
remote sensing  

Article

Crop Type Classification Using Fusion of Sentinel-1
and Sentinel-2 Data: Assessing the Impact of Feature
Selection, Optical Data Availability, and Parcel Sizes
on the Accuracies

Aiym Orynbaikyzy 1,2,*, Ursula Gessner 1, Benjamin Mack 3 and Christopher Conrad 2

1 German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Muenchner Strasse 20,
D-82234 Wessling, Germany; ursula.gessner@dlr.de

2 Institute of Geosciences and Geography, Martin-Luther-University of Halle-Wittenberg,
Von-Seckendorff-Platz 4, 06120 Halle, Germany; christopher.conrad@geo.uni-halle.de

3 Independent scholar, 80331 Munich, Germany; ben8mack@gmail.com
* Correspondence: aiym.orynbaikyzy@dlr.de

Received: 23 July 2020; Accepted: 25 August 2020; Published: 27 August 2020
����������
�������

Abstract: Crop type classification using Earth Observation (EO) data is challenging, particularly
for crop types with similar phenological growth stages. In this regard, the synergy of optical and
Synthetic-Aperture Radar (SAR) data enables a broad representation of biophysical and structural
information on target objects, enhancing crop type mapping. However, the fusion of multi-sensor
dense time-series data often comes with the challenge of high dimensional feature space. In this study,
we (1) evaluate how the usage of only optical, only SAR, and their fusion affect the classification
accuracy; (2) identify the combination of which time-steps and feature-sets lead to peak accuracy;
(3) analyze misclassifications based on the parcel size, optical data availability, and crops’ temporal
profiles. Two fusion approaches were considered and compared in this study: feature stacking and
decision fusion. To distinguish the most relevant feature subsets time- and variable-wise, grouped
forward feature selection (gFFS) was used. gFFS allows focusing analysis and interpretation on
feature sets of interest like spectral bands, vegetation indices (VIs), or data sensing time rather than
on single features. This feature selection strategy leads to better interpretability of results while
substantially reducing computational expenses. The results showed that, in contrast to most other
studies, SAR datasets outperform optical datasets. Similar to most other studies, the optical-SAR
combination outperformed single sensor predictions. No significant difference was recorded between
feature stacking and decision fusion. Random Forest (RF) appears to be robust to high feature space
dimensionality. The feature selection did not improve the accuracies even for the optical-SAR feature
stack with 320 features. Nevertheless, the combination of RF feature importance and time- and
variable-wise gFFS rankings in one visualization enhances interpretability and understanding of the
features’ relevance for specific classification tasks. For example, by enabling the identification of
features that have high RF feature importance values but are, in their information content, correlated
with other features. This study contributes to the growing domain of interpretable machine learning.

Keywords: optical-SAR synergy; crop mapping; group-wise forward feature selection; interpretable
machine learning; decision fusion; feature stacking

1. Introduction

Crop type maps deliver essential information for agricultural monitoring and are likewise relevant
for other fields such as environmental assessments. Respective classification approaches using Earth
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Observation (EO) stand to benefit from the availability of high-resolution Sentinel-1 and Sentinel-2
dense time series. Particularly, the synergistic use of these optical and Synthetic-Aperture Radar (SAR)
datasets bears high potential. In previous research, single-sensor approaches based on optical and SAR
data were used the most to map crop types at different scales. A larger share of research was based
on optical data [1–5]. The classification of crop types using only SAR data has also been successfully
implemented in several studies [6–9]. Optical data that makes use of the visible, near-infrared,
and short-wave-infrared portion of the electromagnetic spectrum, provides valuable information about
leaf pigments, water content, and plants’ overall health condition.; whereas SAR data, dependent
on the frequency and polarization, delivers a complex representation of canopy structure, surface
roughness, soil moisture, and topography [10].

The first studies that focused on optical-SAR data fusion date back to the 80s [11,12]. However,
starting from 2000, the number of studies on this topic gradually increased, which can be partially
explained by the launch of new space-borne radar (ERS, RADARSAT, ENVISAR, ASAR, etc.) and
optical (Landsat, SPOT, IRS, MODIS, QuickBird, etc.) satellites [13]. The launch of Sentinel-1 (2014/2016)
and Sentinel-2 (2015/2017), operated by the European Space Agency (ESA), boosted the interest in using
these freely available SAR and optical datasets for crop type mapping in a synergistic way. Optical
and SAR data’s complementary nature gives the possibility to simultaneously utilize information
on plants’ structural and bio-physical conditions. This explains that most previous fusion studies
reported improvements in crop classification accuracy when optical and SAR data were combined
compared to single sensor experiments [14–16]. Commonly, optical-SAR fusion studies used several
cloud-free optical and available SAR scenes for their studies [13]. The use of dense time-series of both
became more common in recent studies [17,18]. However, for large-scale studies, it is still a challenge
to combine these two datasets since vast volumes of diverse datasets demand higher processing power
and resources.

There are three primary data fusion levels: pixel-level, feature-level (further, feature stacking), and
decision-level [19] (for details see Section 2.4.1). Among crop type classification studies, Gibril et al. [20]
compared pixel-level fusion techniques (Brovey Transform, Wavelet Transform, Ehlers) with feature
stacking results. To the best of our knowledge, the comparison between optical-SAR feature stacking
and optical-SAR fusion at decision-level was not subject to any study even though decision fusion was
successfully applied [21]. Multi-sensor feature stacking may result in high dimensional feature space,
which may negatively affect the classification accuracy. While decision fusion, based on classification
confidences derived from single sensor predictions, might profit from less complex models. It could be
valid to expect that optical-SAR fusion at the decision-level could be more performant than simple
feature stacking. To test this hypothesis, in this study, we compare the classification results derived
from optical-SAR feature stacking and optical-SAR fusion at decision-level (further, decision fusion).

Combining dense optical and SAR time series features can quickly result in a high-dimensional
feature space that can pose challenges for pattern recognition and machine learning. In terms of
classification accuracy, earlier methods such as the parametric maximum likelihood classifier are more
susceptible to high-dimensional feature spaces than to state-of-the-art classifiers, such as Support Vector
Machines and Random Forest (RF). Nevertheless, studies have shown that these classifiers’ accuracy
can also be increased by feature selection [22], particularly when the amount of training samples
is limited [23]. Elaborated pre-processing, feature generation, and selection of suitable features are
needed for many classification algorithms. Commonly derived features as spectral-temporal variability
metrics [24], time-weighted interpolation [5], or computationally more expensive approaches such
as time-weighted dynamic time warping [25] are being used less often for large-scale applications.
This happens probably due to, among other reasons, high computational complexity, particularly over
very large areas.

Feature selection methods have a long tradition in pattern recognition analysis of remote sensing
data [26,27], alleviating the challenges mentioned earlier. It helps to train more accurate models,
decrease computational complexity, and improve the understanding of the used features [28,29].
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Data and model understanding is essential in the development of operational products [30] and
in scientific research where feature importance and rankings are often essential elements [28,31,32].
The main groups of feature selection are filters and wrappers methods [33]. Filter methods use various
statistical measures (e.g., Chi-square test, Pearson’s correlation) to score the relevance of features.
Whereas, wrapper methods perform feature selection based on the chosen classifiers’ performance,
which enables to select most performant features with low correlation. The main drawback of the
wrapper approaches is the high computational costs. In crop type classification studies, embedded
methods such as classifier specific RF feature importance is often used to select the most important
features [34]. It is a fast approach, but a drawback is that features with correlating information content
can show similarly high importance scores.

To alleviate the limitations of wrapper methods concerning high computing efforts, in this study,
we perform a group-wise forward feature selection (gFFS). gFFS allows focusing the analysis and
interpretation on useful feature sets like spectral bands, vegetation indices (VIs), or data acquisition
dates (for details see Section 2.4.3). A similar approach was followed by Defourny et al. [35].
The grouping strategies of features in the gFFS have two important benefits: (1) gFFS allows to tailor the
feature selection towards better interpretability and supports a more efficient feature selection process.
For example, the time-steps with most discriminative power can be better analyzed by considering all
information available at a particular time-step as a group and not only as single features. (2) gFFS
allows the substantially reduced computational time of the feature selection step while considering all
features at hand.

In addition to an appropriate feature selection, the quality of the satellite data features concerning
data availability and gaps are crucial aspects that can influence classification accuracy. Croplands are
typically characterized by management activities such as tilling, sowing, and harvesting or cutting
and are, therefore, amongst the most dynamic land cover elements. Their successful identification via
remote sensing data often requires dense time-series information capable of capturing critical plant
development phases and the mentioned land management activities [36]. The comparison of seasonal,
monthly composites, and gap-filled Harmonized Landsat and Sentinel-2 [37] time-series (10-days
interval) data by Griffiths et al. [4] showed that the highest classification performance was achieved
with gap-filled 10-day time-series data. However, the quality of the gap-filled data depends on the
duration and number of gaps. Gaps originate mainly from cloud cover, cloud shadows, and other
atmospheric effects from which optical data are often suffering. In this sense, combining dense time
series of SAR features and gap-filled optical data could result in more accurate classifications.

In summary, despite the large number of studies focusing on the combination of optical and SAR
features for crop type mapping, the following aspects were not sufficiently investigated: (1) combined
performance of a comparably high number of relevant Sentinel-2 and Sentinel-1 dense time-series
features for larger areas covering more than one sensor swath, where the derivation of spatially
homogeneous features across all the study area is required; (2) impact of optical-SAR feature stacking
and decision fusion on classification accuracies; (3) analysis and interpretation of feature importance
and ranking based on dates, bands, and VIs instead of single features and their effect on classification
accuracies; (4) the performance of respective classification approaches to differentiate 16 crop types;
(5) analysis of the influence of the optical data availability, parcel size, and pixel location within the
parcel on the classification results.

This study aims to contribute to these open issues by evaluating how the synergetic use of dense
optical and SAR time-series data derived from Sentinel-1 and Sentinel-2 improves the classification
accuracy of typical crop types of Central Europe. The study site covers the Brandenburg state, located
in northern Germany. In this context, we investigate how a large number of optical and SAR features
affect the performance of RF models and evaluate the relevance of various feature-sets and time-steps to
the classifier. It is also analyzed how agricultural parcel size, mixed pixels occurrence at parcel borders,
and the non-availability of optical satellite data at specific dates of the year affect the classification
accuracy. More explicitly, the following questions were addressed:
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• How do the usage of single-sensor dense time-series data and the fusion of Sentinel-1 and
Sentinel-2 data affect the classification accuracy? Do classification accuracies based on optical-SAR
feature stacking differ from decision fusion?

• How does a high dimensionality of optical-SAR feature stack impact on the performance of RF?
Which features are most relevant, and which dates and bands or VIs lead to the highest accuracies?

• What is the influence of cloud-related gaps in optical data, how do parcel sizes, and the pixel
location within a parcel affect classification accuracy?

2. Materials and Methods

2.1. Study Area

The study site (Figure 1) is located in Northern Germany and covers the territory of Brandenburg
state with an area of 29,654 km2, where 45% is agricultural land [38]. Large-scale farms dominate
the state croplands with 238 ha of average field size [38]. The area has low topographic complexity
with the highest peak in the state being at 201 m.a.s.l. (Kutschenberg hill) and the lowest point is
Rüdersdorfer opencast mining area with −46.5 m below sea level. The average annual precipitation is
719 mm, and the average annual temperature is 9.9 ◦C. Winter cereals are sown at the beginning of
September and harvested at the end of July and beginning of August. Summer crops are sown at the
end of March—beginning of April and harvested at the end of July—beginning of August [39].
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Identification System (LPIS) data for the year 2017.

2.2. Reference Data

As ground truth data on crop types for the year 2017, we used reference data from the Brandenburg
Surveying and Geospatial Information Office (Landesvermessung und Geobasisinformation
Brandenburg) web-portal [40]. This reference parcel data, managed by Land Parcel Identification
System (LPIS), is based on the reports of farmers who applied for agricultural subsidies in the frame of
the European Union’s (EU) Common Agricultural Policy (CAP). Further, we refer to this dataset as
LPIS. The data contains parcel boundaries and crop types harvested in the year 2017.



Remote Sens. 2020, 12, 2779 5 of 24

The original dataset is available in a geospatial vector format and contains 161,503 parcels.
Overlapping parcels and parcels with an area less than 1000 m2 were excluded from the reference
data (1364 parcels, 3017.516 ha). Out of the 158 original crop types, several crop classes were merged
into grouped classes based on their biological plant family membership and phenological similarity.
For example, class maize includes silo maize, maize for biogas, maize with flowering path, etc., and
class potatoes comprise starch potatoes and potatoes for food. Supplementary Material A gives an
overview of the original and grouped classes. Only those grouped crop classes were selected from the
original reference data, which accounted for at least 0.5% of the full LPIS area. The only exception was
made for the class sugar beets, which areal cover was close to the threshold (0.46%). This resulted in 16
crop classes (Table 1) for which a total of 134,379 parcels (1,220,160.86 ha) was available in the LPIS data.
Since crop groups such as winter cereals (winter wheat, winter rye, winter rape, winter barley, winter
triticale), summer cereals (summer barley, summer oat), and legumes (legume mixture, peas-beans,
lupins) are expected to show high intra-class confusion, we additionally report the accuracy results
when these classes are grouped into one. The present study focuses only on crop type classification.
No other land cover land use classes were considered.

Table 1. Overview information for the crop types considered in this study.

Crop Type Number of Parcels Average Parcel Size [ha]

Permanent grasslands 59,182 4.94
Temporal grasslands 12,092 3.77

Maize 14,449 14.27
Sunflowers 834 12.26

Potatoes 1015 9.17
Sugar beets 240 24.86

Winter wheat 9758 17.59
Winter rye 14,117 11.45

Winter rape 6299 20.09
Winter barley 5189 17.36

Winter triticale 3289 11.01
Summer barley 934 7.49

Summer oat 2394 5.91
Legume mixture 2297 8.98

Peas-Beans 897 10.89
Lupins 1393 8.70

2.3. Remote Sensing Data Pre-Processing and Features Generation

The data sensed by the Multi-Spectral Instrument (MSI) onboard Sentinel-2A/B, and by the C-band
synthetic aperture radar (SAR) instrument onboard Sentinel-1A/B were analyzed in this study. The data
were accessed via The Copernicus Open Access Hub (https://scihub.copernicus.eu/). The tiling grid of
Sentinel-2 data was used as a base grid (Figure 2.). Brandenburg’s entire territory is covered by eight
Sentinel-2 tiles. Overall, 494 optical scenes and 473 SAR scenes (in ascending mode) were utilized
with temporal coverage from the beginning of January until the end of September 2017. Optical data
acquired in October were entirely excluded from the analysis due to the lack of any scene with cloud
cover below 80%.

https://scihub.copernicus.eu/
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2.3.1. Optical Data Pre-Processing and Gap-Filling

The individual pre-processing steps that were applied to Sentinel-2 data are shown in Figure 3.
Sentinel-2 data at Level-1C (top of atmosphere) were processed to Level-2A (bottom of atmosphere)
using sen2cor v2.4.0 [41]. Ten Sentinel-2 bands were used for further analysis. Bands 1 (coastal
aerosol), 9 (water vapor), and 10 (Short-Wave-Infrared (SWIR)-cirrus) were excluded from the analysis
because of their irrelevance for crop type mapping. The data of the red-edge (5, 6, 7), near-infrared
narrow (8A), and SWIR bands (11, 12) were resampled from 20 to 10 m spatial resolution using
the nearest neighbor algorithm. In addition to the original Sentinel-2 bands, four well-known VIs
were generated: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), Normalized Difference Yellow Index (NDYI), and Plant Senescence Reflectance Index
(PSRI) [42,43].Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 24 

 

 
Figure 3. Sentinel-2 data pre-processing and feature generation. 

2.3.2. SAR Data Pre-Processing 

C-band Level-1 Ground Range Detected (GRD) Sentinel-1 products, acquired in Interferometric 
Wide (IW) swath mode, were accessed via the Google Earth Engine (GEE) platform [47]. The data 
available in GEE were pre-processed with the Sentinel-1 toolbox from ESA, which involved updating 
orbit metadata, thermal noise removal, radiometric calibration, and terrain correction. For the scenes 
in ascending mode, we filtered extreme incidence angles so that only observations with incidence 
angles of 32° to 42° were used. The average incidence angle in the study area is equal to 37°. Lee 
speckle filtering and square cosine correction were applied as it was outlined by Tricht et al. [17]. 
After the incidence angle correction, we calculated bi-weekly medians and matched the time steps to 
the 20-target time-series dates of the optical features (Figure 4). 

 
Figure 4. Sentinel-1 data pre-processing and feature generation. 

2.4. Methodology 

The methodological workflow of this study consists of the following steps (Figure 5): (1) 
extraction of optical and SAR time-series features at the pixel level (see Section 2.3 for more details); 
(2) sampling of training and testing pixels; (3) performing group-wise forward feature selection 
(gFFS), where individual features are grouped by time or variable respectively; (4) building RF 
models using all existing features and the best-performing feature subsets identified in (3); (5) 
predicting test-sets; (6) extracting accuracy metrics; (7) analyzing results using the information of RF 
feature importance and feature group ranking; (8) analyzing auxiliary data on the parcel size, optical 
data availability, temporal profiles of correctly and misclassified pixels. 

Figure 3. Sentinel-2 data pre-processing and feature generation.

Cloud masks were produced in two steps. First, cloud masks were calculated using the fmask [44]
extended for Sentinel-2 data, according to Frantz [45]. Second, we combined information from the
Scene Classification Layer (SCL) generated by sen2cor [41] and the output of the fmask into a single
binary invalid pixel mask. We flagged a pixel as invalid if at least one of these two input layers detected
cloud, cloud shadow, snow, defect, saturated pixels.

Different acquisition times, clouds and cloud shadows lead to irregular time series of valid
observations over the study area. Instead of using generic ways of handling missing data within
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RF [46], we build a consistent gap-free time series over the whole study site with time-weighted linear
interpolation. It allows accounting better for the temporal information contained within the original
satellite time series data. Dense time series were created based on invalid pixel masks, four VIs, and
the 10 bands of Level-2A data at 10 m spatial resolution. Following the approach of Inglada et al. [5],
gap-filling started by defining bi-weekly target dates from January to September 2017. In total, we
defined 20 target dates. After applying the invalid pixel mask, band wise time-weighted linear
interpolation was performed considering only valid pixels to fill the defined target dates.

2.3.2. SAR Data Pre-Processing

C-band Level-1 Ground Range Detected (GRD) Sentinel-1 products, acquired in Interferometric
Wide (IW) swath mode, were accessed via the Google Earth Engine (GEE) platform [47]. The data
available in GEE were pre-processed with the Sentinel-1 toolbox from ESA, which involved updating
orbit metadata, thermal noise removal, radiometric calibration, and terrain correction. For the scenes in
ascending mode, we filtered extreme incidence angles so that only observations with incidence angles
of 32◦ to 42◦ were used. The average incidence angle in the study area is equal to 37◦. Lee speckle
filtering and square cosine correction were applied as it was outlined by Tricht et al. [17]. After the
incidence angle correction, we calculated bi-weekly medians and matched the time steps to the 20-target
time-series dates of the optical features (Figure 4).
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2.4. Methodology

The methodological workflow of this study consists of the following steps (Figure 5): (1) extraction
of optical and SAR time-series features at the pixel level (see Section 2.3 for more details); (2) sampling
of training and testing pixels; (3) performing group-wise forward feature selection (gFFS), where
individual features are grouped by time or variable respectively; (4) building RF models using all
existing features and the best-performing feature subsets identified in (3); (5) predicting test-sets;
(6) extracting accuracy metrics; (7) analyzing results using the information of RF feature importance
and feature group ranking; (8) analyzing auxiliary data on the parcel size, optical data availability,
temporal profiles of correctly and misclassified pixels.
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Figure 5. Schematic overview of the methodological workflow.

2.4.1. Single Sensor Features Versus SAR-Optical Combination

To compare and evaluate the accuracy achieved with single sensor features and their fusion,
we separately classified only optical features, only SAR features, and a fusion of optical and SAR
features. As optical features (in plots shown as S2), we selected 10 Sentinel-2 spectral bands and four
VIs, as described in Section 2.3.1. In total, 20 time-steps of 10 spectral bands and four VIs summed up
to 280 optical features. As for SAR features (in plots shown as S1), bi-weekly medians of VV and VH
bands were used (pre-processing steps in Section 2.3.2.). They summed up to 40 SAR features.

According to Pohl and van Genderen [19], there are three levels of data fusion: pixel-level,
feature-level, and decision-level. At the pixel-level fusion, multi-sensor input data are fused into a
new dataset using various compression, dimensionality reduction methods (e.g., Principal Component
Analysis, Wavelet-based approaches, Brovey Transform) and then used for prediction or analysis.
The feature-level fusion implies combining extracted features from different sensors to form a
new multi-source feature stack. In this study, we will refer to this method as a feature stacking.
Such multi-sensor feature stacking is more commonly used in crop type classification studies [13].
Joshi et al., [48] refers to these two data fusion levels as ‘pre-classification or -modeling fusion’. Whereas
‘post-classification or -modeling fusion’ would be a decision-level fusion, which is performed by fusing
the classification results of single sensor features based on pre-delineated rules or decisions. In this
study, we perform optical-SAR feature stacking and decision fusion.

The feature stacking was performed by stacking the abovementioned optical and SAR features
into one optical-SAR feature stack (in plots shown as ff(S1&S2)). The decision fusion was done by
fusing classifications derived from single-sensor features. We used the class probabilities of the RF
to derive confidence values for S1 and S2, respectively. In the scikit-learn implementation of RF [49],
the class probabilities were calculated as the mean predicted class probabilities of the trees in the forest.
For a single tree, the class probability is defined by the fraction of samples of the same class in a leaf.
The confidence level was calculated by the difference between the highest and second-highest class
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pseudo-probabilities. During decision fusion (in plots shown as df(S1&S2)), the prediction with the
highest confidence level was selected as a final prediction.

2.4.2. Sampling Strategy

From the refined LPIS reference data (Section 2.2.), 50% of the parcels were selected for training,
and 50% of the parcels for testing. Train-test split was done at the parcel level, to ensure that none of the
test-set pixels come from a parcel which already was chosen for training. Training and testing pixels
were not chosen within a buffer of 1 (10 m) pixel distance from parcel borders to avoid mixed spectral
signatures. Training and testing pixels were sampled using equally stratified random sampling with
3000 samples size per crop type. This sample size was chosen to competently represent the spectral
and phenological variability of the classes under investigation. It was ensured that training and testing
pixels were equally sampled from small and large parcels to avoid underrepresentation of the small
parcels. For each training and testing sample, information about the parcel size, the number of valid
and invalid optical observations per month, and the sample’s distance to the parcel border was stored
as auxiliary data. These datasets were further used for the analysis of the results (Section 3.3.).

2.4.3. Group-Wise forward Feature Selection

To evaluate the significance of the features and the effect of the high feature amounts on the
accuracy of the RF classifier, we used a modified sequential forward feature selection (FFS) approach.
FFS is one of the variations of the sequential feature selection (SFS) approach, which belongs to wrapper
methods. The procedure starts with building several RF, each using only one of the available features
(1st sequence). Based on the accuracies of these RFs, the best (e.g., in terms of accuracy) feature is
selected and combined to sets of two features using all remaining features. Again, several RFs are
generated, based on sets of two features (2nd sequence). This process is repeated, and with every
iteration, a new feature is added until only one RF, including all features, is constructed. This is
often done to get a full feature ranking and investigate if the accuracy decreases at a certain point
while increasing dimensionality. Early stopping is also possible, e.g., by defining a desired number of
features, by stopping when the peak performance is reached, or if the accuracy of a new iteration does
not increase significantly compared to the previous iteration [50].

Wrapper methods such as FFS are computationally expensive and often impractical to perform
when large amounts of features are used. It is particularly true for studies using dense time-series like
the presented study. For example, to run a complete FFS with the 320 features considered in this study,
it would need 51,360 model evaluation runs (Equation (1)), where one model evaluation comprises to
train an RF, predict validation data, and calculate the accuracy of the model. Moreover, with 5-fold
cross-validation, it sums up to 256,800 model evaluation runs (Equation (2)).

320∑
i=1

i = 51, 360 (1)

320∑
i=1

5i = 256, 800 (2)

Since the focus of our study is not to evaluate the significance of individual features but rather to
understand which time steps or spectral bands, VIs, and backscattering coefficients contribute the most
to the accuracy of the classification model, we modified FFS in a way that also reduced computational
efforts (Figure 6). The modification was done by performing group-wise FFS (gFFS), where features are
grouped based on a time-step (further, time-wise gFFS) and on a variable (further, variable-wise gFFS).
For example, in time-wise gFFS, the group ‘07-May’ consists of 2 (VV, VH), 14 (all bands and VIs),
and 16 (a combination of those) features in case of S1, S2, and ff(S1&S2), respectively. Whereas the
variable-wise gFFS considers the full time-series of a particular band or index as one entity (e.g., NDVI
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full time-series, VH full time-series). As a base of gFFS, we used the core implementation of the
sequential feature selection (SFS) available in the MLxtend python package [51]. In total, time-wise
gFFS required 1050 model evaluations for only optical, only SAR, and a combination of optical and
SAR features. Variable-wise gFFS required 15 runs for SAR, 525 runs for optical, and 680 runs for
optical-SAR features. These numbers already include the five-fold cross-validation runs, which were
applied for receiving more robust estimates.
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all features on date 1, f g2 = all features on date 2, etc. In the first sequence, f g1 is selected as the best
(highest accuracy) of all feature groups. In the second sequence, each of the remaining feature groups
is evaluated pair-wise together with already selected ones. The sequences are continued until the final
set of features is evaluated.

2.4.4. Classification Approach

The classification process was performed using state-of-the-art remote sensing image classifier-RF
algorithms. It is a non-parametric machine learning algorithm consisting of an ensemble of randomized
decision trees [52]. Each decision tree predicts a target class for each training sample, and the class
with the highest number of votes within the forest is selected as the ensemble’s final decision. Previous
studies focusing on crop type mapping [5,53,54] show that RF produces generally accurate results.
Due to its robustness to class label noise and high dimensional input data [34], it is extensively used in
crop type classifications [15,30,55].

In our study, we used the scikit-learn Python implementation of the RF algorithm. Based on the
results of a randomized search using a five-fold cross-validation [49], the following parameters were
applied: (1) number of trees—700; (2) maximum depth—30; (3) maximum number of features used to
split the node—square root of the sum of features; (4) minimum sample number to split a node—25.

The final RF models were built for optical, SAR, optical-SAR features using all features, and feature
subsets selected based on the results of the time-wise and variable-wise gFFS (Section 2.4.3.). For all
final RF models, the Gini importance score (also known as Mean Decrease in Impurity (MDI)) was
used to evaluate the significance of the single features, further referred to as the RF feature importance.
These feature importance scores were compared to the outcomes of the gFFS.

To assess and compare the classification accuracies, we computed class-specific metrics such as
precision (i.e., user’s accuracy), recall (i.e., producer’s accuracy) and class-specific f1-score. The f1-score
(Equation (3)) is a weighted average measure of precision and recall, where f1-score reaches the best
values at 1 and worst values at 0. The average over the class-specific f1-scores has been computed to
get a single accuracy metrics over all classes [49]. In addition, we calculated confusion matrices.

f 1 = 2 ∗ (precision ∗ recall)/(precision + recall) (3)
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Accuracies were calculated for all 16 classes. To understand how accuracy is impacted by expected
confusion among cereal and legume crops, we also calculated grouped classification accuracy while
treating cereals and legumes as one crop class.

2.4.5. Analysis of the Impact of Parcel Size, Pixel’s Location within a Parcel, Optical Data Availability
on Classification Accuracy

As was mentioned in Section 2.4.2., for each training and testing sample, we stored the information
about the parcel size from which it was sampled. This data was then used to plot parcel size distributions
for mis- and correctly-classified test samples.

The pixel’s distance to the parcel border was calculated using the eo-box python package [56].
Further, testing samples from individual crop types were grouped based on the distance to parcel
borders, and then for each group, f1-score was calculated. Because of the parcel size variations,
the number of samples in each group varies. Especially for more considerable distances such as
30–40 pixels away from parcel border, the underlining number of pixels used to calculate f1-score
could be minimal. This results in expected significant variations on large distances. In the plot,
the red vertical line indicates the distance at which 80% of samples have already been used to calculate
f1-scores. Depending on the parcel size distributions of each crop type, the red vertical line switches
along the x-axis.

Using the invalid pixel mask (see Section 2.3.1.), we calculated the number of valid optical
observations per month for each sample. The numbers varied from 0 to 5, where 0 means that no valid
optical observation was available for considered samples at the specific month.

The temporal profiles were built using NDVI and VH values for mis- and correctly classified samples.

3. Results

3.1. Classification Accuracies (Overall and Class-Specific)

The f1-scores obtained from the predictions based on all features and the best-performing feature
subsets selected using time-wise gFFS and variable-wise gFFS are shown in Table 2. The gFFS did not
have any effect on the accuracy values for the experiments based on only SAR features (S1), optical
features (S2), and decision fusion (df(S1&S2)). The decrease of f1-score by only 0.01 was recorded
with time-wise gFFS for experiments based on optical-SAR features stacks (ff(S1&S2)). Also, in the
class-specific accuracies, no significant changes were recorded (Supplementary Materials B). Based on
these outcomes, we continue reporting classification accuracies based on the results when all the
existing features were used.

Table 2. Classification accuracies (f1-score) based on all features and the features subsets selected based
on time-wise and variable-wise gFFS after grouping legume and cereal classes.

All Features Subset
(Variable-Wise gFFS)

Subset
(Time-Wise gFFS)

S1 0.76 0.76 0.76
S2 0.73 0.73 0.73

ff(S1&S2) 0.81 0.81 0.80
df(S1&S2) 0.80 0.80 0.80

The f1-score of the predictions based on S2 and S1 was equal to 0.61 and 0.67, respectively,
without class-grouping. After grouping cereal and legume classes, f1-score derived from S2, and S1
classifications increased to 0.73 and 0.76, respectively. There was no significant difference in the
mean precision and recall values for single sensor experiments (S2: precision—0.62, recall—0.61; S1:
precision—0.68, recall—0.67).

The classifications based on ff(S1&S2) resulted in an f1-score of 0.72 with a precision of 0.73
and a recall of 0.72 without class-grouping. Decision fusion showed similar results (f1-score—0.71,
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precision—0.72, recall—0.72). Considering the grouped cereal and legume classes, f1-scores of both
fusion approaches increased to 0.81, 0.80 forff(S1&S2) and df(S1&S2) accordingly. Thus, both considered
fusion approaches outperformed the single sensor accuracies.

Figure 7 gives an overview of the class-specific accuracies for a single sensor and fused feature
results. In general, class-specific accuracies showed higher diversity compared to overall accuracies.
Winter rape and sugar beet classes showed the best accuracy results (f1-score > 0.90), with only minor
differences between the used sensors or fusion types.
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(S2) features, and optical-SAR feature stacks (ff(S1&S2)) and decision fusion (df(S1&S2)).

Most crop types showed the highest accuracies when using ff(S1&S2), and were better classified
with S1 compared to S2. For example, this applies to all winter cereals (winter rape, winter wheat,
winter rye, winter barley, and winter triticale) with f1-scores > 0.70. The same pattern could be seen
for summer cereals (summer barley and summer oat) and potatoes. Nevertheless, f1-scores remained
below 0.6 for both summer cereals. Potatoes and maize had the highest f1-score with ff(S1&S2),
which were 0.75 and 0.79. For classes such as sunflowers, lupins, and peas-beans, the performance
of models built using S1 was quite close to the performance of the models built using ff(S1&S2)
(f1-scores: ∆ = 0.03, ∆ = 0.03, ∆, =; 001; accordingly) while using S2 resulted in slightly lower accuracies
(f1-scores: ∆ = 0.18, ∆ = 0.21, ∆ = 0.19, accordingly). In contrast, the two considered grassland
classes had higher classification accuracies when using S2 (f1-scores: temporal grasslands—0.42,
permanent grasslands—0.62) compared to S1 (f1-scores: temporal grasslands—0.38, permanent
grasslands—0.51). This can also be seen from the map presented in Figure 8. Nonetheless, for these
classes, the maximum accuracy score is reached with fused datasets (f1-scores ff(S1&S2): temporal
grasslands—0.45, permanent grasslands—0.64).

Permanent and temporal grasslands had a high within-group confusion rate (Figure 9). The test
samples of legume mixture and temporal grasslands were often predicted as permanent grasslands,
reflecting low precision and high recall values. Maize samples were often predicted correctly
(recall = 86), but false predictions of sunflower, potato, and lupin samples as maize affected the
precision, which was equal to 73. Summer and winter cereals formed two groups with high intra-group
confusion. For winter cereals, higher confusion was present among classes such as winter wheat, winter
rye, and winter triticale. Whereas, summer cereals were not only confused within the group but also
often were classified as one of the legume classes. The confusion between summer cereals and legume
classes are higher when using only optical feature compared to SAR only features. Supplementary
Materials C includes all confusion matrices for all experiments.
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After combing summer barley and summer oat (which were heavily confused, see Figure 10) into
a single class of summer cereals, the f1-score increased to 0.78 with ff(S1&S2) (Figure 8). The classes
lupins, peas-beans, and legume mixture, when grouped to one legumes class, got the highest f1-score
of 0.77 with ff(S1&S2). The f1-score of class winter cereals raised above 0.90 with ff(S1&S2) after
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grouping. However, when merging classes, the general pattern, that optical-SAR feature combination
and decision fusion were outperforming single sensor information, remained unchanged.
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3.2. gFFS Rankings and Feature Importance

The RF model with the highest accuracy (f1-score: 0.7) was achieved using a variable-wise gFFS
at the 5th sequence with 100 features with ff(S1&S2) (Figure 11). By variable-wise gFFS, the full
time-series of VH, VV, red-edge (B06), green (B03), and SWIR (B11) were identified as the most
performant feature-sets (Figure 12, border axis). The f1-score difference at the point with the maximum
performance (100 features) and the last sequence (320 features) was only 0.01.
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Figure 11. Feature learning curves of time-wise and variable-wise gFFS based on only optical (S1), only,
SAR (S2), and optical-SAR feature stacking (ff(S1&S2)).

The time-wise gFFS showed the maximum performance (f1-score: 0.69) with 112 features at the 7th
sequence with ff(S1&S2). The dates chosen as being most crucial by time-wise gFFS are shown in the
border axis of Figure 12. No significant difference was observed between the maximum performance
value and the f1-score at the last sequence with 320 features (∆ = 0.001).

When applied to only optical features, time-wise and variable-wise gFFS showed identical
maximum accuracy results with f1-score of 0.58. The difference was in the number of features, where
time-wise gFFS peaked at the 5th sequence with 70 features, and variable-wise gFFS peaked at the 6th
sequence with 120 features.

The use of both, VH and VV feature-sets (40 features), showed the highest performance (f1-score:
0.65) of the variable-wise gFFS when applied to only SAR features. The maximum performance
(f1-score: 0.66) of the time-wise gFFS for VV and VH features was achieved at the 16th sequence.

The RF importance scores derived from the RF models trained using optical (greens), SAR (blues),
and optical-SAR feature stack (orange-brown) are illustrated in Figure 12. The experiments using
only SAR features showed that data from April until mid-September were the most valuable for the
classifier. The highest importance scores were given to the features acquired in June when the majority
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of crops are close to their full development stage. The results of those experiments that were based on
only optical features showed that information obtained from three VIs (psri, ndwi, ndvi), red-edge
(B06), and SWIR (B11) bands had higher importance scores compared to other features. The features
acquired at the end of May had a distinct significance to the classifier. When optical and SAR data were
used simultaneously, SAR features received higher ranking compared to optical features. Notably,
none of the VIs were selected by variable-wise gFFS when using the stacked features.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 24 
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3.3. Potential Influences of Parcel Size, Optical Data Availability, and Pixel Location within the Parcel on the
Classification Accuracy

For mis- and correctly-classified pixels, we analyzed the information on parcel sizes, the distance
of pixels to parcel borders, optical data availability, their NDVI, and VH temporal profiles to assess
their influence classification outcomes.

Except for winter triticale and winter rye, all crops with f1-score below 0.70 at ff(S1&S2) have
average field sizes below 9 ha (see, Table 1). Among winter cereals, winter triticale and winter rye
have the smallest average parcel sizes. Figure 13 shows, for each class, the distribution of field sizes of
correctly and incorrectly classified pixels. For most classes, the parcel size distribution of correctly
classified records is much broader than from misclassified records. Also, differences in medians suggest
that pixels coming from large parcels were more often correctly classified. The medians’ differences
derived from the parcel size distributions of correctly and misclassified records are smaller for the
classes with the smallest average parcel sizes. For example, classes such as permanent grasslands
(0.29 ha), temporal grasslands (0.33 ha), winter rye (0.85 ha), summer oat (1.03 ha), lupins (1.71 ha)
show differences in medians of less than 2 ha. Whereas the highest differences in median parcel sizes
were recorded for the following classes: winter wheat (7.44 ha), winter rape (6.15 ha), winter barley
(5.80 ha), potatoes (5.14 ha), and peas-beans (5.12 ha).
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The variations of f1-scores depending on a pixel’s distance to parcel border are illustrated in
Figure 14. Plots for all remaining crop types can be found in Supplementary Materials E.
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Vertical red lines indicate that 80% of the data lie on the left side of this axis.

As can be seen from Figure 14, border pixels have lower accuracy than those located 6–8 pixels
away from the parcel borders. Predictions based on only optical features seem to have a higher variation
of f1-scores even for classes with overall high accuracy values (e.g., winter rape, peas-beans, sunflowers)
except for maize and sugar beets classes (see Supplementary Materials E). The classifications based on
optical-SAR stacked features and decision fusion, in most of the cases, showed the highest accuracy,
even for mixed pixels close to parcel border, compared to classifications based on one sensor only.

As various atmospheric conditions can considerably influence optical data quality, the effect
of optical data availability on the classification accuracy was assessed based on the invalid pixel
mask (see Section 2.3.1.). We analyzed monthly optical data availability for correctly classified and
misclassified pixels predicted by S2 (Figure 15). Further plots showing all crop types are available as
Supplementary Materials F.

Correctly predicted pixels have, on average, more valid optical observations compared to
misclassified pixels. For example, the class maize had the highest difference in optical data availability
for correctly and incorrectly classified pixels in May and August. In May, 94.4% of the correctly
predicted pixels had one or more valid optical observations, whereas for misclassified pixels, this
number was equal to 65.2%. In August, only 20.1% of all misclassified maize test pixels had one or
more valid optical observations, while for the correctly classified pixels, it was 70%. For winter cereals,
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the maximum differences in the percentages occurred in July for winter barley and winter triticale;
in May for winter rape and winter rye, in August for winter wheat. No significant differences were
observed for summer cereals, temporal grasslands, and legume classes. In August, the difference for
correctly- and misclassified pixels was the highest for classes such as sugar beets (77.1% vs. 37.6%),
potatoes (58.9% vs. 38.2%), and sunflowers (41.2% vs. 21.3%). Consequently, such optical data scarcity
influenced the temporal profile curves.
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Figure 15. Incidence of 1–5 monthly observations for correctly- and misclassified pixel.

NDVI temporal profiles of mis- and correctly classified samples deviate considerably in the month,
where we also observed large differences in optical data availability reported in the previous paragraph
(Figure 15). Optical data scarcity can also be seen from the NDVI temporal profiles of misclassified and
correctly classified pixels (Figure 16). Supplementary Materials G gives an overview of NDVI temporal
profiles for all crop types. The months when misclassified pixels had the lowest amount of valid optical
observations, apparent discrepancies in the NDVI curves can be identified. For example, the lowest
percentage of optical data availability for misclassified pixels in August (Figure 15) is reflected in the
lower NDVI values in August for the class maize. Surely, climatological, meteorological, and biological
factors should also be taken into account when interpreting the alterations seen in these NDVI profiles.
Smaller differences were present between the VH temporal profiles of correctly- and misclassified
pixels (Figure 16). These profiles are presented in Supplementary Materials H.
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4. Discussion

We evaluated the classification accuracies of RF models built using dense time-series features
of only optical data (Sentinel-2), only SAR data (Sentinel-1), their combination, and decision fusion.
Time-wise and variable-wise gFFS was employed to investigate the relevance of specific bands, Vis,
and time-steps. To understand further influences on misclassifications, we additionally analyzed
parcel sizes, optical data availability, and pixel distance to polygon borders.

The results acquired for the example of Brandenburg (year 2017) showed that the combination of
optical and SAR features and decision fusion leads to better overall classification accuracy (f1 score: 0.81)
compared to single-sensor approaches. These findings are in line with several previous studies [57–59].
In the presented study, no significant differences in accuracy were found between optical-SAR
feature-stacking and decision fusion. When considering class-specific accuracies, several crop types
were classified more accurately with only SAR features (e.g., lupins, peas-beans), while fewer crop types
showed higher accuracies when using only optical features (e.g., permanent grasslands, sugar beets).
However, in most cases, crop-specific accuracy based on a combination of sensors was insignificantly
higher than the better-performing single sensor accuracy. Respectively, the increase of overall accuracy
in the fusion approaches is an expected consequence as each target class could achieve higher accuracies
using best performing optical or SAR features. These results suggest that if the remote sensing data
availability for the study region is not a subject of concern, the decision to use optical-SAR fusion or
single sensor data should be considered depending on the crop types being investigated. Data fusion
is an attractive option for the classification of a broad range of diverse crop classes, but it also comes
with more significant computational expenses.

For the majority of investigated classes, classification accuracies derived from only SAR features
showed higher values compared to only optical features. These results are contrasting to those where
the performance of optical features was higher than SAR [16,18]. However, several reasons can serve
as a possible explanation for these outcomes. First, a large number of crop classes show similar
phenological patterns. Existing crop type mapping studies often focus on few and partly merged
classes such as maize, grasslands, winter cereals (one class), summer cereals (one class), and sugar beets.
These classes have distinct phenological development profiles, which are well reflected in optical data.
As our grouped class-specific accuracy showed (Figure 10), the accuracy values based on only optical
features increases when both cereals and legumes are grouped into single classes. Nonetheless, when
predicting individual cereal classes, the SAR data were more successful in capturing the important
short term differences in phenological development phases (see Supplementary Materials H, for VH
temporal profiles) for those crops which optical data could not separate (see Supplementary Materials
G, for NDVI temporal profiles). We assume that this is most likely due to the data gaps in optical data.
It surely depends on the quality and amount of optical and SAR data used for feature generation, as seen
in [17]. Second, in the presented study, we focus purely on the crop type classification, but no other
land cover class was considered. The majority of crop type mapping studies often include land cover
and land use classes such as urban areas, water bodies, forest, etc. e.g., [14,17,21]. When differentiating,
e.g., maize pixels from water, built-up, or forest pixels, it could be the case that optical features are
more relevant for the classifier rather than SAR features.

When looking at Figure 11, we may notice that the feature learning curve of S2 has a higher
starting point than S1. However, with the increasing number of grouped features, the accuracy for
S1 increases much stronger than the accuracy of S2. It could, thus be concluded that single optical
features are more informative than single SAR features; nevertheless, dense time-series of SAR data
are able to reach higher accuracies compared to dense time-series of optical features.

No significant accuracy differences were recorded among classifications based on full time-series
data (320 features) and their subsets selected using gFFS. This supports that RF algorithm is robust to a
large number of input features as stated also by other authors [34]. However, it is also shown that
dimensionality reduction of input features improves the stability of RF classification accuracies [60].
Only in the last sequences of gFFS, we recorded an insignificant decline in accuracies (f1-score: ∆ = 0.01).
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But at the same time, the gFFS proved that based on a selection of the most relevant feature subsets
(here: 120 features), it was possible to reach the peak accuracy.

Feature selection is used not only to improve the classification accuracy but also to better understand
and interpret the input dataset [29,31,32], leading to explainable classification outcomes [28]. In this
context, combining the information of RF feature importance and the rankings of the gFFS allows more
profound insights into the relevance of individual features and groups of features for mapping typical
crop types of Germany. It enables the identification of features that have high RF feature importance
values but are correlated with other features in their information content. For example, many S2 based
features of 21 May show very high RF feature importance values. However, many of these features are
not needed to reach maximum accuracy with the gFFS (see Figure 12). Thus, their information content
for the classification must be highly correlated with one of the already-selected features. Similarly,
the RF feature importance of the psri from 9 April, 23 April, and 7 May are high, but they are not
needed to reach maximum accuracy in case of time-wise gFFS on S2. Instead, the date 2 July is selected
where the Gini feature importance is relatively low for all single features. However, concerning the
information already selected in previous sequences, it seems to include some unique additional details.
The combination of this information shows a certain limitation of the RF feature importance when the
goal is to select a minimum of features with the maximum amount of information for the classification
tasks. It also shows that the combination of both feature relevance information sources (Gini feature
importance and gFFS ranking) increases the understanding and insight in feature relevance.

Group-wise FFS allowed to substantially reduce the computational costs of a feature selection
step while receiving meaningful outcomes. Usage of such feature grouping strategies could be an
alternative choice for studies where computational expenses of feature selection were considered as
one of the main challenges [22,61]. For studies investigating the spatial-temporal transferability of
machine learning models [62,63], where the feature selection methods as FFS were extensively used,
the application of gFFS might make this process more performant in large input feature-set cases.

The feature learning curve of time-wise gFFS applied on optical-SAR feature combination
(Figure 11) shows high accuracy increases in the first five sequences, which correspond to 4 June, 2 July,
21 May, 13 August, and 18 July (Figure 12). These time frames cover critical phenological phases such
as full stem development of most of the cereals, flowering, and land management events like harvest
and hay cut. The following two time-steps, 9 April and 10 September improved the f1-score only
by 0.01 each. According to the German National Weather Service data [39], these two time-steps are
associated with significant plant height development for winter cereals. As for summer crops, it is the
phase of the first plant emergence above ground. The beginning of September is a time of harvest for
classes such as maize, sunflowers, and pre-harvest phase for sugar beets. Thus, all time steps selected
by time-wise gFFS reflect significant phenological developments or management actions on the ground.
The results we acquired from time-wise gFFS and RF feature importance scores enable us to infer that
the temporal coverage from the beginning of April until the end of September is sufficient to classify
the classes under consideration, including winter cereals in our study region.

The results of variable-wise gFFS (Figure 12) applied on the optical-SAR combination, together
with our results on the comparison of single-sensor performances (Section 3.1.), showed the high
importance of SAR features. These outcomes were reaffirmed by the highest RF importance scores
of VH and VV. This result was different from the findings of some studies, where optical features
turned out to be more relevant for crop type classification [16,18]. In our variable-wise gFFS results,
VH and VV were followed by the red-edge band (B06) as the next most relevant feature set. A recent
study by Griffiths et al. 2019 [4] also pointed out that adding the red-edge band to other optical bands
improved crop-specific accuracy while it had a lower impact on the accuracy of non-cropland cover
classes. The last feature sets that finally raised the feature learning curve to maximum were the green
and SWIR bands, which improved the f1-score by only 0.01 each (Figure 11). This supports the finding
of previous studies stating that green and SWIR bands also contain important information for crop
type mapping tasks [64].
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The crop-specific accuracies were influenced by the parcel sizes (Figure 13). The results showed
that classes with small average parcel sizes (Table 1) were classified with lower f1-scores. This issue
was similarly discussed in recently published studies [3,65]. One of the reasons for this effect is the
influence of mixed pixels at parcel borders. Often, small parcels have elongated shapes, which would
result in an increased number of mixed pixels. As it was seen from Figure 14, in the majority of cases
(all except sugar beets and winter rape), border pixels were classified with lower accuracies almost
until the 4th pixel away from parcel border. However, some studies successfully employ information
from mixed pixels in their classification tasks [66].

Apart from the effect of border pixels, differences in the field management practices (e.g., tillage
practices, fertilization, time, and frequency of weeding, water management) for small and large parcels
certainly influence the spectral response. Based on this, we explicitly built our sampling strategy in a
way that all training and testing pixels were equally distributed among all polygons. We assumed that
the differences in classification accuracy for large and small parcels could have been bigger if we had
not adjusted our sampling strategy.

It was also shown how optical data availability affected the performance of the classifier. As we
saw from Figure 15 (for all crop types, see Supplementary Materials F), predictability of all crop
types suffered from a scarcity of optical observations. Nonetheless, some crops appeared to be more
sensitive to the lack of optical data at specific months. For example, for the winter rape, it was May,
which was associated with the flowering phase. The high RF importance scores (Figure 12) of feature
‘21 May’ in the experiments based on only optical features could also be explained by the optical
data availability, as the number of optical observations was much higher in May compared to all
other months (Figure 15). Therefore, it is suggested to consider the aspect of data availability when
concluding the importance of specific features or time-steps.

Further steps could include testing spectral-temporal variability metrics such as medians,
percentiles of optical and SAR features. The spatial transferability of machine learning models
would also be considered in future research.

5. Conclusions

The present study investigated the advantages of using the fusion of optical (Sentinel-2) and SAR
(Sentinel-1) dense time-series data over the single sensor features. The importance of the features
was evaluated using variable- and time-wise grouped forward feature selection (gFFS). Additionally,
the effects of optical satellite data gaps and parcel size were analyzed to understand the reasons
for misclassifications.

The classification accuracy based on only SAR features outperformed those based on optical
features alone. Optical-SAR feature stacking showed the highest accuracies, while no significant
difference was found between feature stacking and decision fusion.

The combined assessment of feature ranking based on gFFS and RF feature importance enabled
a better interpretation of the results and selecting the most relevant features from both data sources.
The question of selecting time-steps with most discriminative power for a classification task is
better analyzed by considering all the information available at a particular time step compared to
single features.

With optical-SAR feature combination, the peak accuracy of the RF model was achieved when
using the full time-series of VH, VV, red-edge (B06), green (B03), and short-wave infrared (B11) bands.
As for temporal information, the classifier’s performance was the highest when the full feature-sets
acquired on 9 April, 21 May, 4 June, 2–18 July, 13 August, and 10 September were used.

The analysis of the parcel sizes showed that these had a high impact on classification accuracies.
Crop classes with a large number of small parcels are harder to classify than large parcels. One reason
for this is that border pixels had lower classification accuracy than those in the center of the
agricultural parcels.
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Also, it was shown that for most of the crop classes, the classification accuracy drops when a
lower amount of valid optical observations is available at specific months.

Supplementary Materials: The following information can be found at: http://www.mdpi.com/2072-4292/12/
17/2779/s1. A: Original reference data with all crop types; B: Crop specific accuracies for experiments based
on all features, features subsets selected using time-wise gFFS and variable-wise gFFS; C: Confusion matrices
derived from the classification results of single sensor features and their combination; D: Parcel size distribution
of misclassified and correctly classified pixels; E: Variations in accuracy, depending on the distance of pixels to the
parcel borders; F: Incidence of 1-5 monthly observations for correctly- and misclassified pixel; G: NDVI temporal
profiles of correctly classified and misclassified pixels derived from ff(S1 & S2) experiments; H: VH temporal
profiles of correctly classified and misclassified pixels derived from ff(S1 & S2) experiments.

Author Contributions: Methodology, data processing, workflow development, analysis and writing A.O.;
Support in workflow development B.M.; Supervision U.G., C.C.; Review and editing of the paper U.G., B.M., C.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Acknowledgments are addressed to the German Academic Exchange Service (DAAD) for
providing the research fellowship to Aiym Orynbaikyzy. We are grateful to Sarah Asam and Benjamin Leutner for
their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

2. Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid Central
Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [CrossRef]

3. Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.;
Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution:
Performance assessment of the Sen2-Agri automated system in various cropping systems around the world.
Remote Sens. Environ. 2019, 221, 551–568. [CrossRef]

4. Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for
national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [CrossRef]

5. Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.;
Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal
and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]

6. Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology
information. Remote Sens. Environ. 2017, 198, 369–383. [CrossRef]

7. Clauss, K.; Ottinger, M.; Kuenzer, C. Mapping rice areas with Sentinel-1 time series and superpixel
segmentation. Int. J. Remote Sens. 2018, 39, 1399–1420. [CrossRef]

8. Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Crop-type mapping from a sequence of Sentinel 1 images. Int. J.
Remote Sens. 2018, 39, 6383–6404. [CrossRef]

9. McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with
TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [CrossRef]

10. McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J.
Remote Sens. 2004, 30, 525–542. [CrossRef]

11. Li, R.Y.; Ulaby, F.T.; Eyton, J.R. Sixth Annual Symposium, Machine Processing of Remotely Sensed Data and Soil
Information Systems and Remote Sensing and Soil Survey; IEEE: New York, NY, USA, 1980; pp. 78–87.

12. Ulaby, F.T.; Li, R.Y.; Shanmugan, K.S. Crop Classification Using Airborne Radar and Landsat Data. IEEE Trans.
Geosci. Remote Sens. 1982, 20, 42–51. [CrossRef]

13. Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar
remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [CrossRef]

14. Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series
Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [CrossRef]

http://www.mdpi.com/2072-4292/12/17/2779/s1
http://www.mdpi.com/2072-4292/12/17/2779/s1
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.3390/rs2041035
http://dx.doi.org/10.1016/j.rse.2018.11.007
http://dx.doi.org/10.1016/j.rse.2018.10.031
http://dx.doi.org/10.3390/rs70912356
http://dx.doi.org/10.1016/j.rse.2017.06.022
http://dx.doi.org/10.1080/01431161.2017.1404162
http://dx.doi.org/10.1080/01431161.2018.1460503
http://dx.doi.org/10.1016/j.jag.2013.12.015
http://dx.doi.org/10.5589/m03-069
http://dx.doi.org/10.1109/TGRS.1982.4307519
http://dx.doi.org/10.1080/01431161.2019.1569791
http://dx.doi.org/10.3390/rs9020119


Remote Sens. 2020, 12, 2779 22 of 24

15. Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of optical and synthetic aperture
radar imagery for improving crop mapping in northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499.
[CrossRef]

16. Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of using sentinel-1 and -2
time-series to identifywinter land use in agricultural landscapes. Remote Sens. 2019, 11, 37. [CrossRef]

17. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2
imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]

18. Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using Landsat 8 and
Sentinel-1 time series. Remote Sens. 2019, 11, 118. [CrossRef]

19. Pohl, C.; Van Genderen, J.L. Review article Multisensor image fusion in remote sensing: Concepts, methods
and applications. Int. J. Remote Sens. 1998, 19, 823–854. [CrossRef]

20. Gibril, M.B.A.; Bakar, S.A.; Yao, K.; Idrees, M.O.; Pradhan, B. Fusion of RADARSAT-2 and multispectral
optical remote sensing data for LULC extraction in a tropical agricultural area. Geocarto Int. 2017, 32, 735–748.
[CrossRef]

21. Waske, B.; Van Der Linden, S. Classifying multilevel imagery from SAR and optical sensors by decision
fusion. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1457–1466. [CrossRef]

22. Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty
of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013,
85, 102–119. [CrossRef]

23. Jain, A. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal.
Mach. Intell. 1997, 19, 153–158. [CrossRef]

24. Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for
separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ.
2015, 156, 490–499. [CrossRef]

25. Maus, V.; Câmara, G.; Appel, M.; Pebesma, E. dtwSat: Time-weighted dynamic time warping for satellite
image time series analysis in R. J. Stat. Softw. 2019, 88, 1–31. [CrossRef]

26. Goodenough, D.G.; Narendra, P.M.; O’Neill, K. Feature subset selection in remote sensing. Can. J. Remote Sens.
1978, 4, 143–148. [CrossRef]

27. Richards, J.A. Analysis of remotely sensed data: The formative decades and the future. IEEE Trans. Geosci.
Remote Sens. 2005, 43, 422–432. [CrossRef]

28. Roscher, R.; Bohn, B.; Duarte, M.F.; Garcke, J. Explainable Machine Learning for Scientific Insights and
Discoveries. IEEE Access 2020, 8, 42200–42216. [CrossRef]

29. Yu, L.; Fu, H.; Wu, B.; Clinton, N.; Gong, P. Exploring the potential role of feature selection in global
land-cover mapping. Int. J. Remote Sens. 2016, 37, 5491–5504. [CrossRef]

30. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover
Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [CrossRef]

31. Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal input features for tree
species classification in Central Europe based on multi-temporal Sentinel-2 data. Remote Sens. 2019, 11, 2599.
[CrossRef]

32. Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Arnal, A.L.; Andrés, A.P.A.; Zurbano, J.A.G. Scalable
parcel-based crop identification scheme using Sentinel-2 data time-series for the monitoring of the common
agricultural policy. Remote Sens. 2018, 10, 911. [CrossRef]

33. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
34. Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
35. Defourny, P.; Moreau, I.; Wolter, J. D33.1b-Time Series Analysis for Thematic Classification (Issue 2).

Available online: https://www.ecolass.eu/project-deliverables (accessed on 17 May 2020).
36. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding

the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications.
Remote Sens. Environ. 2017, 199, 415–426. [CrossRef]

37. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C.
The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161.
[CrossRef]

http://dx.doi.org/10.3390/rs6076472
http://dx.doi.org/10.3390/rs11010037
http://dx.doi.org/10.3390/rs10101642
http://dx.doi.org/10.3390/rs11020118
http://dx.doi.org/10.1080/014311698215748
http://dx.doi.org/10.1080/10106049.2016.1170893
http://dx.doi.org/10.1109/TGRS.2008.916089
http://dx.doi.org/10.1016/j.isprsjprs.2013.08.007
http://dx.doi.org/10.1109/34.574797
http://dx.doi.org/10.1016/j.rse.2014.10.014
http://dx.doi.org/10.18637/jss.v088.i05
http://dx.doi.org/10.1080/07038992.1978.10854976
http://dx.doi.org/10.1109/TGRS.2004.837326
http://dx.doi.org/10.1109/ACCESS.2020.2976199
http://dx.doi.org/10.1080/01431161.2016.1244365
http://dx.doi.org/10.3390/rs9010095
http://dx.doi.org/10.3390/rs11222599
http://dx.doi.org/10.3390/rs10060911
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
https://www.ecolass.eu/project-deliverables
http://dx.doi.org/10.1016/j.rse.2017.07.015
http://dx.doi.org/10.1016/j.rse.2018.09.002


Remote Sens. 2020, 12, 2779 23 of 24

38. Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.;
Nendel, C.; Paul, C.; et al. Agricultural land use changes—A scenario-based sustainability impact assessment
for Brandenburg, Germany. Ecol. Indic. 2015, 48, 505–517. [CrossRef]

39. German National Weather Service (Deutscher Wetterdienst—DWD). Available online: ftp://ftp-cdc.dwd.de
(accessed on 30 September 2019).

40. Brandenburg Surveying and Geospatial Information Office Daten aus dem Agrarförderantrag.
Available online: https://geobroker.geobasis-bb.de (accessed on 13 December 2019).

41. Müller-Wilm, U.; Devignot, O.; Pessiot, L. Sen2Cor Configuration and User Manual; Telespazio VEGA
Deutschland GmbH: Darmstadt, Germany, 2016.

42. Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop
characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578.
[CrossRef]

43. Sulik, J.J.; Long, D.S. Spectral indices for yellow canola flowers. Int. J. Remote Sens. 2015, 36, 2751–2765.
[CrossRef]

44. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015,
159, 269–277. [CrossRef]

45. Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images:
Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481.
[CrossRef]

46. Tang, F.; Ishwaran, H. Random Forest Missing Data Algorithms. Physiol. Behav. 2017, 176, 139–148. [CrossRef]
47. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:

Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
48. Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.;

Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data
fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [CrossRef]

49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

50. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics
2007, 23, 2507–2517. [CrossRef]

51. Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s
scientific computing stack. J. Open Source Softw. 2018, 3, 638. [CrossRef]

52. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
53. Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice

fields by applying machine learning algorithms to multi-temporal sentinel-1A and landsat data. Int. J.
Remote Sens. 2018, 39, 1042–1067. [CrossRef]

54. Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal
windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal
RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74. [CrossRef]

55. Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping winter wheat with multi-temporal SAR and optical
images in an urban agricultural region. Sensors (Switzerland) 2017, 17, 1210. [CrossRef]

56. Mack, B. Eo-Box. Available online: https://github.com/benmack/eo-box (accessed on 1 November 2019).
57. Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of

high temporal resolution sar and optical image time series. Remote Sens. 2016, 8, 362. [CrossRef]
58. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.I. Assessing the suitability of data

from Sentinel-1A and 2A for crop classification. GISci. Remote Sens. 2017, 54, 918–938. [CrossRef]
59. Salehi, B.; Daneshfar, B.; Davidson, A.M. Accurate crop-type classification using multi-temporal optical

and multi-polarization SAR data in an object-based image analysis framework. Int. J. Remote Sens. 2017,
38, 4130–4155. [CrossRef]

60. Millard, K.; Richardson, M. On the importance of training data sample selection in Random Forest image
classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]

http://dx.doi.org/10.1016/j.ecolind.2014.09.004
ftp://ftp-cdc.dwd.de
https://geobroker.geobasis-bb.de
http://dx.doi.org/10.3390/rs2020562
http://dx.doi.org/10.1080/01431161.2015.1047994
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1016/j.rse.2018.04.046
http://dx.doi.org/10.1002/sam.11348
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.3390/rs8010070
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.21105/joss.00638
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431161.2017.1395969
http://dx.doi.org/10.1016/j.compag.2014.02.003
http://dx.doi.org/10.3390/s17061210
https://github.com/benmack/eo-box
http://dx.doi.org/10.3390/rs8050362
http://dx.doi.org/10.1080/15481603.2017.1351149
http://dx.doi.org/10.1080/01431161.2017.1317933
http://dx.doi.org/10.3390/rs70708489


Remote Sens. 2020, 12, 2779 24 of 24

61. Liang, W.; Abidi, M.; Carrasco, L.; McNelis, J.; Tran, L.; Li, Y.; Grant, J.; Liang, W. Mapping vegetation at
species level with high-resolution multispectral and lidar data over a large spatial area: A case study with
Kudzu. Remote Sens. 2020, 12, 609. [CrossRef]

62. Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal
machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw.
2018, 101, 1–9. [CrossRef]

63. Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of spatial predictor variable selection in
machine learning applications—Moving from data reproduction to spatial prediction. Ecol. Model. 2019,
411, 108815. [CrossRef]

64. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

65. Arias, M.; Campo-Bescós, M.Á.; Álvarez-Mozos, J. Crop Classification Based on Temporal Signatures of
Sentinel-1 Observations over Navarre Province, Spain. Remote Sens. 2020, 12, 278. [CrossRef]

66. Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image
classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006,
103, 179–189. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs12040609
http://dx.doi.org/10.1016/j.envsoft.2017.12.001
http://dx.doi.org/10.1016/j.ecolmodel.2019.108815
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.3390/rs12020278
http://dx.doi.org/10.1016/j.rse.2006.04.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Reference Data 
	Remote Sensing Data Pre-Processing and Features Generation 
	Optical Data Pre-Processing and Gap-Filling 
	SAR Data Pre-Processing 

	Methodology 
	Single Sensor Features Versus SAR-Optical Combination 
	Sampling Strategy 
	Group-Wise forward Feature Selection 
	Classification Approach 
	Analysis of the Impact of Parcel Size, Pixel’s Location within a Parcel, Optical Data Availability on Classification Accuracy 


	Results 
	Classification Accuracies (Overall and Class-Specific) 
	gFFS Rankings and Feature Importance 
	Potential Influences of Parcel Size, Optical Data Availability, and Pixel Location within the Parcel on the Classification Accuracy 

	Discussion 
	Conclusions 
	References

