A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping
Abstract
:1. Introduction
2. The Employed Algorithms
2.1. Decision Tree Algorithm
2.2. Random Subspace Ensemble
2.3. Hybrid Firefly–Particle Swarm Algorithm (HFPS)
- (1)
- Determine the population of the swarm, the position and the velocity for each particle, and the total number of iterations used.
- (2)
- Establish a cost function to measure the fitness of each particle, called particle best (pbest), and then compare all pbests to obtain the global best (gbest).
- (3)
- For each iteration, calculate and update the position (Pos) and the velocity (Vel) for all particles in the swarm using Equations (1) and (2) and then compute pbest and gbest. If the fitness is not improved, Pos and Vel for each practice will be updated using Equations (3) and (4).
- (4)
- Compute the best gbest in all iterations, and then extract the coordinates of the particle with this gbest. The coordinate values are called the optimized parameters for the flash flood ensemble model.
3. Study Area and Spatial Data
3.1. Descriptions of the Study Site
3.2. Data Collection
3.2.1. Flash Flood Inventory Map
3.2.2. Flash Flood Indicators
4. Proposed HFPS-RSTree for Flash Flood Susceptibility Modeling
4.1. Database Establishment
4.2. Configuration of the HFPS-RSTree Model
4.3. The Objective Function and Training the HFPS-RSTree Model
4.4. Model Performance Assessment
5. Results and Analysis
5.1. Variable Importance Ranking
5.2. Model Performance and Comparison
5.3. Flash Flood Susceptibility Map
6. Discussion
7. Concluding Remarks
- ▪
- The integration of HFPS, RS, and Tree, which results in a new ensemble model, is capable of predicting flash floods accurately. HFPS is a useful tool for optimizing the RSTree model.
- ▪
- The HFPS-RSTree model yielded higher predictive performance than those of other benchmarks such as the RF, C4.5-DT, LMT, and SVM models, which was confirmed by the Wilcoxon rank-sum test. This denotes that the HFPS-RSTree model is a promising tool to be considered for flash flood studies.
- ▪
- Regarding the 11 conditioning flash flood indicators, the slope and the aspect factors are the most important features.
- ▪
- Finally, the flash flood susceptibility map may assist local authorities and policymakers with watershed management and sustainable development in the district.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peduzzi, P. Prioritizing protection? Nat. Clim. Chang. 2017, 7, 625–626. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Schmittner, K.-E.; Giresse, P. Modelling and application of the geomorphic and environmental controls on flash flood flow. Geomorphology 1996, 16, 337–347. [Google Scholar] [CrossRef]
- Yussouf, N.; Knopfmeier, K.H. Application of the warn-on-forecast system for flash-flood-producing heavy convective rainfall events. Q. J. R. Meteorol. Soc. 2019, 145, 2385–2403. [Google Scholar] [CrossRef]
- Postek, K.; Den Hertog, D.; Kind, J.; Pustjens, C. Adjustable robust strategies for flood protection. Omega 2019, 82, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Peptenatu, D.; Grecu, A.; Simion, A.G.; Gruia, K.A.; Andronache, I.; Draghici, C.C.; Diaconu, D.C. Deforestation and frequency of floods in Romania. In Water Resources Management in Romania; Negm, A., Romanescu, G., Zeleňáková, M., Eds.; Springer Water; Springer: Cham, Switzerland, 2020; pp. 279–306. [Google Scholar] [CrossRef]
- Alfieri, L.; Cohen, S.; Galantowicz, J.; Schumann, G.J.P.; Trigg, M.A.; Zsoter, E.; Prudhomme, C.; Kruczkiewicz, A.; Coughlan de Perez, E.; Flamig, Z.; et al. A global network for operational flood risk reduction. Environ. Sci. Policy 2018, 84, 149–158. [Google Scholar] [CrossRef]
- Edouard, S.; Vincendon, B.; Ducrocq, V. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties. J. Hydrol. 2018, 560, 480–494. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci. Total Environ. 2020, 712, 136492. [Google Scholar] [CrossRef]
- Tien Bui, D.; Hoang, N.-D. A bayesian framework based on a gaussian mixture model and radial-basis-function fisher discriminant analysis (baygmmkda v1.1) for spatial prediction of floods. Geosci. Model Dev. 2017, 10, 3391–3409. [Google Scholar] [CrossRef] [Green Version]
- Tzavella, K.; Fekete, A.; Fiedrich, F. Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany. Nat. Hazards 2017, 91. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of floods and flood-prone areas: An overview. J. Coast. Res. 2015, 31, 1005–1013. [Google Scholar] [CrossRef]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Kornejady, A.; Karimidastenaei, Z.; Mohammadi, F.; Stefanidis, S.; et al. Development of novel hybridized models for urban flood susceptibility mapping. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in seoul metropolitan city, korea. Geomat. Nat. Hazards Risk 2017, 8, 1185–1203. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at haraz watershed, northern iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using gis. J. Hydrol. 2016, 540, 317–330. [Google Scholar] [CrossRef]
- Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018, 615, 438–451. [Google Scholar] [CrossRef]
- Tien Bui, D.; Hoang, N.-D.; Pham, T.-D.; Ngo, P.-T.T.; Hoa, P.V.; Minh, N.Q.; Tran, X.-T.; Samui, P. A new intelligence approach based on gis-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J. Hydrol. 2019, 575, 314–326. [Google Scholar] [CrossRef]
- Costache, R.; Popa, M.C.; Bui, D.T.; Diaconu, D.C.; Ciubotaru, N.; Minea, G.; Pham, Q.B. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. J. Hydrol. 2020, 124808. [Google Scholar] [CrossRef]
- Nguyen, V.-N.; Yariyan, P.; Amiri, M.; Dang Tran, A.; Pham, T.D.; Do, M.P.; Thi Ngo, P.T.; Nhu, V.-H.; Quoc Long, N.; Tien Bui, D. A new modeling approach for spatial prediction of flash flood with biogeography optimized chaid tree ensemble and remote sensing data. Remote Sens. 2020, 12, 1373. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Takeuchi, W. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrassesand salt marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Kotsiantis, S. Combining bagging, boosting, rotation forest and random subspace methods. Artif. Intell. Rev. 2011, 35, 223–240. [Google Scholar]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Ngo, P.-T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Hoang, N.-D.; Pradhan, B.; Nguyen, Q.K.; Tran, X.T.; Nguyen, Q.M.; Nguyen, V.N.; Samui, P.; Tien Bui, D. A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 sar imagery and geospatial data. Sensors 2018, 18, 3704. [Google Scholar] [CrossRef] [Green Version]
- Aydilek, İ.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 2018, 66, 232–249. [Google Scholar] [CrossRef]
- SYB. Yen Bai Statistical Year Book 2017; Statistical Publishing House: Hanoi, Vietnam, 2018; p. 470. [Google Scholar]
- Tien Bui, D.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Bui, D.T. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef] [Green Version]
- Naulin, J.P.; Payrastre, O.; Gaume, E. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in southern france. J. Hydrol. 2013, 486, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Pham, Q.B. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci. Total Environ. 2020, 711, 134514. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef] [PubMed]
- Truong, L.X.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, Q.X.; Do, H.T.; Tien Bui, D.; Lee, S. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl. Sci. 2018, 8, 1046. [Google Scholar] [CrossRef] [Green Version]
- Japan Aerospace Exploration Agency Alos Global Digital Surface Model Alos World 3d—30 m. Available online: https://www.Eorc.Jaxa.Jp/alos/en/aw3d30/index.htm (accessed on 5 July 2019).
- Skias, S.G. The effectiveness of engineering geology in coping with flash floods: A systems approach. In Coping with Flash Floods; Gruntfest, E., Handmer, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2001; pp. 115–122. [Google Scholar]
- Vannier, O.; Anquetin, S.; Braud, I. Investigating the role of geology in the hydrological response of mediterranean catchments prone to flash-floods: Regional modelling study and process understanding. J. Hydrol. 2016, 541, 158–172. [Google Scholar] [CrossRef]
- Sangati, M.; Borga, M.; Rabuffetti, D.; Bechini, R. Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the sesia river basin, north western italy. Adv. Water Resour. 2009, 32, 1090–1106. [Google Scholar] [CrossRef]
- Lovat, A.; Vincendon, B.; Ducrocq, V. Assessing the impact of resolution and soil datasets on flash-flood modelling. Hydrol. Earth Syst. Sci. 2019, 23, 1801–1818. [Google Scholar] [CrossRef] [Green Version]
- Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Bisht, S.; Chaudhry, S.; Sharma, S.; Soni, S. Assessment of flash flood vulnerability zonation through geospatial technique in high altitude himalayan watershed, himachal pradesh India. Remote Sens. Appl. Soc. Environ. 2018, 12, 35–47. [Google Scholar] [CrossRef]
- Arabameri, A.; Pourghasemi, H.R. 13—Spatial modeling of gully erosion using linear and quadratic discriminant analyses in gis and r. In Spatial Modeling in Gis and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–321. [Google Scholar]
- Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Tien Bui, D. Machine learning-based gully erosion susceptibility mapping: A case study of eastern India. Sensors 2020, 20, 1313. [Google Scholar] [CrossRef] [Green Version]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and gis. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Pourghasemi, R.H.; Rezaei, K.; Kerle, N. Spatial modelling of gully erosion using gis and r programing: A comparison among three data mining algorithms. Appl. Sci. 2018, 8, 1369. [Google Scholar] [CrossRef] [Green Version]
- Florinsky, I.V. Topographic surface and its characterization. In Digital Terrain Analysis in Soil Science and Geology, 2nd ed.; Florinsky, I.V., Ed.; Academic Press: Cambridge, UK, 2016; Chapter 2; pp. 7–76. [Google Scholar]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in gis. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Jiang, L.; Ling, D.; Zhao, M.; Wang, C.; Liang, Q.; Liu, K. Effective identification of terrain positions from gridded dem data using multimodal classification integration. ISPRS Int. J. Geo Inf. 2018, 7, 443. [Google Scholar] [CrossRef] [Green Version]
- Reutermann, P. Python3 Wrapper for the Weka Machine Learning Workbench. Available online: https://pypi.Org/project/python-weka-wrapper3/ (accessed on 15 January 2019).
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in tauranga harbor, New Zealand. Remote Sens. 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Bubeck, P.; Dillenardt, L.; Alfieri, L.; Feyen, L.; Thieken, A.H.; Kellermann, P. Global warming to increase flood risk on european railways. Clim. Chang. 2019, 155, 19–36. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Carvalho, K.S.; Wang, S. Characterizing the indian ocean sea level changes and potential coastal flooding impacts under global warming. J. Hydrol. 2019, 569, 373–386. [Google Scholar] [CrossRef]
- Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Tree ensembles for predicting structured outputs. Pattern Recognit. 2013, 46, 817–833. [Google Scholar] [CrossRef] [Green Version]
- Schnier, S.; Cai, X. Prediction of regional streamflow frequency using model tree ensembles. J. Hydrol. 2014, 517, 298–309. [Google Scholar] [CrossRef]
- Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 2019, 326, 151–160. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (dt) and a novel ensemble bivariate and multivariate statistical models in gis. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
No. | Formation | Symbol | Main Lithology |
---|---|---|---|
1 | Ye Yen Sun | γ/E1ys | Biotite granite, biotite-amphibol granite, granite biotite, and granite biotite-amphibol granite pegmatite |
2 | TL-NT | K1ntl-τλK1nk | Tufogen conglomerate, tufogen sandstone, shale, and black coal shale- quartz orthophyry |
3 | Sin Quyen | PR2sq | Feldspar-biotite schist, biotite interlaced with quartz mica, mica schist-graphite, biotite, feldspar-mica schist, and tremolite marble |
4 | Bao Ha | νPR2bh | Gabrodiabas, diabase, gabbro amphybolit, and amphybolit |
5 | Po Sen Complex | γ/PZ1ps | Aplite, banded plagio-granite, diorite, granodiorite, and pegmatite veins |
6 | Cam Duong | Ɛ1cd | Sandstone, quartz-carbonate schist, actinolite schist, quartzite, conglomerate, quartz-mica schist, and black schist |
7 | Suoi Bang | T3n-rsb | Sandstone, siltstone, claystone, claystone mixed coal, and coaly lenses |
8 | Da Dinh | PR3đđ | Marble, dolomite, dolomite, and tremolite marble |
9 | Xom Giau | γPR2xg | Granit microcline, granite aplit, and granite pegmatite |
10 | Phu Sa Phin | ξεγK2pp | Syenite porphyry, granosyenite porphyry, syenite porphyry, granite porphyry, and granite felspar |
11 | Nam Thep | J1nt | Sandstone, siltstone, thin layer interbedded claystone, and black shale lens |
12 | Chang Pung | ∊2cp | Clay shale, marl, and oolitic limestone |
13 | YYS Complex | YYS | Granit microcline, granit aplit, and granit pegmatite |
14 | Tram Tau | Tuffogenic shale, siltstone, clay shale, tufogen conglomerate, tufogen sandstone, coal-bearing shale, and tuffaceous rhyolite | |
15 | Quaternary | Qa | Granule, breccia, boulder, sand, grit, clay, and silt |
Indicators | Average Impurity Decreased | Number of Nodes Used | Ranking |
---|---|---|---|
Slope | 0.42 | 15,290 | 1 |
Aspect | 0.41 | 7763 | 2 |
Elevation | 0.36 | 17,282 | 3 |
Plan curvature | 0.35 | 10,012 | 4 |
Profile curvature | 0.32 | 9738 | 5 |
TWI | 0.29 | 9960 | 6 |
NDVI | 0.27 | 8955 | 7 |
River density | 0.26 | 10,551 | 8 |
Lithology | 0.25 | 2668 | 9 |
Rainfall pattern | 0.23 | 9042 | 10 |
Soil type | 0.21 | 3370 | 11 |
Metrics | HFPS-RSTree | RF | C4.5-DT | LMT | SVM |
---|---|---|---|---|---|
Training Phase | |||||
True positive | 1811 | 1817 | 1766 | 1799 | 1654 |
True negative | 1626 | 1612 | 1613 | 1581 | 1753 |
False positive | 37 | 31 | 82 | 49 | 194 |
False negative | 222 | 236 | 235 | 267 | 95 |
Positive predictive values (PPV) (%) | 98.00 | 98.32 | 95.56 | 97.35 | 89.50 |
Negative predictive values (NPV) (%) | 87.99 | 87.23 | 87.28 | 85.55 | 94.86 |
Sensitivity (%) | 89.08 | 88.50 | 88.26 | 87.08 | 94.57 |
Specificity (%) | 97.78 | 98.11 | 95.16 | 96.99 | 90.04 |
Overall Accuracy (%) | 92.99 | 92.78 | 91.42 | 91.45 | 92.18 |
Kappa | 0.860 | 0.856 | 0.823 | 0.829 | 0.844 |
AUC | 0.973 | 0.970 | 0.920 | 0.945 | 0.964 |
Validation Phase | |||||
True positive | 782 | 783 | 763 | 779 | 681 |
True negative | 677 | 656 | 665 | 644 | 740 |
False positive | 12 | 11 | 31 | 15 | 113 |
False negative | 117 | 138 | 129 | 150 | 54 |
PPV (%) | 98.49 | 98.61 | 96.10 | 98.11 | 85.77 |
NPV (%) | 85.26 | 82.62 | 83.75 | 81.11 | 93.20 |
Sensitivity (%) | 86.99 | 85.02 | 85.54 | 83.85 | 92.65 |
Specificity (%) | 98.26 | 98.35 | 95.55 | 97.72 | 86.75 |
Overall Accuracy (%) | 91.88 | 90.62 | 89.92 | 89.61 | 89.48 |
Kappa | 0.838 | 0.812 | 0.799 | 0.792 | 0.790 |
AUC | 0.967 | 0.965 | 0.914 | 0.927 | 0.951 |
No. | Pairwise Comparison | Z Statistics Value | p-Value | Statistical Significance |
---|---|---|---|---|
1 | HFPS-RSTree vs. RF | 3.577 | 0.0003 | Yes |
2 | HFPS-RSTree vs. C4.5-DT | 2.598 | 0.0094 | Yes |
3 | HFPS-RSTree vs. LMT | 4.274 | <0.0001 | Yes |
4 | HFPS-RSTree vs. SVM | −10.404 | <0.0001 | Yes |
5 | RF vs. C4.5-DT | −1.647 | 0.0996 | No |
6 | RF vs. LMT | 1.921 | 0.0548 | No |
7 | RF vs. SVM | −11.037 | <0.0001 | Yes |
8 | C4.5-DT vs. LMT | 6.870 | <0.0001 | Yes |
9 | C4.5-DT vs. SVM | −13.251 | <0.0001 | Yes |
10 | LMT vs. SVM | −10.846 | <0.0001 | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, İ.B.; Amiri, M.; et al. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sens. 2020, 12, 2688. https://doi.org/10.3390/rs12172688
Nhu V-H, Thi Ngo P-T, Pham TD, Dou J, Song X, Hoang N-D, Tran DA, Cao DP, Aydilek İB, Amiri M, et al. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sensing. 2020; 12(17):2688. https://doi.org/10.3390/rs12172688
Chicago/Turabian StyleNhu, Viet-Ha, Phuong-Thao Thi Ngo, Tien Dat Pham, Jie Dou, Xuan Song, Nhat-Duc Hoang, Dang An Tran, Duong Phan Cao, İbrahim Berkan Aydilek, Mahdis Amiri, and et al. 2020. "A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping" Remote Sensing 12, no. 17: 2688. https://doi.org/10.3390/rs12172688
APA StyleNhu, V. -H., Thi Ngo, P. -T., Pham, T. D., Dou, J., Song, X., Hoang, N. -D., Tran, D. A., Cao, D. P., Aydilek, İ. B., Amiri, M., Costache, R., Hoa, P. V., & Tien Bui, D. (2020). A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sensing, 12(17), 2688. https://doi.org/10.3390/rs12172688