8%, respectively, while in the remaining 80% simulation, these are
set 0%, 90%, and 10% to sample the posterior, which can satisfy a detailed balance with diminishing
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adaptation [39]. When the R̂ statistic of all the 15 parameters is below 1.2, it can be concluded that the
Markov chains converge to the equilibrium distribution. The number of chains and the number of
generations for each chain is sufficient for the mixing of the chains and the exploration of the entire
parameter space.

Figure 7 presents the marginal posterior probability density functions (PPDF) of the parameter
estimates when the sampling process had achieved a stationary distribution at the end of the process.
It can be visualized from Figure 7 that the prior distribution function has been transformed to the
posterior distribution function for all the AOS model parameters subjected to the calibration.

Figure 7. Marginal PPDF of the AOS parameters. The vertical black line indicates the prior values of
the parameters.

Prior ranges of the model parameters (uniform distribution) and the final value after processing
of the DREAM(KZS) algorithm are presented in Table 4. Since the output of the DREAM(KZS) algorithm
used for calibration is a posterior distribution, rather than a single point estimate, the mean value of all
the 15 crop model parameters was extracted from the marginal posterior distribution function, as is
most commonly used. Although the calibration was carried out using fvc data from eight different
durum wheat fields for the years 2017–2018, the parameter values do not differ much among each field.
The mean values of the posterior distribution across fields are thus presented in Table 4.

3.3. Calibration and Validation

3.3.1. fvc

Error metrics for the estimation of the fvc for the validation fields presented in Figure 2b, for the
years 2018–2019, are presented in Table 5. The calibration of the Aquacrop model was previously
performed by [68] with two years of canopy cover data retrieved from MODIS LAI images and
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validated on one year of data for two farms in Italy; the error metrics have more or less similar values,
but the linear correlation coefficient is higher in this work (Table 5).

Table 4. Prior ranges and parameter values computed from the posterior distribution (mean) of the
15 parameters of the AOS model used for calibration.

Parameter Unit AOS Standard Prior Range Estimated
Parameter

CGC fraction GDD 0.0050 (0.0042, 0.0078) 0.0060
HIstart GDD 1250 (1090, 1395) 1243

WP gm−2 15 (11, 22) 16.50
Kcb - 1.10 (0.77, 1.43) 1.10
HI0 % 0.48 (0.32, 0.59) 0.46

Senescence GDD 1700 (1090, 2250) 1670
Wpy gm−2 100.00 (75, 125) 100.00

Emergence GDD 150 (90, 230) 160
GDD_up GDD 14 (9, 18) 13.50
Maturity GDD 2400 (1590, 3150) 2370
Tmin_up ◦C 5 (3, 6) 4.50
fshape_b - 13.81 (9.6694, 17.9575) 13.81
GDD_lo GDD 0 (0, 5) 2.5

CDC fraction GDD 0.0040 (0.0028, 0.0052) 0.0040
b_HI - 7 (3, 6) 4.50

Table 5. RMSE, RE, α, β, r, and KGE for validation of the fvc years 2018–2019.

Field Code RMSE RE α β r KGE

B031 0.16 0.25 1.11 1.03 0.87 0.18
B032 0.19 0.60 0.96 1.07 0.83 0.15
B044 0.20 0.44 1.11 1.13 0.87 0.22
B062 0.41 2.79 0.84 1.9 0.61 0.93
B069 0.44 2.29 0.88 1.95 0.52 0.97
B085 0.23 0.65 0.96 1.30 0.86 0.33
B109 0.15 0.19 1.45 0.91 0.93 0.47

From Table 5 it can be seen that r is close to 1, except for the two fields: Field B062 and Field
B069, where it has a value of 0.61 and 0.52. This shows that the linear relation between the observed
and simulated fvc time series is strong. Figure 2b shows the background image of the VENµS data
on 12 March 2019, where the fields B062 and B069 can be seen clearly as fallow lands. The not so
strong correlation for these two fields may be the difference between the sowing and planting dates in
comparison to the other fields. This can also be understood from the RMSE and RE data from Table 5,
where it has the highest error for these two fields on validation, i.e., 0.41 and 0.44 for RMSE and 2.79
and 2.29 for RE. α and β are the representative for the relative variability and relative bias, and their
values range from 0.84 to 1.45 and 0.91 to 1.95, respectively. The value of α is close to 1 for almost
all the fields, which is the ideal value for it; similarly, β also has values close to 1, to its ideal value
except for the fields mentioned earlier. KGE, which combines α, β, and r in an equation to find out
the efficiency of the validation, ranges from 0.15 to 0.93, which is higher than during the calibration
(metrics not shown).

The calibrated values of the 15 AOS model parameters from Table 4 were used with the other
model parameters set as default to generate the fvc, biomass, and yield time series data for the years
2018–2019. This simulated fvc time series is represented as a green curve in Figure 8. As can be seen,
the curve is the same for all the fields; this is because we generated a single set of simulations for the
years 2018–2019 that is representative of the average fvc in the study area (Figure 2b). The field-wise
average fvc time series derived from the VENµS satellite images for the years 2018–2019 were plotted
with this simulated fvc time series. The results are mentioned in Table 5; it can also be visually assessed
from the Figure 8—the R2 ranges from 0.69 to 0.86 and r from 0.83 to 0.93. There is a good agreement
between the simulated fvc time series and VENµS satellite image-derived fvc time series.
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Figure 8. Validation—simulated and observed fvc of the durum wheat in different fields in the
Maccarese farm for the years 2018–2019. (a,b) Field: B031; (c,d) Field: B032; (e,f) Field: B044; (g,h) Field:
B085; (i,j) Field: B109.
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Figure 8. Cont.

3.3.2. Biomass and Yield

The biomass collected inside the ESU on two dates (16 February 2018 and 20 April 2018) and
yield data collected by the combine on multiple pixels in different fields in 2018 were compared
with the simulation predictions obtained after the pixelwise calibration carried out using VENµS
fvc (Figure 9a,b). As can be seen visually, the simulated biomass is overestimated in comparison to
the ground, and the pixelwise yield predictions shows low error when compared to the measured
yield (RMSE of 1.51 t ha−1), with a tendency towards overestimation that is less pronounced than
for biomass. Although AOS overestimated biomass and to a lesser extent yield as compared to the
ground measurements, it is in good agreement with the fvc (Figure 8), confirming the importance of
the calibration.
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Figure 9. (a) Measured and simulated biomass and (b) measured and simulated yield after pixelwise
calibration for the years 2017–2018.

4. Discussions

4.1. fvc Retrieval

The R2 obtained was 0.76, the RMSE 0.09, and the Relative RMSE (RRMSE) was 11.6 (%), with an
apparent overall slight overestimation of high values and underestimation of low values in the retrieval.
Due to the Bayesian backbone of the GPR family algorithms, the advantage of using the GPR algorithm
for the estimation of the fvc is that it provides uncertainty intervals associated with the mean predictions,
which are reported as vertical bars in Figure 4a, whereas the horizontal bars show the variability
(in terms of standard deviation) within single ESUs.

The original fvc data retrieved from the VENµS data using the GPR algorithm, which sometimes
showed an erratic seasonal pattern (Figure 4c), were smoothed using the 4253H twice filter, fitted using
a double logistic function [50] and then rescaled to the minimum and maximum of the original fvc time
series retrieved using GPR. Since the goal of the present work was to get the Bayesian inference on
the AOS crop model parameters subjected to calibration, we considered this retrieval of fvc from the
VENµS satellite 10 m data to be acceptable. Maps of the fvc for the Maccarese farm were obtained for
15 cloud-free VENµS images acquired from 2017 to 2018 and 27 images acquired for the 2018–2019
wheat growing seasons. An example fvc mean estimation maps with associated uncertainty and relative
uncertainty for four dates for the durum wheat fields is shown in Figure 5. The related uncertainty
images (Figure 5b) indicate higher retrieval certainties from the trained model in the low-intensity
blue color. When applied to any image, the generation of uncertainty estimates allows insight into the
pixel-by-pixel approach. It thus enables the definition for which land covers are correlated with a high
degree of certainty and also those areas in which additional sampling would gain land cover. [67].

Uncertainty (σ) is also correlated with the mean estimate (µ). Relative uncertainties (σ/µ) can give
a more meaningful interpretation (Figure 5c). It can be observed that there is a relatively high relative
uncertainty regarding fallow areas or bare soil retrievals. The application of a threshold will cover
some more questionable retrievals. Uncertainty can, therefore, act as a spatial mask that only display
pixels with a high degree of certainty [67].

A similar approach of biophysical variables retrieval utilizing Sentinel-2 data was implemented
by [47]. The accuracy that they found was somewhat higher than in this work, possibly because
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in [47] a choice of optimal bands was made following the analysis discussed in [48]. Three different
sources of data, namely LIDAR, aerial imagery, and spaceborne imagery, were used for the retrieval
of canopy cover by [69], among which the accuracy of the retrieval was highest with spaceborne
WorldView2 data with an R2 = 0.58, followed by aerial imagery with an R2 = 0.50, and then LIDAR
data with an R2 = 0.33. The accuracies were low in comparison to the present work; however, the
data concerned forest vegetation. The authors in [70] used the Chinese satellite Huan Jing (HJ1A/B)
and Landsat-8 Operational Land Imager (OLI) images to retrieve the canopy cover in wheat fields.
The authors initially generated simulations on the PROSAIL model and then the simulated data was
used to train an Artificial Neural Network (ANN). The retrieval was performed for three years: 2013,
2014, and 2015, and compared with the ground data of that year with the overall RMSE = 7.17 and
RRMSE = 9%. The RRMSE is somewhat higher in the present work than reported in [70]; there could be
two possible reasons for this, the first one may be the non-optimal band selection of the VENµS satellite
data for fvc retrieval and the other could be the equation that was used to convert the measurements
of LAI into fvc. The solution to the first issue can be the identification of the optimal bands of the
VENµS satellite data for fvc retrieval, for example using GPR band analysis [71], and for the second
issue, the conversion equation can be tested with multiple-year canopy cover data. Although, in the
present work, the RRMSE is a little higher than the Global Monitoring for Environment and Security
(GMES) goal accuracy, i.e., 10%. We consider this fvc retrieval further as the aim of the work is to
calibrate the AOS crop model for the localized application. The method of retrieving biophysical
variables from multispectral satellite images have proven effective to train machine learning models
with the PROSAIL simulated data [42]. However, other machine learning methods do not provide the
uncertainty estimates with the mean value of predictions as in the case of GPR.

4.2. Parameters Identification

It can be seen that the initial uniform prior distribution has been transformed into a posterior
distribution by integrating the observations into the AOS crop growth model. From the distributions,
the parameter estimates (mean values) have been derived and the confidence intervals of the parameters
estimated can be quantified. Figure 7 shows the marginal pdf of all the 15 crop model parameters
subjected to the calibration of the model. It can be visualized from Figure 7 that the prior values of
the crop model parameters differ from the mean values of the posterior distribution, especially in
the case of CGC, WP, Kcb, HI0, Senscence, Tmin_up, fshape_b, GDD_lo CDC, and b_HI, which also
signifies the importance of the Bayesian calibration. In [68], the calibration of the Aquacrop model was
performed by integrating the MODIS LAI images for wheat, considering a similar set of parameters as
that in the present work. The study carried out by [72] on the Bayesian calibration of the Aquacrop
model also find WP, CGC, Kcb, and CDC important for the calibration, with the high errors reported
by using the default parameter values. The authors only considered 10 model parameters for the
local calibration of the model, unlike the present study that evaluated 15 crop model parameters for
calibration, which identified the most sensitive crop model parameters to yield from previous work on
global sensitivity analyses [63].

4.3. Calibration and Validation

The fvc time series simulated for the years 2018–2019, using the calibrated parameter values,
was compared with the fvc time series of 2018–2019, generated using VENµS images. A good fit was
observed in all the simulations (Figure 8), in agreement with the comments by [60]. As can be seen
from Table 5, in the present study the linear correlation is in the range of 0.81 to 0.93, with the exception
of 0.52 and 0.61 for the fields B062 and B069; because of the phenological shift in the fvc, these metrics
are better than as reported in [68]. The AOS model parameter values obtained by the calibration were
used for the validation and Figure 8 shows the validation on the years 2018–2019 for the fvc. The R2 for
the validation of the fvc for the years 2018–2019 also ranges from 0.69 to 0.86 for the different fields,
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while the retrieval of fvc from VENµS satellite images when compared to the ground-measured fvc
data was 0.76 (Figure 4a).

As can be visualized from Figure 9a, the RRMSE for the simulated biomass is much higher than
the usually acceptable range of 0–30%. This is the clear interpretation that the calibrated parameters
did not work well for the estimation of the biomass. Although, there are uncertainties in the observed
biomass and its processing, from the destructed samples collected to the oven dried samples; this could
be one reason for the uncertainty accounted. While simulating yield, the RRMSE was 26.9%, which is
fair and acceptable. The accuracy may be improved if the model is spatially applied to the entire field.
In the present study, our focus was to find the optimal crop model parameter for the study area, so the
calibration was performed on a few pixels. We are convinced that if the model is applied spatially to
the study area, the accuracy would be higher than reported in the present work.

It should also be noted that the calibration was performed using fvc as a target variable, so the
results for the yield simulations might be affected by other factors not taken into account in the
calibration. In [65], it was argued that the estimating parameters on one response may not necessarily
improve the predictions for a different response, but rather points at reducing the overall error of the
model. Moreover, AOS is a new recent version of Aquacrop, coded on a different platform (MATLAB).
Even if its performances have been checked [62], the newly coded versions of Aquacrop may still
require refinement and extensive testing [73].

In general, simulations performed after calibration showed lower values of biomass and yield
with respect to values obtained with the standard AOS parameters, decreasing the simulation bias
with respect to the measured values. For the years 2018–2019, the grain yield simulated using the
standard parameters was 15.4 t ha−1, while the yield obtained with the calibrated parameters (average
of the pixelwise parameters estimated for the previous year) was 11.9 t ha−1, closer to the yield range
usually recorded by their combination (2–10 t ha−1).

The advantages of calibrating the model using a Bayesian approach over classical methods is
that the parameter estimation is a posterior probability distribution that can be used to implement
uncertainty analysis. This distribution can be summarized with the mean estimate along with
confidence intervals unlike a single point estimate as in the classical methods. These approaches are
becoming increasingly popular for parameter estimation of complex mathematical models, such as
crop models, as it provides a coherent framework for dealing with uncertainty [16]. A comparative
study of Bayesian calibration and optimization method-based calibration for the Aquacrop model
utilizing UAV multispectral images shows the improved performance with the Bayesian method [72].
The main reason of the poor performance in the optimization method was that it aimed at minimizing
the error between the measurement data and model output data, when inappropriate observations are
chosen. On the other side, in the case of Bayesian approach, even if no sufficient dataset is available,
one can easily observe this by inspecting the parameter estimation confidence [72].

All this considered, the significant improvements in the estimation of fvc and yield and the
calibration workflow that integrates the VENµS satellite imagery and AOS offer encouraging results
for the combination of remote sensing and crop modeling to improve yield estimations.

5. Conclusions

In this work, we have used VENµS satellite data to retrieve the fvc using state-of-the-art hybrid
machine learning algorithms, specifically, GPR trained on PROSAIL model simulations of the canopy
reflectance. The GPR algorithm was then applied to the VENµS satellite data time series to obtain the
fvc data with their mean value of prediction and uncertainty and these were used to calibrate the AOS
model in a Bayesian framework.

Bayesian inferences were preferred for the calibration as they transform the initial prior distribution
to the posterior distribution from which the mean and median values can be computed, which reflects
the optimal value of the parameter computed from its prior distribution. We implemented the Monte
Carlo Markov chain-based DREAM extension, DREAM(KZS), which involves three jumps: a parallel
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direction jump, snooker jump, and also a Kalman jump to speed up the convergence of the algorithm;
we found that the algorithm is efficient in computing the parameter values in a time-constrained manner.

The results show that the AOS model gives good estimations of the canopy cover development on
durum wheat. VENµS satellite images were useful to integrate the in-season fvc data for durum wheat,
due to the revisit frequency of the satellite. Although the fvc provided good estimations of the canopy
cover development, biomass and yield were overestimated in comparison to the ground data.

This study, therefore, concludes that the AOS crop model calibration improved the fvc simulated
though it overestimated biomass and yield. Overestimation of the yield was not completely minimized,
but it was reduced and thus it would be important to calibrate the model before yield estimation
applications. The fvc derived from the VENµS satellite images was useful to perform such a calibration,
specifically with Bayesian methods.
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