Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Satellite Imagery
2.4. Image Classification and Accuracy Assessment
2.5. Forest Cover Change Analysis (Annual Rate and Trend)
2.6. Focus Group Discussions (FGD)
3. Results
3.1. Land Use and Land Cover (LULC) Pattern of the District
3.1.1. LULC Change Pattern for the Period 1976–1991
3.1.2. LULC Change Pattern for the Period of 1991–2015
3.1.3. LULC Change Pattern for the Period 1976–2015
3.2. Forest Cover Trend
3.2.1. Temporal Forest Cover Trend
3.2.2. Community Perception on Forest Cover Change and Underlying Causes
3.2.3. CF Activities and Investment to Improve Forest Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FRA. On Definitions of Forest and Forest Change; Food and Agriculture Organization of UN: Rome, Italy, 2000.
- Uusivuori, J.; Lehto, E.; Palo, M. Population, income and ecological conditions as determinants of forest area variation in the tropics. Glob. Environ. Chang. 2002, 12, 313–323. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. Ecol. Manag. 2007, 241, 39–48. [Google Scholar] [CrossRef]
- Amatya, S.; Shrestha, K.R. Nepal Forestry Hand Book; Nepal foresters’ Association Kathmandu Nepal: Kathmandu, Nepal, 2010. [Google Scholar]
- DFRS. State of Nepal’s Forests; Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS): Kathmandu, Nepal, 2015.
- Krishna-Bahadur, K.C. Combining Socio-Economic and Spatial Methodologies in Rural Resources and Livelihood Development: A Case from Mountains of Nepal; Margraf: Vicenza, Italy, 2005. [Google Scholar]
- Agrawal, A.; Ostrom, E. Collective action, property rights and decentralization in resource use in India and Nepal. Politics Soc. 2001, 29, 485–514. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.P.; Shivakoti, G.P.; Webb, E.L. Forest cover change, physiography, local economy, and institutions in a mountain watershed in Nepal. Environ. Manag. 2004, 33, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.J.; Tamrakar, R.M.; Hunt, S.; Shepherd, K.R. Land-use changes in two middle hills districts of Nepal. Mt. Res. Dev. 1998, 18, 193–212. [Google Scholar] [CrossRef]
- Niraula, R.R.; Gilani, H.; Pokharel, B.K.; Qamer, F.M. Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal. J. Environ. Manag. 2013, 126, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Dangi, R. REDD+: Issues and challenges from a Nepalese perspective. Clim. Chang. UNFCCC Negot. Process. 2012, 6, 61. [Google Scholar]
- Poudyal, B.H.; Maraseni, T.; Cockfield, G. Scientific forest management practice in Nepal: Critical reflections from stakeholders’. Perspectives 2020, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- FAO. State of the World’s Forests; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Fawzi, N.I.; Husna, V.N.; Helms, J.A. Measuring deforestation using remote sensing and its implication for conservation in Gunung Palung National Park, West Kalimantan, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 149, p. 012038. [Google Scholar]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Tekle, K.; Hedlund, L. Land cover changes between 1958 and 1986 in kalu district, southern wello, Ethiopia. Mt. Res. Dev. 2000, 20, 42–51. [Google Scholar] [CrossRef]
- UN Economic. Guidelines and manual on land-use planning and practices in watershed management and disaster reduction. In Guidelines and Manual on Land-Use Planning and Practices in Watershed Management and Disaster Reduction; UN Economic and Social Commission for Asia and the Pacific: Bangkok, Thailand, 1997. [Google Scholar]
- Joerin, F.; Thériault, M.; Musy, A. Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 153–174. [Google Scholar] [CrossRef]
- Adhikari, H. Change Detection on the Cultural Landscape in the Philippines with Regards to Redd + Pilot Area over a Period of 21 Years. Ph.D. Thesis, Technische Universitaet Muenchen, Freising, Germany, July 2012. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 320–328. [Google Scholar] [CrossRef]
- Adhikari, H.; Heiskanen, J.; Maeda, E.E.; Pellikka, P.K.E. The effect of topographic normalization on fractional tree cover mapping in tropical mountains: An assessment based on seasonal Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 20–31. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Radeloff, V.C.; Perzanowski, K.; Hostert, P. Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens Environ. 2006, 103, 449–464. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Putzel, L.; Bhandari, S.P.; Keenan, R.J. Change in Land Use and Ecosystem Services Delivery from Community-Based Forest Landscape Restoration in the Phewa Lake Watershed, Nepal. Int. For. Rev. 2017, 19 (Suppl. 4), 88–101. [Google Scholar] [CrossRef]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Bhatta, K.P.; Bhattarai, S.; Aryal, A. Community based anti-poaching operation: Effective model for wildlife conservation in Nepal. Poult. Fish. Wildl. Sci. 2018, 6, 2. [Google Scholar] [CrossRef]
- Gautam, A.P.; Webb, E.L.; Eiumnoh, A. GIS assessment of land use/land cover changes associated with community forestry implementation in the middle hills of Nepal. Mt. Res. Dev. 2002, 22, 63–69. [Google Scholar] [CrossRef]
- Bawa, K.S.; Seidler, R. Deforestation and sustainable mixed-use landscapes: A view from the eastern himalaya. Ann. Mo. Bot. Gard. 2015, 100, 141–149. [Google Scholar] [CrossRef]
- Uddin, K.; Chaudhary, S.; Chettri, N.; Kotru, R.; Murthy, M.; Chaudhary, R.P.; Ning, W.; Shrestha, S.M.; Gautam, S.K. The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s kailash sacred landscape. Landsc. Urban. Plan. 2015, 141, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Balla, M.K.; Awasthi, K.D.; Singh, B.R.; Sitaula, B.K.; Pradhan, B.M. Land use changes and geomorphometric analyses in galaudu and Pokhare Khola watersheds in mid-hill region of Nepal. Int. J. Ecol. Environ. Sci. 2007, 33, 171–182. [Google Scholar]
- Lamichhane, B.R. Dynamics and Driving Forces of Land Use/Forest Cover Change and Indicators of Climate Change in a Mountain Sub-Watershed of Gorkha. Master’s Thesis, Tribhuvan University, Pokhara, Nepal, December 2008. [Google Scholar]
- Baniya, B.; Tang, Q.; Pokhrel, Y.; Xu, X. Vegetation dynamics and ecosystem service values changes at national and provincial scales in Nepal from 2000 to 2017. Environ. Dev. 2019, 32, 100464. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Bhandari, S.P.; Bhandari, A.; Keenan, R.J. Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosyst. Serv. 2019, 36, 100895. [Google Scholar] [CrossRef]
- Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.K.; Basnet, L. Land use and land cover dynamics and assessing the ecosystem service values in the trans-boundary Gandaki River basin, Central Himalayas. Sustainability 2018, 10, 3052. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, A.S.P. What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. J. Environ. Econ. Manag. 1999, 37, 26–43. [Google Scholar] [CrossRef]
- Peralta, P.; Mather, P. An analysis of deforestation patterns in the extractive reserves of Acre, Amazonia from satellite imagery: A landscape ecological approach. Int. J. Remote Sens 2000, 21, 2555–2570. [Google Scholar] [CrossRef]
- Dull, R.A. Evidence for forest clearance, agriculture, and human-induced erosion in pre-Columbian El Salvador. Ann. Assoc. Am. Geogr. 2007, 97, 127–141. [Google Scholar] [CrossRef]
- Agrawal, A.; Chhatre, A. Explaining success on the commons: Community forest governance in the Indian Himalaya. World Dev. 2006, 34, 149–166. [Google Scholar] [CrossRef]
- Chhetri, B.B.K.; Johnsen, F.H.; Konoshima, M.; Yoshimoto, A. Community forestry in the hills of Nepal: Determinants of user participation in forest management. Policy Econ. 2013, 30, 6–13. [Google Scholar] [CrossRef]
- Bhawana, K.C.; Wang, T.; Gentle, P. Internal migration and land use and land cover changes in the middle mountains of Nepal. Mt. Res. Dev. 2017, 37, 446–455. [Google Scholar]
- Jaquet, S.; Shrestha, G.; Kohler, T.; Schwilch, G. The effects of migration on livelihoods, land management, and vulnerability to natural disasters in the Harpan watershed in Western Nepal. Mt. Res. Dev. 2016, 36, 494–505. [Google Scholar] [CrossRef] [Green Version]
Title | Landsat 2 MSS | Landsat 5 TM | Landsat 8 OLI |
---|---|---|---|
Acquisition days | February 19, 1976 | March 18, 1991 | April 05, 2015 |
Path and rows of images | 152, 041 | 142, 041 | 142, 041 |
Cloud cover percentage | 0% | 0% | 0% |
Bands | Green (0.5–0.6 μm) | Blue (0.45–0.52 μm) | Blue (0.45–0.51 μm) |
Red (0.6–0.7 μm) | Green (0.52–0.60 μm) | Green (0.53–0.59 μm) | |
NIR1 (0.7–0.8 μm) | Red (0.63–0.69 μm) | Red (0.64–0.67 μm) | |
NIR2 (0.8–1.1 μm) | NIR (0.77–0.90 μm) | NIR (0.85–0.88 μm) | |
SWIR1 (01.55–1.75 μm) | SWIR1 (01.57–1.65 μm) | ||
SWIR2 (2.09–2.35 μm) | SWIR2 (2.11–2.29 μm) |
Class | Description |
---|---|
Forest | The area covered by tree, shrubs, and herbs. |
Barren land | The area with exposed soil. |
Agriculture land | The land that is cultivated once a year or cultivated before and now that are not cultivated but not converted into barren land or forest. |
Sand and settlement | The urban area and sand on riverbank |
Water | All land covered by rivers and lakes. |
1991 | |||||||
---|---|---|---|---|---|---|---|
Land Use Class | Water | Barren Land | Agricultural Land | Sand and Settlement | Forest | Total | |
1976 | Water | 0.24 | 0.04 | 0.12 | 0.06 | 0.05 | 0.51 |
Barren land | 0.09 | 0.23 | 0.28 | 0.06 | 0.43 | 1.09 | |
Agricultural land | 0.22 | 7.17 | 22.07 | 1.51 | 6.05 | 37.00 | |
Sand and settlement | 0.12 | 0.01 | 0.23 | 0.27 | 0.01 | 0.64 | |
Forest | 0.08 | 7.30 | 6.83 | 0.51 | 46.05 | 60.76 | |
Total | 0.75 | 14.74 | 29.53 | 2.39 | 52.59 | 100.00 |
2015 | |||||||
---|---|---|---|---|---|---|---|
Land Use Class | Water | Barren Land | Agricultural Land | Sand and Settlement | Forest | Total | |
1991 | Water | 0.37 | 0.01 | 0.12 | 0.22 | 0.02 | 0.75 |
Barren land | 0.04 | 2.08 | 4.35 | 0.22 | 8.04 | 14.74 | |
Agricultural land | 0.26 | 3.97 | 15.74 | 1.61 | 7.95 | 29.53 | |
Sand and settlement | 0.12 | 0.30 | 1.12 | 0.30 | 0.57 | 2.40 | |
Forest | 0.07 | 2.82 | 4.73 | 0.27 | 44.70 | 52.59 | |
Total | 0.86 | 9.18 | 26.06 | 2.62 | 61.28 | 100.00 |
2015 | |||||||
---|---|---|---|---|---|---|---|
Land Use Class | Water | Barren Land | Agricultural Land | Sand and Settlement | Forest | Total | |
1976 | Water | 0.22 | 0.02 | 0.10 | 0.13 | 0.03 | 0.51 |
Barren land | 0.09 | 0.13 | 0.33 | 0.10 | 0.45 | 1.09 | |
Agricultural land | 0.31 | 5.16 | 19.27 | 1.84 | 10.42 | 37.00 | |
Sand and settlement | 0.16 | 0.02 | 0.21 | 0.24 | 0.02 | 0.64 | |
Forest | 0.09 | 3.86 | 6.15 | 0.31 | 50.35 | 60.76 | |
Total | 0.86 | 9.18 | 26.06 | 2.62 | 61.28 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, S.; Subedi, R.; Adhikari, H. Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study. Remote Sens. 2020, 12, 2756. https://doi.org/10.3390/rs12172756
Tripathi S, Subedi R, Adhikari H. Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study. Remote Sensing. 2020; 12(17):2756. https://doi.org/10.3390/rs12172756
Chicago/Turabian StyleTripathi, Shankar, Rajan Subedi, and Hari Adhikari. 2020. "Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study" Remote Sensing 12, no. 17: 2756. https://doi.org/10.3390/rs12172756
APA StyleTripathi, S., Subedi, R., & Adhikari, H. (2020). Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study. Remote Sensing, 12(17), 2756. https://doi.org/10.3390/rs12172756