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Abstract: Flash flood is one of the most dangerous natural phenomena because of its high magnitudes
and sudden occurrence, resulting in huge damages for people and properties. Our work aims to
propose a state-of-the-art model for susceptibility mapping of the flash flood using the decision
tree random subspace ensemble optimized by hybrid firefly–particle swarm optimization (HFPS),
namely the HFPS-RSTree model. In this work, we used data from a flood inventory map consisting
of 1866 polygons derived from Sentinel-1 C-band synthetic aperture radar (SAR) data and a field
survey conducted in the northwest mountainous area of the Van Ban district, Lao Cai Province in
Vietnam. A total of eleven flooding conditioning factors (soil type, geology, rainfall, river density,
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elevation, slope, aspect, topographic wetness index (TWI), normalized difference vegetation index
(NDVI), plant curvature, and profile curvature) were used as explanatory variables. These indicators
were compiled from a geological and mineral resources map, soil type map, and topographic map,
ALOS PALSAR DEM 30 m, and Landsat-8 imagery. The HFPS-RSTree model was trained and verified
using the inventory map and the eleven conditioning variables and then compared with four machine
learning algorithms, i.e., the support vector machine (SVM), the random forests (RF), the C4.5 decision
trees (C4.5 DT), and the logistic model trees (LMT) models. We employed a range of statistical
standard metrics to assess the predictive performance of the proposed model. The results show that
the HFPS-RSTree model had the best predictive performance and achieved better results than those
of other benchmarks with the ability to predict flash flood, reaching an overall accuracy of over 90%.
It can be concluded that the proposed approach provides new insights into flash flood prediction in
mountainous regions.

Keywords: flood modeling; firefly; Particle Swarm Optimization; flash flood; GIS; remote
sensing; rainfall

1. Introduction

Flash floods that occurr in tropical and semi-tropical areas, caused by extraordinary rainfall,
are one of the most dangerous natural phenomena due to the significant socio-economic damage and
loss of human lives, particularly in the frequent cyclone regions in Southeast Asia [1,2]. Floods are often
classified into different types, i.e., city flooding, river flooding, coastal flooding, and flash flood [3],
of which flash floods are more vulnerable and severe because of their speed in short timescales [4,5].
Prior studies suggest that most of the areas are exposed to offensive and destructive flooding, resulting
in an increase in the huge damages, casualties, and financial losses during flooding events. Thus,
in order to prevent and control the floods, the susceptibility areas, where the potential flood risks are
high, should be identified and mapped [6]. On the other hand, human factors, i.e., deforestation and
unplanned land-use changes, also considerably contribute to the occurrence of sudden flooding [7]
because forests play an important role in reducing surface runoff and transferring excess water to
groundwater. Moreover, population growth causes land conversion from forested areas to new
settlements built in flood-prone areas. This situation becomes more severe because of the impacts
under a changing climate along with land-use changes, which is anticipated to exceed 1 trillion US$ in
damage by 2050 [8]. However, accurate and timely prediction of the flash flood still remains challenging
because of the complex nature of this phenomenon [9]. Thus, the development of a cost-effective,
reliable, and precise accuracy model for predicting and mapping the occurrence of flash floods in
areas with high and frequently-induced rainfall is essential in order to support sustainable land-use
planning [10].

A previous literature review shows that a large number of studies have been conducted to predict
the probability of flooding based on the three main categories, ranging from the traditional analysis,
the rainfall-runoff approach to the pattern classification [11]. In recent years, the rapid development of
innovative technologies involved earth observations (EO), geographic information system (GIS)-based
approaches, and machine learning techniques, which have been proven as promising tools to account
for the complexity of spatial flood modeling [12]. Importantly, the integration of satellite remotely
sensed imagery and GIS data had been proven as an effective way to map and evaluate flash flood
damages [13,14]. For instance, Klemas [14] reported the use of satellite imagery and modeling
techniques to predict flood vulnerability, whereas Lee et al. [15] reported the usability of the random
forest methods for mapping flood vulnerability in the metropolis. Recently, Khosravi, et al. [16]
used GIS-based frequency and weight ratio statistical bivariate statistical models for mapping flash
flooding susceptibility. A wide range of attempts have been made to map flash flooding using various
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artificial intelligence techniques optimized by metaheuristic algorithms for flooding capacity [17,18].
More recent studies used different machine learning algorithms in predicting and zoning the flash
flooding areas [19–21]. However, only a few studies integrated remotely sensed data and spatial
data in machine learning techniques for improving the accuracy of spatial prediction of flash floods,
despite the fact that air-borne remote sensing data provide a number of benefits such as easier
repeatability, low cost, and wider area coverage [21,22], resulting in a lack of cost-effective, precise, and
timely models for the susceptibility mapping of flash floods. Thus, this study aims at developing a
state-of-the-art model incorporating Sentinel-1 C band free-of-charge data and an advanced machine
learning algorithm using the decision tree-based random subspace optimized by hybrid swarm
intelligence, namely the HFPS-RSTree model, for the spatial prediction of flash floods in a mountainous
area in Northwestern Vietnam.

2. The Employed Algorithms

2.1. Decision Tree Algorithm

The decision tree (DT) algorithm is a simple supervised learning classifier [23]. While other
supervised learning algorithms collate all available features together to determine each individual label,
the DT operates multiple steps based on decision rules to decide the outcome of a label class. It creates
a tree-like structure—that is, nodes represent tests on attributes while branches and leaves represent
the consequences of the tests and a category label, respectively. At each node, tests can be applied
to one or more of the attributes, namely univariate and multivariate applications. The univariate
application analyzes a single attribute while the multivariate application simultaneously tests for one
or more attributes. For instance, the Gini index can be applied for single-attribute splits or univariate
applications, whereas the support vector machine [24] can be used for the multivariate approaches.

The benefit of this approach is that it is simple and flexible. It can not only be applied
to both categorical and continuous data, but it also performs rapidly due to its requirement
of simple mathematical calculations. Its structure can be easily visualized for interpretation.
However, it sometimes provides a non-optimal result or overfitting. Overfitting can be solved
by removing branches.

2.2. Random Subspace Ensemble

Ensemble-based learning techniques are well-known methods for multiple classifiers [25,26],
of which the random subspace (RS), proposed first by Ho [23], has proven to be one of the most potent
techniques. To handle the deficiency of a single decision tree method, RS takes full advantage of
multiple classifiers that are decision trees. To predict flash flood output, each decision tree votes for the
flood class and the majority vote of all decision trees is an aid to decide a final outcome. This can reduce
overfitting and non-optimal resolution, which may be major issues of single-classifier approaches.
More significant improvements have been reported by training each classifier with a random subset of
the reference data as opposed to using only a subset of input attributes for that classifier. Although this
reduction process may reduce the performance of individual classifiers, it can deal with too strong
correlations causing unreliable solutions. It also reduces the amount of calculation time, while the
remaining reference data could be adopted for the independent accuracy assessment of the random
subspace algorithm.

2.3. Hybrid Firefly–Particle Swarm Algorithm (HFPS)

One difficulty in using ensemble-based learning for predicting flash floods is in optimizing the
model parameters, and in this context, metaheuristic optimization algorithms have demonstrated their
superiority [27,28]. In this research, a hybrid optimization algorithm (HFPS) proposed by Aydilek [29],
which is an integration of the firefly algorithm (FA) and particle swarm optimization (PSO), was used.
The reason for this selection is that the HFPS algorithm inherits the fast computation of PSO and the
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robustness of FA to form a new powerful algorithm. Consequently, the HFPS algorithm outperforms
benchmark algorithms in various engineering problems [29]. Overall, the procedure of the HFPS can
be briefly described as follows.

(1) Determine the population of the swarm, the position and the velocity for each particle, and the
total number of iterations used.

(2) Establish a cost function to measure the fitness of each particle, called particle best (pbest), and
then compare all pbests to obtain the global best (gbest).

(3) For each iteration, calculate and update the position (Pos) and the velocity (Vel) for all particles
in the swarm using Equations (1) and (2) and then compute pbest and gbest. If the fitness is not
improved, Pos and Vel for each practice will be updated using Equations (3) and (4).

Posi(t + 1) = Posi(t) + B0e−γr2
i j
(
Posi(t) − gbestt

)
+ a (1)

Veli(t + 1) = Posi(t + 1) − Posi(tp) (2)

Veli(t + 1) = wVeli(t) + C1r1(pbesti(t) − Posi(t)) + C2r2(gbest(t) − Posi(t)) (3)

Posi(t + 1) = Posi(t) + Veli(t + 1) (4)

where Posi and Veli are the position and the velocity of i-th particle or i-th firefly, a is the random
parameter from 0 to 1, ri j is the distance between the two fireflies, γ is the light absorption
coefficient of FA, B0 is the attractiveness value, w is the inertia weight of PSO, tp is the temporal
position, r1 and r2 are random parameters ∈ [0, 1], C1 and C2 are the acceleration coefficients, and
t is the current iteration.

(4) Compute the best gbest in all iterations, and then extract the coordinates of the particle with
this gbest. The coordinate values are called the optimized parameters for the flash flood
ensemble model.

3. Study Area and Spatial Data

3.1. Descriptions of the Study Site

We conducted the current work in the Van Ban district, located in the mountainous the Lao Cai
Province (approximately 263 km from Northwest Hanoi), Vietnam. The total area is approximately
1435 km2, accounting for around 22.5% of Lao Cai Province. It lies between latitudes of 21◦57′32”N
and 22◦17′12”N and between longitudes of 103◦57′18”E and 104◦30′38”E (Figure 1).

The study area has a complex terrain condition, lying between two large mountain ranges,
the Hoang Lien Son in the northwest and the Con Voi in the southeast. The topography contains
approximately 90% mountainous area and around 10% low land area. The former area consists of
various hills and mountainous ranges, with altitude ranging from 700 m to 1500 m and an average
slope from 25 to 35◦, exceeding 50◦ in some areas. The remaining areas are valleys at an altitude of
400–700 m. The highest place is located in the Nam Chay commune, at a height of approximately
2875 m, while the lowest is along the Nam Chan stream area, with an altitude of 85 m. In the study area,
there are small streams and springs starting from the Hoang Lien Son and the Nui Voi mountainous
areas and discharging into the Hong River in the northeast. The study area is highly vulnerable to
flash floods due to the complex terrain and dense drain network; they particularly occur when rapid
runoff from hilly and mountainous areas discharges quickly into Ngoi Nhu, Nam Tha, and Ngoi Chan
streams in a short time before reaching the Hong River [30].
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Figure 1. Location map of the Van Ban district and flooded inventories.

Geologically, the study site has a total of fifteen formations and a complex outcrop. Seven
formations occupy over 89% of the total study site: Ye Yen Sun (26.98%), TLNT (21.60%), Sinh
Quyen (11.66%), Bac Ha (11.46%), PS complex (5.98%), Cam Duong (6.01%), and Suoi Bang (4.87%)
(Figure 2a). The dominant lithology area consists of biotite granite, marble, motley limestone, clay
shale, quartz-plagioclase-biotite, clay sericite shale schist, and crystalline schist (See Table 1).

The study site has a subtropical monsoon climate with two seasons, of which the rainy season
lasts from April to September and the dry season starts in October and ends in March. Average annual
precipitation rates range from 1500 mm to 2500 mm and are mainly allocated to the rainy season,
making up 70.74–89.25% of the total annual precipitation. Noticeably, very high precipitation intensity
events often occur in the rainy season within a short period, observed in steep slopes, leading to the
frequent occurrence of flash floods along with landslides in the case study.
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Table 1. Geological characteristics in the study area.

No. Formation Symbol Main Lithology

1 Ye Yen Sun γ/E1ys Biotite granite, biotite-amphibol granite, granite biotite, and granite
biotite-amphibol granite pegmatite

2 TL-NT K1ntl-τλK1nk Tufogen conglomerate, tufogen sandstone, shale, and black coal shale-
quartz orthophyry

3 Sin Quyen PR2sq Feldspar-biotite schist, biotite interlaced with quartz mica, mica
schist-graphite, biotite, feldspar-mica schist, and tremolite marble

4 Bao Ha νPR2bh Gabrodiabas, diabase, gabbro amphybolit, and amphybolit

5 Po Sen Complex γ/PZ1ps Aplite, banded plagio-granite, diorite, granodiorite, and pegmatite veins

6 Cam Duong ε1cd Sandstone, quartz-carbonate schist, actinolite schist, quartzite, conglomerate,
quartz-mica schist, and black schist

7 Suoi Bang T3n-rsb Sandstone, siltstone, claystone, claystone mixed coal, and coaly lenses

8 Da Dinh PR3d̄d̄ Marble, dolomite, dolomite, and tremolite marble

9 Xom Giau γPR2xg Granit microcline, granite aplit, and granite pegmatite

10 Phu Sa Phin ξεγK2pp Syenite porphyry, granosyenite porphyry, syenite porphyry, granite
porphyry, and granite felspar

11 Nam Thep J1nt Sandstone, siltstone, thin layer interbedded claystone, and black shale lens

12 Chang Pung ∈2cp Clay shale, marl, and oolitic limestone

13 YYS Complex YYS Granit microcline, granit aplit, and granit pegmatite

14 Tram Tau Tuffogenic shale, siltstone, clay shale, tufogen conglomerate, tufogen
sandstone, coal-bearing shale, and tuffaceous rhyolite

15 Quaternary Qa Granule, breccia, boulder, sand, grit, clay, and silt

3.2. Data Collection

3.2.1. Flash Flood Inventory Map

Flood inventory maps are often required in order to investigate the relationship between flood and
causative agents [27,31,32]. To prepare the flood-prone map, the initial step is to acquire the relevant
data and to construct a spatial geodatabase. In the present study, a total of 200 flash flood locations was
interpreted using Sentinel-1 C band free-of-charge data to generate an inventory map, as suggested by
Nguyen et al. [21]. Accordingly, 2653 flash flooding polygons occurring in the rainfall season during
the year 2018 were identified. These flooded polygons were utilized to construct an inventory map for
the study site, of which a total of 1858 (Figure 1) polygons were employed for the training phase to
predict flash floods occurring in the study site, and the remaining 796 polygons were utilized for the
testing phase to validate the predictive performance [31].

3.2.2. Flash Flood Indicators

It is widely recognized that flash flooding events often take place on a local scale, depending
mainly on rainfall, land use, topography, and soil features of the region [16,31,33,34]. Therefore,
identification of the conditioning factors associated with flash floods is often required in predicting
the possibility of flash floods occurring in a specific region. However, the conditioning or influencing
factors in each flash flood event are complicated and depend on a number of factors involved. In the
current work, we selected eleven influencing factors for flash flood modeling, including geology, soil
type, river density, rainfall, slope, elevation, aspect, plan curvature, profile curvature, TWI, and NDVI,
based on the literature reviews [19,35,36]. Herein, geology, soil type, and river density indicators were
derived from the geology map with a scale of 1:50,000, acquired from the geological and mineral
resources map of the Van Ban district [37] and the soil type and the topographic maps of Vietnam at a
scale of 1:50,000. The rainfall indicator was obtained from the stations in the study area, whereas the
slope, elevation, plan curvature, aspect, profile curvature, and TWI conditioning factors were computed
from the ALOS-PALSAR DEM 30 m [38]. The NDVI factor was computed from Landsat-8 imagery
(acquired on 20 December 2017) at a spatial resolution of 30 m. All indicators were transformed in a
raster format at 30 m spatial resolution to construct a flash flood susceptibility map.
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Geology: Geology is an important factor related to flash flooding occurrence [39,40]. This is
because different geological terrains have various capacities of water absorption and therefore can
be susceptible to rapid runoff generation during high rainfall events, exacerbating the potentiality
of severe flooding to downstream regions [27,40]. The geology characteristics were classified into
fifteen formations (Figure 2a) consisting of different mother-rocks such as sedimentary, igneous,
and metamorphic components. The geological characteristics of the study site are presented and
summarized in Table 2.

Soil type: Hydrologically, soil type is among the crucial factors influencing infiltration, runoff

generation, and soil erosion processes affecting flash flood characteristics [41]. It is widely recognized
that different soil types have different properties (soil moisture, soil texture, and soil profile). Thus,
the type of soil directly influences the formation of flash flood flow and its components (i.e., water,
muds, and alluvial) [42]. In this study, thirteen soil types were observed in the study area, of which the
Fa, Ha, and Fs soil types exceed 90% of the total area, followed by the Fj type and other soils (Figure 2b).

River density: River density plays a vital role in carrying flash flood flow out of the watershed [43].
Although the characteristics of the flash flood may vary according to different topographical conditions,
a higher river density likely has a more significant impact on flood flow expansion [16]. For instance, a
dense river system in flat areas could lead to rapidly expanding flood flow, while it has a reverse trend
in steep areas. Thus, we considered the river density factor, which was generated from the digital
elevation model (DEM) (Figure 2c).

Figure 2. Cont.
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Figure 2. Flood influencing factors: (a) geology; (b) soil type; (c) river density; (d) rainfall; (e) slope;
(f) elevation; (g) aspect; (h) plan curvature; (i) profile curvature; (j) TWI; (k) NDVI.
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Rainfall: Rainfall, which is characterized by rainfall intensity, duration, and frequency, is the
most important influencing factor of any hydrological processes within a watershed. Although flash
flood flow likely depends on a number of factors involved, high rainfall intensity tends to contribute to
forming high energy and fast mass transferring of the flash flood in a specific area. As the study site
was located in a tropical monsoon region with high rainfall intensity occurring in steep areas, the site
is highly vulnerable to flash floods and landslides [19]. In this work, the highest cumulative rainfall
events which occurred for 72 h during the last three years were employed to compute the rainfall map
using the inverse distance weight (IDW) method [31]. The rainfall level recorded within three days
was around 177.5 mm in the west and approximately 11.8 mm in southeastern areas, interpolated in
the ArcGIS software (Figure 2d).

Slope and elevation: Slope and elevation are two main drivers of topographical conditions
indicating the speed of flash flood flow within a watershed. For example, high altitude coupled with
steep slopes has a greater probability of contributing to extreme flash floods, even in the event of low
rainfall intensity [19,31]. Meanwhile, high rainfall intensity in flat areas with small slopes will probably
result in less flash flood occurrences. It was noted that most of the high slope angle is located in the
high elevation areas generating runoff, forming and speeding up flash flood flow in the study area.
In contrast, the low slopes along streams (Ngoi Nhu, Nam Tha, and Ngoi Chan) may decrease the
capacity of carrying flash flood flow out of the watershed. The slope layer revealed a large amount of
variation, ranging from 0.01 to 68.16 degrees (Figure 2e), whereas the elevation map was generated
from a DEM with 30 m spatial resolution, showing elevation ranging between approximately 32 m and
3000 m (Figure 2f). The DEM was generated using the national topographic map at a scale of 1:50,000,
acquired from the Vietnam Institute of Geosciences and Mineral Resources.

Aspect: The aspect factor is another component of topography presenting the potential stream
flow direction and sensitivity processes that regulate the components of a flash flood [44,45]. The aspect
map created for the study area was categorized into eight classes [16,46], as shown in Figure 2g.
The positions of flash floods occurring in the case study were corresponded to the aspect map, showing
the influencing level of this indicator on the probability of flash flood occurrences.

Plan curvature: Plan curvature reveals the morphometrical characteristics and indicates the
change in a slope’s inclination or aspect [45]. Plan curvature may largely affect the acceleration and
deceleration of water and muds/sediment during downslope flow and, therefore, likely influences the
velocity of the flash flood [45].

More importantly, the plan curvature influences the divergence of flow, thus deeply affecting
the flash flood energy and mass transfer from upstream to downstream in a specific watershed. Plan
curvature values are generally defined as concavity (positive), convexity (negative), and flat (zero),
which are largely affected by the runoff processes [47,48]. We generated the plan curvature map using
the DEM with a pixel size of 30 m × 30 m. Figure 2h shows that roughly 75% of the study area is
covered by the concave zones.

Profile curvature: Profile curvature corresponds to the direction of the maximum slope, thus
indicating the convergence and the divergence of a surface flow [49]. A negative value in the top of the
mountains indicates that the surface is upwardly convex, while a positive value reveals that the surface
is upwardly concave at that location (Figure 2i). A zero value of the profile curvature shows that the
surface is linear. The profile curvature often influences the acceleration or deceleration of flash flow
across the surface area. We used the DEM with a grid of 30 m × 30 m to generate the profile curvature
map in the current work. Figure 2i shows that approximately 80% of the study area is occupied by
concave zones.

Topographic wetness index (TWI): The TWI is considered the most critical parameter measuring
topographic controls of basic hydrological processes [50]. The TWI map was created using the altitude
map by applying Equation (5) [51,52].

TWI = In
(As)

(tanβ)
(5)
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where As is an upslope area, and β is the slope angle at one pixel.
Figure 2j shows that the TWI ranges from 5.10 to 21.62, in which high TWI values indicate the

greater capability for water accumulation in the study area.
Normalized difference vegetation index (NDVI): The NDVI is a crucial indicator, showing the

degree of vegetation coverage, which largely influences flood processes [31]. Greater NDVI values
demonstrate higher vegetation coverage, while lower values indicate less vegetation. Previous studies
show that low vegetation coverage indicates high probability of flash flood occurrence [27,36].

The NDVI map (Figure 2k) for the study area was calculated and computed using Landsat-8
Operational Land Imager (OLI) multispectral imagery with a pixel size of 30 m × 30 m for predicting
flash flood susceptibility (Equation (6)) [31].

NDVI = (NIR − RED)/(NIR + RED) (6)

where RED and NIR are the surface reflectance of the red and the near-infrared wavelengths derived
from Landsat-8 OLI, respectively.

The NDVI values range between−0.19 and 0.59, indicating the different impact levels of vegetation
coverage on flash flood processes.

4. Proposed HFPS-RSTree for Flash Flood Susceptibility Modeling

In this work, the flash flood indicators and inventories were processed using ArcMap 10.6
(See Figure 3). The HFPS-RSTree model was computed and constructed by the authors in the Matlab
environment. The RSTree is available in the API Python Weka Wrapper [53], whereas the HFPS code in
Matlab was introduced by Aydilek [29].

Figure 3. The proposed HFPS-RSTree model for flash flood susceptibility mapping.
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4.1. Database Establishment

The geospatial database for flash floods in the Van Ban district was constructed using ArcCatalog.
The flash flood inventory map and the eleven influencing factors were converted into a raster format
with a spatial resolution of 30 m. Note that in the proposed model, a number of factors (slope,
elevation, plan curvature, profile curvature, TWI, NDVI, river density, and rainfall) were represented
as continuous values, while the remaining categorical indicators, including the aspect, soil type, and
lithology factors, were converted into numeric values using the method suggested in [31].

The flash flood inventories were randomly split into two subsets for the flash flood modeling in
the next phase, of which the training dataset consisted of 1858 polygons and the validating dataset
contained 796 polygons.

4.2. Configuration of the HFPS-RSTree Model

The structure of the proposed HFPS-RSTree model consists of three algorithms: the RS ensemble,
the decision tree algorithm, and the HFPS optimization. Using the training dataset, the RS ensemble
will generate m subsets (m-ss), and each subset will have p flash flood indicators (p-ffi). Each subset will
be used to generate a tree using the decision tree algorithm, where the maximum depth of the tree
(d-max) must be defined. Therefore, the HFPS-RSTree model was configured using values determined
by the three above parameters, m-ss, p-ffi, and d-max.

Herein, the HFPS algorithm was integrated in order to search for and optimize the best combination
of them autonomously. A number of parameters used for the HFPS algorithm were suggested by
Aydilek [29]. Accordingly, the acceleration coefficient was set to 1.49445 for both C1 and C2. The swarm
population was 30, whereas the total number of iterations was 1000. The searching space was as
follows: m-ss ∈ [10–500], p-ffi ∈ [1–11], and d-max ∈ [1–30]. It should be noted that the default maximum
depth of the tree was computed using an integer value.

4.3. The Objective Function and Training the HFPS-RSTree Model

To quantitatively measure the best combination of the three parameters (m-ss, p-ffi, and d-max),
an objective function (ObjF) must be established, and in this work, the ObjF suggested in [27] was used,
as shown below.

ObjF =
1
n

∑n

i=1
(Predicti − Targeti)

2 (7)

where Predicti is the estimated value of the HFPS-RSTree model; Targeti is the flash flood inventory
value; n is the total number of samples.

4.4. Model Performance Assessment

The model’s performance was assessed using a number of statistical measures, such as the receiver
operating characteristic (ROC) curve and area under the curve (AUC), the overall accuracy, and the
kappa coefficient, because these metrics have been widely used for checking the performance of
flash flood modeling in the literature. Detailed formulas of these statistical measures can be found
in [27,54,55].

5. Results and Analysis

5.1. Variable Importance Ranking

In this study, variable importance was assessed using the random forest algorithm. The results in
Table 2 show that the slope, aspect, and elevation factors had higher importance for assessing flood risk,
thus minimizing the impact on the occurrence of flash floods in the case study. Remarkably, the slope
factor is likely the most important factor for predicting the spatial distribution of the flash flood in this
study. Other remaining factors, such as the aspect, elevation, plan curvature, profile curvature, TWI,
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NDVI, river density, lithology, rainfall pattern, and soil type, were ranked from 2 to 10, respectively,
in the occurrence of floods in the study area.

Table 2. The relative importance of flash flood indicators using the random forest model.

Indicators Average Impurity Decreased Number of Nodes Used Ranking

Slope 0.42 15,290 1
Aspect 0.41 7763 2

Elevation 0.36 17,282 3
Plan curvature 0.35 10,012 4

Profile curvature 0.32 9738 5
TWI 0.29 9960 6

NDVI 0.27 8955 7
River density 0.26 10,551 8

Lithology 0.25 2668 9
Rainfall pattern 0.23 9042 10

Soil type 0.21 3370 11

5.2. Model Performance and Comparison

Figure 4 and Table 3 show the predictive performance of the HFPS-RSTree, the RF, the C4.5-DT,
the LMT, and the SVM algorithms in the training and the testing phases. The AUC for the prediction-rate
curve demonstrates how well the model predicts the flash flood. The results in Figure 4 and Table 3
show that the proposed algorithms performed very well in both the training and the validation datasets.
It could be observed that the AUC values of the HFPS-RSTree, the RF, the C4.5-DT, the LMT, and
the SVM models were 0.973, 0.970, 0.920, 0.945, and 0.964, respectively, in the training data, whereas
these corresponding values were 0.967, 0.965, 0.914, 0.927, and 0.951, respectively, in the testing data,
showing satisfactory results for the spatial prediction of flash floods in the study area.

Table 3. Comparison of the HFPS-RSTree, the RF, the C4.5-DT, the LMT, and the SVM for the flash
flood modeling.

Metrics HFPS-RSTree RF C4.5-DT LMT SVM

Training Phase
True positive 1811 1817 1766 1799 1654
True negative 1626 1612 1613 1581 1753
False positive 37 31 82 49 194
False negative 222 236 235 267 95

Positive predictive values (PPV) (%) 98.00 98.32 95.56 97.35 89.50
Negative predictive values (NPV) (%) 87.99 87.23 87.28 85.55 94.86

Sensitivity (%) 89.08 88.50 88.26 87.08 94.57
Specificity (%) 97.78 98.11 95.16 96.99 90.04

Overall Accuracy (%) 92.99 92.78 91.42 91.45 92.18
Kappa 0.860 0.856 0.823 0.829 0.844
AUC 0.973 0.970 0.920 0.945 0.964

Validation Phase
True positive 782 783 763 779 681
True negative 677 656 665 644 740
False positive 12 11 31 15 113
False negative 117 138 129 150 54

PPV (%) 98.49 98.61 96.10 98.11 85.77
NPV (%) 85.26 82.62 83.75 81.11 93.20

Sensitivity (%) 86.99 85.02 85.54 83.85 92.65
Specificity (%) 98.26 98.35 95.55 97.72 86.75

Overall Accuracy (%) 91.88 90.62 89.92 89.61 89.48
Kappa 0.838 0.812 0.799 0.792 0.790
AUC 0.967 0.965 0.914 0.927 0.951
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Figure 4. The AUC for the flash flood models using the validation dataset.

Overall, the HFPS-RSTree model yielded the highest predictive performance both in the training
phase (kappa = 0.860, overall accuracy = 92.99) and in the testing phase (kappa = 0.838, overall
accuracy = 91.88), followed by the RF algorithm. In contrast, the SVM algorithm produced the lowest
performance (kappa = 0.844, overall accuracy = 92.18 in the training set and kappa = 0.790, overall
accuracy = 89.48 in the testing set). The results showed that the ensemble-based methods using the
decision tree learning algorithm yielded better predictive performance than those of well-known
machine learning (ML) algorithms in this study. Our results are in agreement with the recent studies
reported by [21,56]. We conclude that, among the five ML algorithms, the proposed model using a
combination of the decision tree ensemble-based algorithm and an advanced optimization technique
produced the most precise results for the spatial prediction of flash floods in the study area.

Table 4 shows the Wilcoxon rank-sum test results for five ML models. It can be clearly seen that
all pairwise comparisons were statistically significant except the RF vs. C4.5-DT (p-value = 0.099) and
the RF vs. LMT (p-value = 0.055).

Table 4. Wilcoxon rank-sum test for the five flash flood models.

No. Pairwise Comparison Z Statistics Value p-Value Statistical Significance

1 HFPS-RSTree vs. RF 3.577 0.0003 Yes
2 HFPS-RSTree vs. C4.5-DT 2.598 0.0094 Yes
3 HFPS-RSTree vs. LMT 4.274 <0.0001 Yes
4 HFPS-RSTree vs. SVM −10.404 <0.0001 Yes
5 RF vs. C4.5-DT −1.647 0.0996 No
6 RF vs. LMT 1.921 0.0548 No
7 RF vs. SVM −11.037 <0.0001 Yes
8 C4.5-DT vs. LMT 6.870 <0.0001 Yes
9 C4.5-DT vs. SVM −13.251 <0.0001 Yes

10 LMT vs. SVM −10.846 <0.0001 Yes

5.3. Flash Flood Susceptibility Map

Since the HFPS-RSTree produced the best predictive performance regarding the AUC, overall
accuracy, and kappa index among the five ML models for predicting flash flood risk, we employed
this model to compute the flash flood susceptibility map in the study area. The final model results
were transformed into a raster format and interpreted in the ArcGIS environment. The flash flood
susceptibility map was generated and visualized, as shown in Figure 5. The susceptibility index
was varied from 0.01–1.00, of which the darker blue color in the map represents the high-frequency
occurrences of flash floods. In contrast, the brighter yellow color shows the low probabilities of flash
flood risk.



Remote Sens. 2020, 12, 2688 14 of 18

Figure 5. Flash flood susceptibility map of the Van Ban district using the proposed HFPS-RSTree model.

The visual interpretation in Figure 5 shows that the highest possibility of flash floods likely
occurred in Khanh Yen town, followed by the Van Son, the Dan Thang, and the Nam Chay communes.
These areas are flat and are located closer to the rivers that were likely the most affected by the flash
flood risk during the last five years. Therefore, the policymakers or local authorities should pay more
attention to these areas when prioritizing the development of flood risk measures. In contrast, the other
areas have a lower probability of flash flood. This is possibly due to the terrain slope of these areas
being steep, which may prevent water accumulation.

6. Discussion

In the last decade, the adverse effects of global warming have resulted in a higher frequency
of floods in various regions around the globe [57–59]; therefore, new studies to develop better tools
for flood prediction are highly necessary. In this research, we proposed a new modeling approach,
named the HFPS-RSTree, for the spatial prediction of flash flood susceptibility, with a case study
of a high-frequency torrential rainfall area. The proposed HFPS-RSTree is a new machine learning
ensemble consisting of three components: the decision tree (Tree), the random subspace (RS), and the
HFPS technique. Herein, the flood ensemble model was created using the RS and Tree, while the HFPS
was integrated in order to optimize the model.

As a result, the precise accuracy of the HFPS-RSTree model for the spatial prediction of flash floods
indicates that a combination of the HFPS, the RS, and the Tree techniques is efficient in predicting
flash flood potential areas. This is due to the mechanism of ensemble-based learning, in which the
RS plays a vital role in generating flood subsets to ensure the diversity of the final ensemble model.
Thus, during the last ten years, decision tree ensemble-based learning methods have confirmed their
high prediction power in various domains [60–62] in which flood studies have been conducted [15,26].
The results of this HFPS-RSTree model in this regard confirm the above statement.

The success of building the HFPS-RSTree model is also strongly dependent on three parameters,
namely the number of subsets (m-ss), the number of indicators used in these subsets (p-ffi), and the
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maximum depth of the tree (d-max); therefore, these parameters should be carefully determined.
The highest performance of the HFPS-RSTree model, compared to the RF, C4.5-DT, LMT, and SVM,
shows that these parameters have been searched and optimized successfully by the HFPS algorithm.
This is a reasonable result because the HFPS has proven its capacity in searching and optimizing
parameters in various engineering domains recently [29].

In this research, eleven indicators were considered for flash flood modeling, and the superior
performance of the HFPS-RSTree model demonstrates that these indicators were selected and processed
properly. Among these indicators, the slope degree and slope direction are likely the most important
factors for mapping and predicting flash floods in the present study. This result is consistent with the
results reported by Tehrany et al. [63], showing that flood-prone areas are often located in flat areas
and low altitudes. On the other hand, as the slope increases, the rate of water infiltration decreases,
and the water velocity increases [16].

7. Concluding Remarks

We proposed a new ensemble machine learning model, namely the HFPS-RSTree model, to map
the spatial prediction of flash floods in the present work. The Van Ban district, located in the northern
mountainous region of Vietnam, was selected as a case study. The predictive performance results of
the HFPS-RSTree were compared with the four machine learning techniques, namely the RF, C4.5 DT,
LMT, and SVM models. The conclusions which can be drawn from the results of the current study are
the following:

� The integration of HFPS, RS, and Tree, which results in a new ensemble model, is capable of
predicting flash floods accurately. HFPS is a useful tool for optimizing the RSTree model.

� The HFPS-RSTree model yielded higher predictive performance than those of other benchmarks
such as the RF, C4.5-DT, LMT, and SVM models, which was confirmed by the Wilcoxon rank-sum
test. This denotes that the HFPS-RSTree model is a promising tool to be considered for flash
flood studies.

� Regarding the 11 conditioning flash flood indicators, the slope and the aspect factors are the most
important features.

� Finally, the flash flood susceptibility map may assist local authorities and policymakers with
watershed management and sustainable development in the district.
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29. Aydilek, İ.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive
numerical problems. Appl. Soft Comput. 2018, 66, 232–249. [CrossRef]

30. SYB. Yen Bai Statistical Year Book 2017; Statistical Publishing House: Hanoi, Vietnam, 2018; p. 470.
31. Tien Bui, D.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R.

A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a
high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [CrossRef]

32. Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Bui, D.T.
Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens.
2019, 11, 1943. [CrossRef]

33. Naulin, J.P.; Payrastre, O.; Gaume, E. Spatially distributed flood forecasting in flash flood prone areas:
Application to road network supervision in southern france. J. Hydrol. 2013, 486, 88–99. [CrossRef]

34. Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood susceptibility modelling
using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles.
J. Hydrol. 2019, 575, 864–873. [CrossRef]

35. Costache, R.; Hong, H.; Pham, Q.B. Comparative assessment of the flash-flood potential within small
mountain catchments using bivariate statistics and their novel hybrid integration with machine learning
models. Sci. Total Environ. 2020, 711, 134514. [CrossRef] [PubMed]

36. Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T.
Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application
of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [CrossRef] [PubMed]

37. Truong, L.X.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, Q.X.; Do, H.T.; Tien Bui, D.;
Lee, S. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning
approach of bagging ensemble and logistic model tree. Appl. Sci. 2018, 8, 1046. [CrossRef]

38. Japan Aerospace Exploration Agency Alos Global Digital Surface Model Alos World 3d—30 m. Available
online: https://www.Eorc.Jaxa.Jp/alos/en/aw3d30/index.htm (accessed on 5 July 2019).

39. Skias, S.G. The effectiveness of engineering geology in coping with flash floods: A systems approach. In
Coping with Flash Floods; Gruntfest, E., Handmer, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands,
2001; pp. 115–122.

40. Vannier, O.; Anquetin, S.; Braud, I. Investigating the role of geology in the hydrological response of
mediterranean catchments prone to flash-floods: Regional modelling study and process understanding.
J. Hydrol. 2016, 541, 158–172. [CrossRef]

41. Sangati, M.; Borga, M.; Rabuffetti, D.; Bechini, R. Influence of rainfall and soil properties spatial aggregation
on extreme flash flood response modelling: An evaluation based on the sesia river basin, north western italy.
Adv. Water Resour. 2009, 32, 1090–1106. [CrossRef]

42. Lovat, A.; Vincendon, B.; Ducrocq, V. Assessing the impact of resolution and soil datasets on flash-flood
modelling. Hydrol. Earth Syst. Sci. 2019, 23, 1801–1818. [CrossRef]

43. Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics.
Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2018.10.064
http://www.ncbi.nlm.nih.gov/pubmed/30321730
http://dx.doi.org/10.1016/j.catena.2019.04.009
http://dx.doi.org/10.3390/s18113704
http://dx.doi.org/10.1016/j.asoc.2018.02.025
http://dx.doi.org/10.1016/j.scitotenv.2019.134413
http://dx.doi.org/10.3390/rs11161943
http://dx.doi.org/10.1016/j.jhydrol.2013.01.044
http://dx.doi.org/10.1016/j.jhydrol.2019.05.089
http://dx.doi.org/10.1016/j.scitotenv.2019.134514
http://www.ncbi.nlm.nih.gov/pubmed/31812401
http://dx.doi.org/10.1016/j.scitotenv.2019.135161
http://www.ncbi.nlm.nih.gov/pubmed/31818576
http://dx.doi.org/10.3390/app8071046
https://www.Eorc.Jaxa.Jp/alos/en/aw3d30/index.htm
http://dx.doi.org/10.1016/j.jhydrol.2016.04.001
http://dx.doi.org/10.1016/j.advwatres.2008.12.007
http://dx.doi.org/10.5194/hess-23-1801-2019
http://dx.doi.org/10.5194/hess-13-1019-2009


Remote Sens. 2020, 12, 2688 18 of 18

44. Bisht, S.; Chaudhry, S.; Sharma, S.; Soni, S. Assessment of flash flood vulnerability zonation through
geospatial technique in high altitude himalayan watershed, himachal pradesh India. Remote Sens. Appl. Soc.
Environ. 2018, 12, 35–47. [CrossRef]

45. Arabameri, A.; Pourghasemi, H.R. 13—Spatial modeling of gully erosion using linear and quadratic
discriminant analyses in gis and r. In Spatial Modeling in Gis and R for Earth and Environmental Sciences;
Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–321.

46. Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Tien Bui, D. Machine learning-based gully erosion susceptibility
mapping: A case study of eastern India. Sensors 2020, 20, 1313. [CrossRef]

47. Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based
geospatial approach for flood risk assessment using multi-sensor remote-sensing data and gis. Geomat. Nat.
Hazards Risk 2017, 8, 1080–1102. [CrossRef]

48. Arabameri, A.; Pradhan, B.; Pourghasemi, R.H.; Rezaei, K.; Kerle, N. Spatial modelling of gully erosion using
gis and r programing: A comparison among three data mining algorithms. Appl. Sci. 2018, 8, 1369. [CrossRef]

49. Florinsky, I.V. Topographic surface and its characterization. In Digital Terrain Analysis in Soil Science and
Geology, 2nd ed.; Florinsky, I.V., Ed.; Academic Press: Cambridge, UK, 2016; Chapter 2, pp. 7–76.

50. Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of
different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [CrossRef]

51. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble
weights-of-evidence and support vector machine models in gis. J. Hydrol. 2014, 512, 332–343. [CrossRef]

52. Jiang, L.; Ling, D.; Zhao, M.; Wang, C.; Liang, Q.; Liu, K. Effective identification of terrain positions from
gridded dem data using multimodal classification integration. ISPRS Int. J. Geo Inf. 2018, 7, 443. [CrossRef]

53. Reutermann, P. Python3 Wrapper for the Weka Machine Learning Workbench. Available online: https:
//pypi.Org/project/python-weka-wrapper3/ (accessed on 15 January 2019).

54. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial
intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]

55. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine
learning methods for landslide susceptibility studies: A comparative overview of algorithm performance.
Earth Sci. Rev. 2020, 207, 103225. [CrossRef]

56. Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A comparative assessment of ensemble-based machine
learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in tauranga
harbor, New Zealand. Remote Sens. 2020, 12, 355. [CrossRef]

57. Bubeck, P.; Dillenardt, L.; Alfieri, L.; Feyen, L.; Thieken, A.H.; Kellermann, P. Global warming to increase
flood risk on european railways. Clim. Chang. 2019, 155, 19–36. [CrossRef]

58. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global
projections of river flood risk in a warmer world. Earth Future 2017, 5, 171–182. [CrossRef]

59. Carvalho, K.S.; Wang, S. Characterizing the indian ocean sea level changes and potential coastal flooding
impacts under global warming. J. Hydrol. 2019, 569, 373–386. [CrossRef]

60. Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Tree ensembles for predicting structured outputs. Pattern Recognit.
2013, 46, 817–833. [CrossRef]

61. Schnier, S.; Cai, X. Prediction of regional streamflow frequency using model tree ensembles. J. Hydrol. 2014,
517, 298–309. [CrossRef]

62. Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation
prediction. Neurocomputing 2019, 326, 151–160. [CrossRef]

63. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision
tree (dt) and a novel ensemble bivariate and multivariate statistical models in gis. J. Hydrol. 2013, 504, 69–79.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rsase.2018.09.001
http://dx.doi.org/10.3390/s20051313
http://dx.doi.org/10.1080/19475705.2017.1294113
http://dx.doi.org/10.3390/app8081369
http://dx.doi.org/10.5194/hess-10-101-2006
http://dx.doi.org/10.1016/j.jhydrol.2014.03.008
http://dx.doi.org/10.3390/ijgi7110443
https://pypi.Org/project/python-weka-wrapper3/
https://pypi.Org/project/python-weka-wrapper3/
http://dx.doi.org/10.1016/j.envsoft.2017.06.012
http://dx.doi.org/10.1016/j.earscirev.2020.103225
http://dx.doi.org/10.3390/rs12030355
http://dx.doi.org/10.1007/s10584-019-02434-5
http://dx.doi.org/10.1002/2016EF000485
http://dx.doi.org/10.1016/j.jhydrol.2018.11.072
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1016/j.jhydrol.2014.05.029
http://dx.doi.org/10.1016/j.neucom.2017.05.104
http://dx.doi.org/10.1016/j.jhydrol.2013.09.034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Employed Algorithms 
	Decision Tree Algorithm 
	Random Subspace Ensemble 
	Hybrid Firefly–Particle Swarm Algorithm (HFPS) 

	Study Area and Spatial Data 
	Descriptions of the Study Site 
	Data Collection 
	Flash Flood Inventory Map 
	Flash Flood Indicators 


	Proposed HFPS-RSTree for Flash Flood Susceptibility Modeling 
	Database Establishment 
	Configuration of the HFPS-RSTree Model 
	The Objective Function and Training the HFPS-RSTree Model 
	Model Performance Assessment 

	Results and Analysis 
	Variable Importance Ranking 
	Model Performance and Comparison 
	Flash Flood Susceptibility Map 

	Discussion 
	Concluding Remarks 
	References

