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Abstract: We live in a sphere that has unpredictable and multifaceted landscapes that make the risk
arising from several incidences that are omnipresent. Floods and landslides are widespread and
recurring hazards occurring at an alarming rate in recent years. The importance of this study is to
produce multi-hazard exposure maps for flooding and landslides for the federal State of Salzburg,
Austria, using the selected machine learning (ML) approach of support vector machine (SVM) and
random forest (RF). Multi-hazard exposure maps were established on thirteen influencing factors for
flood and landslides such as elevation, slope, aspect, topographic wetness index (TWI), stream power
index (SPI), normalized difference vegetation index (NDVI), geology, lithology, rainfall, land cover,
distance to roads, distance to faults, and distance to drainage. We classified the inventory data for
flood and landslide into training and validation with the widely used splitting ratio, where 70% of
the locations are used for training, and 30% are used for validation. The accuracy assessment of the
exposure maps was derived through ROC (receiver operating curve) and R-Index (relative density).
RF yielded better results for both flood and landslide exposure with 0.87 for flood and 0.90 for
landslides compared to 0.87 for flood and 0.89 for landslides using SVM. However, the multi-hazard
exposure map for the State of Salzburg derived through RF and SVM provides the planners and
managers to plan better for risk regions affected by both floods and landslides.

Keywords: multi-hazard; flood; landslide; random forest (RF); support vector machine (SVM);
exposure mapping

1. Introduction

Natural disasters have a stern influence the local community and can take numerous years
to recuperate from the consequences [1]. Natural disasters that affect the human inhabitants have
been arising at a frightening regularity across the world in recent years. The principal source of the
catastrophe hangs on the exposure of the area to the hazard. Natural hazards are significant hostile
events escalating from the natural as well as anthropological processes that influence the occurrences
of flooding, landslides, earthquakes, wildfires, volcanoes, and tsunamis [2]. Natural hazards are often
measured in separation, though there is a more significant cause to assess hazards holistically that
helps in managing the intricate threats located in any region. "Multi-hazard" is a term coined by the
United Nations within the context of UN sustainable goals along with the agenda 21 promoting risk
reduction and disaster management as part of the sustainability program [3]. Multi-hazard assessments
have increased in the past couple of years, where several natural hazards have impacted a region.
Multi-hazards can cause more severe damages than a single hazard affecting transportation, damages
to infrastructures, degradation of environmental conditions, and threaten human lives [4].
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Flooding is considered one of the dangerous natural hazards that is happening quite regularly
in recent times throughout the world. Floods are natural occurrences that arise following an
extended period of rainfall or snowmelt in amalgamation with adverse circumstances [5]. Worldwide,
the incidence of flooding has intensified by 40% over the previous two decades [6]. The increase in
floods regularly is owing to the surge in ecological degradation such as rapid urbanization, the surge
in population growth, and speedy deforestation [7]. Some physiographical factors greatly influence
floodings like topography, geomorphology, and climate change [8,9]. Floods become a disaster once it
impacts human lives, infrastructure, and settlements causing probable indemnities. If the flooding
occurs at a regular interval, then the damages are also on the higher side impacting severely on the life
of living beings, impacting the economy, disrupting the transportation networks, destabilizing the
ecological equilibrium, and damages to the infrastructures [10]. The amount of individuals existing in
the flood hazard region is projected to be about 1.3 billion by the end of 2050 [11]. Assessment of flood
is quite significant for socioeconomic and ecological consequences [12].

Landslides are described as the gravitational movement of the mass of rocks or debris down a
slope [13]. In a broad-spectrum landslide are mass movements, which contain rock falls, mudslides,
and debris flows. The categorization of landslides is generally based on the type of material like
rock, debris, earth, or mud; and the movement type, such as fall, topple, avalanche, slide, flow,
or spread. Landslides are triggered by various natural processes like substantial and protracted
rainfall, earthquakes, snowmelt or human-made processes like road constructions, infrastructures,
deforestations, or even the combination of natural and human-made processes [14]. Landslides are
occurrences of land degradation that alter the topographies of the site, instigating soil erosion, habitat
destruction, environmental complications, and structural damages [15]. Landslides are happening at
an alarming rate in recent times owing to the development and rapid urbanization without proper
planning and studies on the region resulting in frequent landslides [16]. Owing to the frequent
landslides, there has been substantial consideration from the scientific community and policymakers
in understanding the landslides are the assessment of landslides [17]. Landslides, in general, are
measured as natural occurrences. However, mostly they are frequently initiated by the influence of
anthropological activities [18].

Most parts of the world have varying and compound landscapes where the risk from a numerous
event are ubiquitous. Exposure analysis of any natural hazard is an important task to forecast the
imminent incidences of natural hazards. Flood exposure is vital for management strategies on the
prevention and mitigation of floods [19]. To understand and study the impact of landslides on human
and economic losses, it is important to comprehend a region’s exposure to landslides. Landslide
exposure is the potential impact of a particular type of landslide on a specific area in the future [1].
Landslide exposure is the spatially explicit quantification of the probability of the occurrence of
landslides in the future based on the effects of influencing factors in the given area [20].

Natural hazard assessments have been analyzed utilizing diverse models like frequency
ratio (FR) [21,22], analytical hierarchicalp [23,24], analytical network process [25], support vector
machines [26,27], random forest [28], evidence belief function [29], fuzzy logic and ensembles [30,31],
Dempster–Shafer [32,33], K-nearest neighbor [9], decision tree [34,35], logistic regression [36,37],
artificial neural networks [38], and deep learning algorithms of the recurrent neural network (RNN)
and convolutional neural network (CNN) [39]. Lately, machine learning (ML) approaches have been
widely used for natural hazard evaluations corresponding to landslides, floods, and wildfires [2,40–44].
All the methodologies have their particular qualities and drawbacks, and each model’s performance
varies based on the input data used, the structure of the model, and the accuracy of the model. However,
there is no indication that a specific model must be used for a specific situation, hazard, or study
area [45]. In the latest studies, ML methods like naïve Bayes along with naïve Bayes tree was equated
with multi-criteria decision analysis technique like "Vise Kriterijumska Optimizacija I Kompromisno
Resenje" (VIKOR), "Technique for Order Preference by Similarity to an Ideal Solution" (TOPSIS), and
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simple average weight (SAW) that resulted in ML model yielding superior prediction equated to Multi
Criteria Decision Analysis (MCDA) [8].

Similarly, evidence belief function and ensemble methods were used for flood susceptibility and
equated with TOPSIS, classification and regression trees (CART), and VIKOR and frequency ratio
(FR) techniques where evidence belief function model yielded greater precision [46–48]. Furthermore,
superior ML approaches as simulate annealing (feature selection) using the resampling algorithm
were used for deriving the susceptibility maps for floods [49]. Already diverse ML methods and deep
learning approaches have been used in landslide detection studies [50]. Recurrent neural network
(RNN) and multilayer perceptron neural network (MLP-NN) techniques characteristically entail an
input data set from orthophotos or LiDAR-derived datasets. This also relates to the use of textural
features for landslide detection [51].

Austria is an alpine country enclosed by land and situated in Europe with an approximate area
around 84,000 km2 having 8.7 million population [52]. Owing to the setting of the country in the alpine
range and having climatic environment, natural hazards like landslides, avalanches, and floods pose
a significant risk to the low-lying areas within the country. More than 1 million habitants residing
and 13% of the structures are situated in flood-prone regions of Austria [53]. In 2002, 2005, 2006, and
2013, large scale flooding occurred along the Danube and its tributaries in Austria [54]. The State of
Salzburg is one of the nine federal states in Austria, and Salzburg is the capital of the state of Salzburg.
The region has been impacted by severe flooding and landslides in recent times, and the region is very
dynamic concerning its economic and growths [55].

In this research, we chose SVM and RF as a machine learning algorithm for multi-hazard exposure
mapping for the state of Salzburg in Austria. A multi-hazard exposure map is a basis for multi-hazard
risk assessment and the main focus of this research. There has been no study yet been done on
multi-hazard exposure mapping for the state of Salzburg which is impacted frequently by landslides
and floods, and this could be helpful for planners and policymakers to consider regions impacted by
multi-hazard and manage mitigating measures.

2. Study Area

The State of Salzburg in Austria, as seen in the Figure 1, is one of the nine federal states of Austria.
The State of Salzburg covers an area of 7156.03 km2 and has a population of 531,000 with a density of
74/km2. Salzach is a primary river which runs through the alps and has a drainage basin of 6829 km2.
This also includes sizable parts of the northern limestone and central-eastern alps. Salzach is the main
river which lies about 83% in Austria and the rest in southern Germany. The Großvenediger is the
highest peak that has an altitude of 3657 meters above sea level. The State of Salzburg is enclosed
by roughly 370,000 hectares of forest, conforming to 52% of its entire area. The forests have great
economic significance and are vital for the protection against natural hazards.

Figure 1. Location of the State of Salzburg, Austria.
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Landslides and floods are a prevalent natural hazard in the study area. Landslide incident in the
region is determined by numerous aspects, specifically lithology, tectonic structure, geomorphology
(mainly slope, angle, and aspect), and land use. The geomorphological situation of Austria significantly
contributes to the likelihood of landslide happening, as the Alps constitute 62% of the region. Torrents
and avalanches jeopardize around 75% of the communities in Austria [56]. The degradation of
permafrost in the alps owing to the surge in temperatures can lead to slope volatilities and threatens
settlements and transportations systems. In Austria, several human-made infrastructures, such as roads
and buildings, are highly vulnerable to landslides caused by heavy rainstorms and long-lasting rain
events. During the years 2002, 2005, 2006, and 2013, the Salzach basin experienced huge flooding [54].
The upsurge of annual daily precipitation in several regions signifies the escalation in the prospect
of severe flooding in the alpine regions [57,58]. The state of Salzburg is very dynamic regarding its
economy and growths and attracts a lot of tourists [55].

3. Data & Methodology

3.1. Inventory Data

The inventory data plays a significant role in the assessment of exposure maps of any natural
hazards. Consequently, it is imperious to have a good set of inventory for the analysis.

The landslide inventory for this study was attained from the Geological Survey of Austria
(GBA), who provided the point inventory of landslides mainly of rockfalls/rockslides (25%), complex
movements (6%), and landslides (69%). Further information can be found at GBA (www.geologie.ac.at).
There have been quite a significant number of landslides happening in Austria, and only a limited
number of landslide locations are provided in the inventory data. The provided inventory data has
limitations regarding completeness and up-to-datedness. To derive the accuracy of the model through
model validation, the landslide inventory is required that is not used for training the model. Hence
it is essential to allocate the dataset into two portions. The first part is applied to train the models
and is called the training dataset, and the second part is used for validating the model’s performance
and is referred to as the validation dataset. To forecast the incidences of potential flooding, it is
fundamental to evaluate the incidence of historic flooding as the historical incident data has a solid
relationship with the future occurrences of flooding [59]. The flood inventory was built centred on
the Hochwasserrisikozonierung—Flood risk zoning (HORA—https://www.hora.gv.at/) with HQ30 for
Austria. The flood HQ30 having polygon coverage and randomized locations was used for deriving
flood locations for each polygon within the HQ30 flood data. There are no typical approaches for
the selection of training and validation samples [1]; the most shared ratio for training and validation
samples is 70/30 [60]. This method has been used for various natural hazard studies [61]. The landslide
and flood inventory dataset were divided randomly into two groups, with 70% used for training and
30% used for validating the results. Figure 2 shows the flood and landslide inventory data categorized
into training and testing data.

www.geologie.ac.at
https://www.hora.gv.at/
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Figure 2. The State of Salzburg showing the flood and landslide inventory divided into training and
testing data.

3.2. Influencing Factors

It is pivotal to control the influencing factors for various natural hazards for the purpose of
exposure mapping [21]. There are no predefined benchmarks for selecting the influencing factors for
exposure mapping. Ideally, the selected influencing factors should be operative, quantifiable, and
non-uniform. Established on the geomorphological characteristics, literature, data availability, and
expert feedback, a total of thirteen influencing factors were chosen for this study area for flooding
and landslides. For landslide exposure mapping, ten influencing factors were selected, i.e., elevation,
slope angle, slope aspect, distance to roads, distance to drainage, rainfall, land use, faults, geology,
and lithology. For flood exposure mapping, eleven influencing factors such as elevation, slope, aspect,
topographic wetness index (TWI), stream power index (SPI), distance to drainage, geology, distance
to roads, rainfall, NDVI, and land cover. Figure 3 shows the influencing factors for both flood and
landslide for multi-hazard exposure mapping.

A freely accessible digital elevation model (DEM) with 10 m spatial resolution for the State
of Salzburg, downloadable through the Open Data Portal Austria (www.data.gv.at) was used for
deriving the auxiliary data like slope, aspect, and hydrological aspects such as TWI and SPI. Geology,
lithology, faults, and drainage data were obtained from the Geological Survey of Austria (GBA).
Rainfall information data for Austria was obtained from the ÖKS15—Klimaszenarien für Österreich
from the center of the Climate Change Centre Austria (CCCA) data center for the State of Salzburg.
Normalized Difference Vegetation Index (NDVI) was transferred from land viewer EOS, and the Land
Information System Austria (LISA) was used for attaining the land cover data. The road networks
were downloaded from the humanitarian open street map network (HOTOSM). Table 1 shows the
influencing factors for flood and landslides for this study, and Figure 2 shows the influencing factor
used for the study area.

www.data.gv.at
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Table 1. Influencing factors for flood and landslides selected for the State of Salzburg.

Factors Flood Influencing Factors Landslides Influencing Factors

Elevation

Slope

Aspect

Land cover

Rainfall

Geology

Distance to roads

Distance to drainage

NDVI 1

TWI 2

SPI 3

Lithology

Distance to faults

1 Normalized difference vegetation index (NDVI); 2 topographic wetness index (TWI); 3 stream power index (SPI).

There is no traditional or acknowledged standard for the classification of conditioning factors [62].
The study area and the relevance of each factor for the study area were taken into considerations when
conditioning factors were classified along with the information available within the dataset.

Elevation plays an important influence on flood and landslide exposure mapping [23].
The elevation describes the deepest and the maximum range point in the region. The elevation
influences the geomorphological and geological processes [63]. It can affect the topographic attributes
that lead to spatial variability of different landscape processes, and it can influence the vegetation
distribution. As the elevation ascents in the Alpine region, vegetation fluctuates are witnessed.

The slope is decisive in flooding as this controls the velocity of the surface runoff and upright
filtration that impacts the flood exposure. The slope is quantified as the exterior guide for flood
exposure [64]. The slope is considered as the key influencing factor straightforwardly connected to
landslide exposure analysis as this influences the failure of slope [65]. Landscapes that have sharper
slopes are generally more susceptible to failure. Aspect is an important influence for both flood and
landslide exposure analysis as this defines the direction of the slope.

Land cover describes the variation in exceedingly separated areas within the region and
provides insights on the activity [66]. Land cover is a key influencing factor for flood and landslide
evaluations [67]. Land cover is categorized as; Built-up, Flat sealed surfaces, Permanent soil, Bare Rock
and Screes, Water, Snow and Ice, Trees, Bushes and Shrubs, Herbaceous, and Reeds.

Rainfall is an essential and crucial activating aspect for both flooding and landslides [68].
Rainfall characters differ by climate circumstances and topographical characters, and this can instigate
substantial time-based and spatial variances in the rainfall occurrence. The rainfall is measured in mm.

Geology of the region exhibits a substantial role in flood and landslide exposure due to the
understanding of lithological elements [69]. Regions that have greater porous soil and rigid endurance
rocks manage to have stumpy channel densities [7]. There are six geological units in our study region,
mainly Helvetic nappes, Austroalpine nappes, Penninic nappes, Molasse zone, Sub-Penninic nappes,
and water.
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Roads are considered as the critical anthropogenic factor that influences the flooding and
occurrences of landslides [39,70].

Distance to drainage is a key influencing factor in flood exposure as this influences the extent of the
flooding, magnitude and delivers water that triggers material saturation resulting in landslides [2,71].

Lithology is largely acknowledged as the important influencing factors in landslide exposure
studies [69]. Lithological components differ in terms of geological strength indices, exposure to failure,
and permeability [72]. Typically, the mass movements slide along a rock stratum with low strength
and poor permeability. We have seventeen lithological units in our study area.

Distance to fault determines the incidence of landslides as faults build a break amid two
distinguishing lithological units and create fractures and joints within the lithological unit that can
propagate landslide activity. Geological faults are accountable for activating a huge amount of
landslides because the tectonic breaks usually decrease the surrounding rock strength.

The topographic wetness index (TWI) is the gathering of water flow at any condition owing to the
flow trends towards downstream owing to the gravitation in the catchment [73]. The TWI is calculated
using the Equation (1) [74,75] given below where α defined as the aggregate of the upslope part that is
being consumed through a point and tan β is the angle of slope at that particular point in degrees.

TWI = ln(α/tan β) (1)

The stream power index (SPI) is the degree of the erosive supremacy of flowing water. The SPI is
estimated based on the slope and the specific area using the Equation (2) [74] as given below where the
α is the particular zone of the catchment measured in m2/m of the particular catchment, and tan β is the
angle of the given slope angle at that particular point measured in degrees.

SPI = (α X tan β) (2)

The normalized difference vegetation index (NDVI) processes the vegetation of a region based on
how the vegetation reflects the light for particular frequencies (absorbing and reflection). This is quite
decisive for flooding and landslides. This index defines values from −1 to +1 and calculated using the
Equation (3) [76] given below where the NIR is the reflectance in the near-infrared spectrum and RED
is the reflection in the red range of the spectrum.

NDVI =
NIR−RED
(NIR + RED)

(3)
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Figure 3. Cont.
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Figure 3. Influencing factors for landslides and floods used in this study: (a) elevation (m), (b) slope,
(c) aspect, (d) normalized difference vegetation index (NDVI), (e) topographic wetness index (TWI),
(f) stream power index (SPI), (g) geology, (h) land cover, (i) distance to drainage (m), (j) distance to
road (m), (k) rainfall, (l) distance to fault, and (m) lithology.
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3.3. Methodology

Machine learning (ML) approaches have recently been extensively used and contributed towards
the evolution of prediction systems offering enhanced and enriched performance and efficient
solutions [77]. ML methodologies have continually advanced and established their suitability for
natural hazard assessments having better accuracy compared to the traditional approaches. Various ML
approaches have been used for exposure mapping of natural hazards like floods, landslides, and
wildfires [42,78,79]. However, there is no considerable evidence that a specific ML approach is best
suited for a specific hazard assessment as this completely depends greatly on the inventory data
and the influencing factors selected for the study area. ML is independent of any domain expert
knowledge like the multi-criteria decision analysis approaches. For the multi-hazard exposure study,
we have selected RF and SVM as two ML approaches for deriving the exposure maps for flood and
landslide exposure.

3.3.1. Support Vector Machine (SVM)

SVM is a machine learning approach based on data mining and one of the influential supervised
algorithms used for classification and regression. SVM was established on the basis of statistical
learning theory where the input data is transformed into a new feature space, and a decision function is
established in the new feature space through the optimal hyperplane. SVM is generally used along with
a defined group of liner indicator equations for the functional valuations [80]. SVM provides superior
performance and higher outputs, even with inadequate input data points is also acknowledged as
the maximum-margin process [66]. SVM maps the data points into an elevated dimensional feature
space using non-linear transformers while creating the best hyperplane, and this is based on statistical
learning [81]. The finest hyperplane is achieved while unravelling precincts amongst the described
classification of the problematic are highest. SVM’s have two layers and are unidirectional, which
can implement various activation kernel functions such as linear, polynomial, radial, or sigmoid that
influences the performance of the model [82,83]. As for the kernels, four kernel categories were used in
this methodology to comprehend the effectiveness of categorization and the type as a string in deriving
the exposure maps.

3.3.2. Random Forest

RF is an algorithm to classify the input data established on the collaborative of several decision
trees. This was primarily crafted by means of the random subspace technique [84]. RF has been widely
used in recent times for its processing speed and its capability to generate outstanding classification
results with low errors compared to other classification algorithms [85]. RF is contemplated as the
main functioning non-parametric collective ML approaches used frequently in exposure analysis.
While forecasting the output, a defined group of features are chosen randomly at every phase, and
each output is weighted using the value that is obtained from the vote, which is derived. The bulk
of the vote which is depending on the output of the evaluated decision tree converges into a solo
decision tree for the processing of the final classification [86]. To resolve the uncertainty issue, it is
recommended to utilize a specific decision tree which will remove the uncertainty and increase the
prediction accuracy [87]. The main phase in the classification using RF is deriving greater variance from
various decision trees. The basic training prospects in the RF technique is the handling of the highest
quantity of trees along with the adjustable quantity that is necessitated in the splitting exploration and
the variation of the sampling method [88]. In the split examining of the RF, the initial and subsequent
training preferences are typically considered.

The overall workflow is shown in Figure 4, which shows the influencing factors used for flood
and landslide and the ML approaches used for deriving flood and landslide exposure maps.
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Figure 4. The methodological workflow used for the multi-hazard exposure mapping for the State
of Salzburg.

4. Results

The exposure maps were derived using the machine learning algorithms of RF and SVM for
multi-hazard exposure assessments for the State of Salzburg, focusing on floods and landslides.
The resultant exposure maps were normalized for both RF and SVM to have consistent classification
schema and for comparison. The exposure maps were categorized into five classes of very high,
high, moderate, low, and very low exposure levels using the classification schema of the quantile.
This quantile classification approach allocates all the values into clusters that comprises an equal
number of values for better classification compared to natural break classification schema.

4.1. Flood

Flood exposure maps were derived for the state of Salzburg in Austria by means of RF and SVM.
Overall, the spatial pattern displays north part of the region to be highly susceptible to the flooding
and the central region along the Salzach basin to be exposed to flooding, and this is due to the Salzach
basin which flows through the region as shown in Figure 5. Both RF and SVM have similar exposure
maps except for RF displaying more very low exposure class throughout the region compared to the
SVM exposure map. The area wise percentage for each class shows similar percentage for “Very High”
exposure class for RF (18%) and SVM (19%) though in the “Very Low” class, RF has 15% compared to
1% in SVM. However other exposure classes also varies compared to RF and SVM as seen in Table 2.
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Figure 5. Flood exposure maps derived using random forest (RF) and support vector machine (SVM)
for the State of Salzburg.

Table 2. Area percentage for each exposure class for flood using RF and SVM for the State of Salzburg.

Exposure Class RF (Area in %) SVM (Area in %)

Very Low 15 1
Low 15 8

Moderate 21 36
High 31 36

Very High 18 19

4.2. Landslide

Landslide exposure maps were derived for the State of Salzburg, Austria, using RF and SVM.
Overall, the spatial pattern shows central and few northern parts of the region as highly susceptible to
the occurrences of landslides. Whereas, SVM shows low occurrences of landslides in the north most
areas compared to RF, which shows mixed susceptible regions in the same region, as shown in Figure 6.
The area wise percentage for each class displays contrasting percentage for all the exposure classes for
RF and SVM.

RF has 14% area that are classified as “Very High” exposure for landslides compared to 9% in
SVM, whereas the “Very Low” exposure class area percentage varies considerably between RF (2%)
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and SVM (16%) which are clearly visible in the derived exposure map shown in Figure 6. The exposure
class area percentage is shown for each exposure class derived from RF and SVM for landslides are
shown in Table 3.

Figure 6. Landslide exposure maps derived using random forest (RF) and support vector machine
(SVM) for the State of Salzburg.

Table 3. Area percentage for each exposure class for landslides using RF and SVM for the State
of Salzburg.

Exposure Class RF (Area in %) SVM (Area in %)

Very Low 2 16
Low 14 23

Moderate 36 28
High 34 24

Very High 14 9
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4.3. Multi-Hazard Exposure Map

Multi-hazard susceptible maps were derived by the interaction between landslides and floods for
the State of Salzburg. The resulting maps show the classification schema of low, moderate, and high
susceptible regions as a matrix between floods and landslides. RF shows most of the region as moderate
to highly susceptible to both floods and landslides, and the SVM shows the majority of the regions
as low susceptible excluding the north part of the region as highly susceptible to floods as shown in
Figure 7.

Figure 7. Integrated multi-hazard exposure classification combining flood and landslide using random
forest and support vector machine for the State of Salzburg.
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5. Validation

Validation is one of the substantial phases in appraising the precision of every model or technique.
Validating the resulting maps stipulates the supremacy of the methodology and its relevance [46].
To establish the accomplishment of the ML models for multi-hazard exposure mapping, a comparison
was made among the resulting exposure maps for flood, and landslide derived from SVM and RF
using the inventory data for both flood and landslide. To determine the accuracy and efficiency of
the model’s analysis of the conformity between the inventory data and the resulting maps specifies if
the applied models can correctly envisage the zones that are susceptible to floods and landslides [15].
Thirty percent of the inventory data for each flood and landslide were used for validating the results.
There is no commanding standard for allocating inventory data into training and validation data [60].
However, the widely used tactic in literature for natural hazard assessment for classifying the inventory
data is known to be 70/30, and hence we have also used the same ratio for splitting the dataset [89].

5.1. Receiver Operating Characteristics (ROC)

The receiver operating characteristics (ROC) curve was derived using the validation inventory
for flood and landslides to assess the performance of the RF and SVM models. The ROC method
facilitates to establish the precision of each model by comparing the true positive on the vertical axis
with the false positive on the horizontal axis from the exposure maps [90]. True positives are the pixels
which are rightly categorized as highly exposed to flood/landside and false positives are the pixels
that falsely labelled as low exposure to flood/landslide. The area under the curve (AUC) is a grade
that stipulates the accurateness of each exposure map outputs. The AUC specifies the likelihood that
more pixels were accurately labelled than incorrectly labelled. Higher AUC values indicate a higher
accuracy and lower AUC values indicate lower accuracy of the exposure map. If the AUC values are
near to unity, then this indicates a significant exposure map. A value of 0.5 shows an inconsequential
map since it means the map was produced by accident [91]. Table 4 indicates the AUC intervals with
the description.

Table 4. Area under the curve (AUC) interval values with description.

AUC Values Description

1–0.90 Excellent
0.90–0.80 Good
0.80–0.70 Fair
0.70–0.60 Poor
0.60–0.50 Fail

Figure 8 shows the accuracy of RF and SVM for flood and landslide for the State of Salzburg.
The RF yields better accuracy for both flood and landslides compared to SVM though for floods the
accuracy of both the models is quite similar. Overall, the accuracy of RF and SVM for flood and
landslide is described as good, which is in the range of 0.80–0.90.
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5.2. Relative Density (R-Index)

The precision of multi-hazard exposure maps for flood and landslides are assessed using the
index of relative density or generally known as the R-Index. This is a common approach used for
assessing the area exposed to natural hazards for each of the exposed class. The testing inventory data
for flood and landslide was used for authenticating the exposure maps using the equation given below
where the ni is defined as the fraction of the particular area that is exposed to floods and landslides for
each of the exposed class and Ni is defined as the fraction of the flood and landslide positions in each
of the exposed class.

R = (ni/Ni)/Σ(ni/Ni)) × 100 (4)

Table 5 displays the r-index for flood and landslide with random forest and support vector
machines with the five exposure classes. The r-index illustrates together RF and SVM has the highest
values for flood and landslides in the very high exposure class and the lowest in the very low exposure
class, as shown in Figure 9.

Table 5. Relative density results for flood and landslide exposure maps for every exposure class with
RF and SVM for the State of Salzburg.

Exposure
Class

R-Index Flood R-Index Landslide

RF SVM RF SVM

Very Low 3 3 3 4

Low 5 4 6 5

Moderate 9 13 11 15

High 29 37 22 29

Very High 54 43 58 47
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Figure 9. R-index values for flood and landslide using RF and SVM.

6. Discussion

Decision support tools such as modelling and simulation increase the awareness and understanding
of various hazard managements. Though the configuration and the approaches of modelling differ
significantly, this also influences the modelling results and performance of the model. However,
the availability of diverse approaches and models presents planners and policymakers to acquire and
realize efficient management measures [92]. Various models have been widely used in different hazard
assessments like floods, landslide, and wildfire exposure [26,42,78]. Relative and proportional research
is desirable to assess the performance of various models in similar conditions with similar influencing
factors to make a fair conclusion on the suitable model for a specific hazard at a certain region [93].

This study presents a multi-hazard exposure for flood and landslide hazards for the State of
Salzburg, Austria, using ML approaches of RF and SVM. RF is an unpretentious yet fast algorithm
that does not utilize any statistical expectations and is illustrated by the high performance that is
also evident in this study [94]. In addition, SVM models are known to handle complex, non-linear
relationships and are quite insensitive to noise [33]. Both these models have been used for flood
and landslide risk assessments. In our study, the RF model yielded similar accuracy for flood and
landslides, whereas RF yielded better accuracy results for flood compared to SVM. This might also
differ in different regions with different influencing factors used in the study as well. This also shows
that both the models yielded better accuracy results for flood and landslide exposure maps and also
is in line with previous studies [26,95]. The precision of any model is contingent on the choice of
involvement of the chosen influencing factors for natural hazard exposure mapping. The greater
amount of influencing features would envisage surging in the precision of the approach. However,
this also hangs on the choice and availability of the influencing factor datasets for the region [96].
Furthermore, the superior resolution of datasets selected for the analysis for the study area may also
sway the result of exposure maps together with the choice and accessibility of influencing datasets.

The results from the exposure maps derived through RF and SVM shows varying area percentage
for the State of Salzburg for flood and landslides as shown in Tables 2 and 3. Though the flood area
percentage for each exposure class is similar to RF and SVM, it varies completely for landslide with
totally different area wise percentage for RF and SVM. However the accuracy of the RF shows better
results than the SVM and the multi hazard exposure map solves this issue with the exposure class
matrix for flood and landslide which shows the region which are highly prone to both floods and
landslides and also which region is more exposed to floods and landslides based on the exposure
class. Advanced ML methods like feature selection (simulate annealing) with resampling algorithms
were also used for flood susceptibility mapping [49]. Previous studies for flood susceptibility shows
similar results [42] and the advantage of this study is the multi-hazard exposure map which shows
both flood and landslide exposed region based on the matrix. Various other ML approaches like
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random subspace-based classification and regression tree (RSCART) and logistic regression was used
for benchmarking [89], along with the evidence belief function (EBF) model with logistic regression
(LR) for landslide susceptibility mapping [97]. There have been studies on landslide susceptibility
mappin that uses deep learning convolution neural networks for landslide detection [77] and hybrid
integration of EBF and ML approaches [89]. In addition, there are ensemble models which incorporates
object based image analysis (OBIA) with ML approaches like multi-layer perceptron neural network
(MLP-NN) and random forest (RF) for landslide detection [88]. The recent studies shows the ensemble
of radial basis function neural network (RBFN) with random subspace (RSS), attribute selected classifier
(ASC), cascade generalization (CG), and dagging for spatial prediction of landslide susceptibility [98].

For future work, ML approaches of RF and SVM can be applied to different geographical settings
for the comparison between alpine and mountain region (Nepal and India) where the region is prone
to frequent landslides and floods. It will be interesting to evaluate the availability of influencing
factors and the suitability to the region as well and to adapt the multi-hazard ML approach for
exposure analysis. This would benefit us in the investigation of the robustness of the approaches
selected for different geographical venue. The landslide inventory used for this study was point-based
landslide locations, and in future, we would like to have the polygon-based inventory where the
different approaches can be compared with the influencing factors. We would also like to carry
out the multi-hazard vulnerability assessment along with analyzing the interactions between the
multi-hazards that will assist in understanding the relationship between the occurrences of these
hazards and provides better judgment in the selection of influencing factors.

The exposure maps of multi-hazard for the State of Salzburg provide the planners and disaster
management professionals along with the regional authority better management principles for
mitigating the hazards in the region. This could also help in preparing detailed measures where there
are high susceptible zones for both the hazards rather than planning measures for a single hazard as
this could considerably diminish the damages along with the economic losses in the region.

7. Conclusions

Multi-hazard modelling and mapping were conducted based on two natural hazards (landslide
and floods) in a hazard-prone region of the State of Salzburg in Austria. Landslides and floods are the
most commonly occurring natural hazards in recent years and have caused major indemnities across
the selected study area. The SVM and RF ML models were used to model and map hazard-prone areas
for both landslide and floods. The resulting of exposure maps of each model and each hazard were
then overlapped to produce the multi-hazard exposure maps. The resulting multi-hazard exposure
maps provide a better tool for deriving management policies and to identify hazard-prone areas and
implement mitigation measures. There have been limited studies carried out for single hazard exposure
assessments in the State of Salzburg, and this study is the first of its kind for multi-hazard exposure
analysis focusing on floods and landslides which are the two main natural hazards occurring in the
region. In this study, we created exposure maps for floods and landslides along with combining these
two hazards in yielding a multi-hazard exposure map using RF and SVM algorithms. The precision
and the degree of fit of the resultant exposure maps were authenticated using the ROC and R-index.
The conclusions and considerations gained from this study provide an enriched understanding of
multi-hazard exposure for the State of Salzburg. The mappings assist in recognizing the different
exposure classes for the region. This approach can be applied to different regions where multiple
natural hazard occurrences are arising in the specific region. The particular results can be advantageous
for managers and disaster management to distinguish the areas prone to multi-hazards and to mitigate
the economic and financial loss from the natural hazards in the future.
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