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Abstract: A low-mass and low-volume dual-polarization L-band radiometer is introduced that has
applications for ground-based remote sensing or unmanned aerial vehicle (UAV)-based mapping.
With prominent use aboard the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture
Active Passive (SMAP) satellites, L-band radiometry can be used to retrieve environmental parameters,
including soil moisture, sea surface salinity, snow liquid water content, snow density, vegetation
optical depth, etc. The design and testing of the air-gapped patch array antenna is introduced and is
shown to provide a 3-dB full power beamwidth of 37◦. We present the radio-frequency (RF) front
end design, which uses direct detection architecture and a square-law power detector. Calibration
is performed using two internal references, including a matched resistive source (RS) at ambient
temperature and an active cold source (ACS). The radio-frequency (RF) front end does not require
temperature stabilization, due to characterization of the ACS noise temperature by sky measurements.
The ACS characterization procedure is presented. The noise equivalent delta (∆) temperature (NE∆T)
of the radiometer is ~0.14 K at 1 s integration time. The total antenna temperature uncertainty ranges
from 0.6 to 1.5 K.

Keywords: microwave; radiometer; L-band; low-mass; patch array; patch antenna; UAV; soil
moisture; passive

1. Introduction

The modern age of space-borne L-band (1–2 GHz) microwave radiometers began with the
European Space Agency (ESA) Soil Moisture and Ocean Salinity Satellite (SMOS) [1] in 2010. This
was followed by the National Aeronautics and Space Administration (NASA) satellites Aquarius [2]
and Soil Moisture Active Passive (SMAP) [3]. L-band radiometry typically occurs in the protected
frequency band from 1400–1427 MHz. Retrievals of environmental state parameters, such as soil
moisture [4,5], sea surface salinity [6], vegetation optical depth [7,8], snow liquid water [9], snow
density [10–12], soil freeze/thaw [13,14], and sea ice thickness [15], have all been demonstrated, based
on dual-polarization microwave brightness temperatures in this band.

Near-surface L-band radiometry, such as with the Portable L-band Radiometer (PoLRa), allows
L-band radiometry at high spatial resolution from a number of platforms. The compact and low-mass
design allows use on unmanned aerial vehicles (UAVs) or drones, wheeled vehicles, or fixed on towers,
poles, or buildings. The drone-mounted PoLRa is capable of providing ground resolution of a few
meters (<10 m).

UAV-based L-band radiometers have been demonstrated previously in [16,17]. Neither of these
systems provide dual-polarization off-nadir antenna temperatures which are optimal for use with
established retrieval algorithms such as the Tau-Omega (TO) [18,19] or Two-Stream (2S) emission
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models (EMs) [5]. The PoLRa is a direct-detection radiometer providing calibrated dual-polarization
L-band antenna temperatures with resolution of ~0.14 K at 1 s integration, and total uncertainty ranging
between 0.6–1.5 K, depending on integration time and input antenna temperature. PoLRa uses a
unique dual 2 × 2 patch array antenna with an air-gap substrate for high gain and low Ohmic losses.
A unique antenna temperature correction scheme allows correction for the relatively wide antenna
power full beamwidth of 37◦ at −3 dB sensitivity. The correction convolves the antenna pattern with
modeled angular dependent brightness temperatures of facets, while also considering polarization
mixing introduced by nature of the geometry at large angles off of boresight (see Appendix in [20]).
PoLRa is a research-ready radiometer system, and its characterization is demonstrated herein.

The following sections present the radiometer hardware, its characterization, initial results, and
then conclusions. Hardware includes the radiometer electronics and antenna. Characterization
includes the radiometer resolution and stability, calibration, and uncertainty. Initial results include
drone-based antenna temperature measurements and soil moisture retrievals.

2. Hardware

The following subsections introduce the PoLRa hardware, including the radio-frequency (RF)
front end, the back end, and the antenna.

2.1. RF Front End

PoLRa is a direct-detection radiometer with three analog filter stages, including one before the
first amplifier. The front-end filter is critical for preventing radio-frequency inference (RFI) signals
from saturating the low noise amplifier (LNA) [21]. The radiometer uses two internal calibration
noise sources as references, including a matched resistive source (RS) at ambient temperature, and
an active cold source (ACS). A four-port low-loss RF switch switches between the two calibration
sources and the two (vertical and horizontal) polarization antennas. Temperature sensors monitor the
physical temperatures of the reference noise sources, as well as the antenna and cable. After multiple
filter-amplifier stages, the RF signal is detected by a linear square-law power detector.

The block diagram of the RF front end is shown in Figure 1. The filters are ceramic resonator
filters, the two LNA stages provide a total gain of ~70 dB. The RF components are currently connected
with coaxial cable lines and SubMiniature version A (SMA)-type connectors. The RF components could
alternatively be connected with microstrips or coplanar waveguides, which allows the implementation
of the entire RF front end on a single printed circuit board (PCB). The measured response of a single
bandpass filter is shown in Figure 2.

The front-end loss, or noise figure (NF), is driven by the components before the first LNA, and
determines the radiometer system noise temperature, and thus the radiometric resolution. Due to
the required low-mass and -volume of PoLRa, the use of a large low-loss resonant cavity filter is
impractical. The insertion loss of the four port RF switch, the isolator, and the ceramic cavity filter are
1.3 dB, 0.2 dB, and 2.1 dB, respectively. The NF of the first LNA is 0.6 dB, and there is an additional loss
due to all connectors and SMA sections of ~0.8 dB. The NF from the switch through, and including,
the first LNA is 5.0 dB. The radiometer system noise temperature Tsys is calculated from the NF in dB
using [22]:

Tsys = Tref(10NF/10
− 1), (1)

where Tref is 290 K. This corresponds to Tsys of 627 K.
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2.2. Back End and Processing

The Linux microcontroller drives the switch, reads the temperature sensors, and samples the
analog to digital converter (ADC), reading the power detector output signal. The switch has a settling
time of less than 1 ms, and typically a full calibration cycle takes ~69 ms, with 16 ms spent integrating
each switch position, and the four temperature sensors are sampled during the four ~1 ms switch
position settling periods. The ADC is sampled at ~2 kHz and 22 bits, and the RC time constant of the
low pass filter is τ ≈ 1 ms. The ADC is capable of detecting <0.01 mV resolution, due to stable voltage
regulation of the battery power source.

The radiometer runs entirely on 5V DC, and consumes ~0.7 A for a total of less than 4 W power
consumption. The radiometer has no active temperature control, which was shown to be unnecessary
to achieve the desired accuracies comparable to satellite-borne L-band radiometers. Instead, we rely on
characterization of the physical-temperature dependence of the ACS. This characterization is presented
in detail in Section 3.1. The calibration procedure of radiometer noise temperatures is also presented in
Section 3.

2.3. Antenna Design and Characterization

The unique dual patch array antenna is both compact and lightweight, and provides sufficient
directivity to obtain reasonable ground resolution, low back-lobe contribution, and small polarization
crosstalk. The printed circuit board (PCB) patch arrays use two PCB layers separated by an air gap to
obtain high gain and high radiation efficiency. The patches are fed with uniform magnitude and phase
from a microstrip feed network printed on the same PCB as the patches. The microstrip feed network
is fed with a coaxial probe and connected to the front-end switch with a 1 m SMA cable. The antenna
consists of two FR4 PCBs of 1.5 mm thickness, spaced with 6 mm PTFE spacers. The PCBs are attached
using nylon screws running through the spacers and PCB layers. The total dimensions of the antenna
are 0.6 m × 0.3 m × 9 mm.

The physical temperature of the antenna and the feed cables are monitored, as indicated in Figure 1.
The antenna Ohmic losses and the loss of the coaxial feed cables are determined empirically as part of
the ACS characterization described in Section 3. Figure 3 shows photographs of the antenna during
ground-based sky measurements and during drone-based measurement.
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Figure 3. Patch array antenna (a) mounted on tower during sky measurement; (b) mounted on
multi-copter drone during flight measurements.

The return loss of the antenna was simulated using commercial finite-element electromagnetics
software (ANSYS Electromagnetics Suite) during the design process. The feed network and patch
dimensions were optimized to reduce the simulated return loss. The return loss was measured with a
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vector network analyzer (VNA) while the antenna was pointed towards the sky. The resonance of the
antenna, or the minimum in return loss, is highly sensitive to the electromagnetic permittivity of the
FR4 substrate. The final presented design required a number of iterations to accurately determine the
FR4 permittivity supplied by the particular PCB vendor.

The angular-dependent power sensitivity pattern of the antenna was simulated with ANSYS
Electromagnetics Suite finite element software. Additionally, the antenna power sensitivity pattern was
measured using the solar overpass method described in [23]. The antenna was positioned such that the
boresight pointed towards the azimuth and elevation angle of the highest solar zenith angle on that
day. The relative antenna pattern measured with the solar overpass method characterizes the gain as a
function of the total angle α between the sun and the antenna boresight direction. The spherical polar
angle θ will only exactly equal α when the sun passes directly overhead, but the response with respect
to α should be between slices of constant φ =

{
0
◦

, 90
◦
}
. The solar overpass data are only shown

through the −6 dB power level, because at high angles the horizon became cluttered by trees, and the
measurements became unreliable. Figure 4 shows (a) the simulated and measured antenna return loss,
and (b) the simulated and measured antenna power sensitivity pattern (normalized antenna gain).
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3. Radiometer Characterization

The following subsections describe the experimental characterization of the PoLRa radiometer.
First, the active cold source (ACS) characterization procedure is described; second, stability and
radiometric resolution are discussed; and third, the radiometer uncertainty quantification is presented.

3.1. Active Cold Source Characterization

Using an active cold source (ACS) with the radiometer hardware that is not temperature-stabilized
requires determination of the temperature dependence of the ACS noise temperature. L-band brightness
temperature Tsky of the sky is on the order of several Kelvin [24], depending on the Zenith angle, and
in the absence of galactic background radiation. Galactic radiation has been shown to have up to 5 K or
more impact on sky brightness temperatures [25], but this is reduced to less than 2 K by the relatively
large 37◦ antenna beamwidth, compared to the 10◦ antenna assumed in [25].
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The noise temperature at the switch inputs of the two polarizations, p = {H, V}, Tp
in can be

expressed as the following expression:

Tp
in = (1− ap)·Tsky + ap

·Tphy, with ap = 10Lp/10 (2)

where ap is the absorption of the total transmission path (TP) at the mean antenna/cable physical
temperature Tphy (assuming that all antenna elements and cables are at uniform temperature). Note
that the bar accent on temperature symbols refers to physical temperatures throughout the following
discussion. Lp in decibels (dB) is the cumulated loss between the antenna and the radiometer input (the
mentioned TP) that accounts for losses due to the non-ideal antenna efficiency, cable loss, adapter and
connector losses, and mismatch errors. We consider different losses Lp in each polarization p = {H, V},
due to respective variability in the cable and antenna losses of the two transmission paths (TPs).

We use the sky and ambient matched resistive source (RS) measurements to perform a two-point
calibration of the radiometer with the switch inputs as the reference plane. The radiometer gain Gp

and the radiometer inherent offset (off) noise temperature Tp
off

are given by:

Gp =
TRS − Tp

in

uRS − up
sky

, (3)

Tp
off

= −Gp
·uRS + TRS, (4)

where TRS = TRS is the noise temperature of the RS, which is equivalent to its physical temperature
TRS if the RS is perfectly matched. uRS is the measured detector voltage for the RS switch position, and
up

sky is the measured detector voltage for the switch positions at the antenna polarizations p = {H, V},

while the antenna is directed towards the sky. The calibrated noise temperature Tp
ACS of the ACS at the

input of the switch is thus:
Tp

ACS = Gp
·uACS + Tp

off
(5)

The noise temperature Tp
ACS of an ACS reference is expected to be linearly increasing with its physical

temperature, as demonstrated in [26,27]. Accordingly, the following linear model is applicable to express
the ACS noise temperature Tp

ACS,mod as a function of its measured physical temperature TACS,

Tp
ACS,mod = mp

·TACS + bp, (6)

where mp and bp are the slope (units of K/K) and offset (units of K) of a linear least-squares regression,
respectively. Given an ideal switch, because all values are referenced to the switch inputs, there is no
polarization dependence on ACS noise temperature, meaning that TH

ACS = TV
ACS. We use this along

with the assumed linearity between ACS noise and physical temperature to formulate a cost function
(CF) to minimize and obtain the losses LH and LV by least squares fit:

CF =
∑

p = {H,V}

∑n

i = 1

[
Tp,i

ACS − Tp
ACS,mod

]2
+
∑n

i = 1

[
TH,i

ACS − TV,i
ACS

]2
, (7)

where TH,i
ACS and TV,i

ACS are the ACS noise temperatures derived from Equation (5), and using voltages
uACS available from sky measurements i = {1, 2, . . . , n}. The first term in the CF enforces the
linearity of ACS noise with its physical temperature, and the second term enforces TH

ACS = TV
ACS.

The CF is minimized using a numerical global minimum finder to obtain optimal LH and LV.
For an ideal measurement system, the resulting linear fit parameters mp and bp used in Equation (6)
would be identical for p = {H, V}, but this is not the case in practice. To obtain the optimal
polarization-independent linear temperature dependence of the ACS, the linear fit parameters



Remote Sens. 2020, 12, 2780 7 of 15

m =
〈
mH, mV

〉
and b =

〈
bH, bV

〉
can be averaged over the two polarizations, which is equivalent to a

linear fit of all Tp,i
ACS values versus TACS.

Figure 3a shows the setup for these sky measurements at the Davos-Laret Remote Sensing Field
Laboratory [28]. The antenna was oriented towards the south with approximately 70◦ altitude angle.
Sky measurements were performed at 5-min intervals over an approximately 11-h period between
7 and 8 May 2020. Evening to nighttime (17:00–06:00 local time) measurements were used in order
to maximize the range of physical temperatures while also avoiding solar intrusion into the antenna.
Potential galactic noise intrusion was also investigated using a night sky calculator, and estimated
from our equatorial coordinates to be less than 1 K [25], with the worst case occurring at the beginning
of the measurement period. Figure 5 shows the physical temperatures and the measured detector
voltages. The evening cooling period provided a ~25 K temperature variation. Note that the detector
on the PoLRa is an inverse slope detector, so lower voltages correspond to higher absolute power
levels. Figure 6 provides the calibrated cold load brightness temperatures Tp,i

ACS(TACS) versus the ACS
physical temperature TACS along with the linear fit line over both polarizations TACS,mod and the 95%
confidence interval of this fit line. Table 1 shows the parameter values resulting from the cost function
(CF) minimization procedure.
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Table 1. Parameter values from ACS characterization.

Parameter Value

LV 3.849 dB
LH 3.838 dB

m =
〈
mH, mV

〉
0.3047 K/K

b =
〈
bH, bV

〉
66.54 K

RMSE of Tp,i
ACS(TACS) 0.660 K

3.2. Radiometer Stability

For nominal use of the radiometer, the antenna temperatures at horizontal and vertical polarization
are calibrated using a two-point calibration with internal matched resistive source (RS) and active cold
source (ACS) as references. Similar to Equations (3) and (4), the radiometer gain G and offset Toff are
calculated by:

G =
TRS − TACS(TACS)

uRS − uACS
, (8)

Toff = −G·uRS + TRS, (9)

and the noise temperature Tp
in (at the input reference plane of the switch), for switch positions

p = {V, H} is given as:
Tp

in = G·up + Toff (10)

where up is the detector voltage measured for the switch at the horizontal and vertical polarization
input ports while the antenna is pointing towards the target scene.

The radiometer stability was characterized by attaching resistive matched sources to the end of
the two antenna feed cables. The radiometer was constantly measuring, beginning from cold startup,
for about 20 min, using the τ = 16 ms integration time on each of the two external resistive sources.
The corresponding total time to switch between the four switch positions, sample the detector for 16 ms
at each position (ACS, RS, and the two external resistive sources), and sample the four temperature
sensors is 69 ms. During the stability test, the radiometer was operated on battery power.

The external matched resistive sources were passively maintained at ambient temperature during
the stability test. The respective RF cables and the matched resistive sources are assumed to be at equal
and uniform temperature. A thermocouple temperature sensor was attached to the matched resistive
sources to monitor their physical temperature during the test. A slight heating (~0.6 K) of the matched
resistive sources during the measurement period was detected, likely caused by heat generated by the
radiometer electronics, which were in close proximity.

The noise equivalent delta (∆) temperature (NE∆T) was calculated experimentally from this
matched resistive source stability test. The NE∆T depends on integration time (τ), which is, in our
system, represented by a trailing rolling mean of the raw 16 ms samples. The NE∆T values presented
are calculated as the standard deviation of the calibrated antenna temperatures over 1000 raw samples.
The integration times are implemented as a trailing rolling mean (rectangular window) of length
corresponding to the integration time, hence the multiples of 16. Table 2 provides the experimental
NE∆T values for different integration times. An example of measured raw (sampled at τ = 16 ms
(blue)) and integrated antenna temperatures for the H polarization switch port, and a histogram and
Gaussian fit of the respective raw data is provided in Figure 7. The kurtosis of the raw samples shown
in Figure 7 is 3.018, indicating a nearly Gaussian distribution.
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Table 2. Table of experimental radiometer noise equivalent delta (∆) temperatures (NE∆Ts) for the two
polarizations and different integration times.

Integration Time τ
(ms)

Total (4 Port) Time
(ms)

Experimental
NE∆T V pol. (K)

Experimental
NE∆T H pol. (K)

Theoretical
NE∆T (K)

16 69 1.15 1.17 0.95
64 276 0.51 0.50 0.48

112 483 0.40 0.40 0.36
256 1102 0.28 0.28 0.24
512 2205 0.20 0.19 0.17
1024 4409 0.14 0.14 0.12
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Figure 7. Radiometer-measured noise temperatures during matched resistive source attached to the
radiometer’s H port for quantifying PoLRa’s stability. (a) Noise temperature time series from different
integration times τ are plotted along with the physical temperature of the source. (b) Histogram of raw
τ = 16 ms samples shown in (a) and Gaussian fit of the distribution.

NE∆T can also be calculated theoretically by the equation [29]:

NE∆T � Tsys/
√

B·τ . (11)

where Tsys is the system noise temperature discussed in Section 2.1 (627 K), B is the RF bandwidth
of the system, and τ is the post-detection integration time. The RF bandwidth is determined by the
FE filters, which have a 3 dB passband of 27 MHz from 1400–1427 MHz. The theoretical NE∆T is
provided, along with the experimental value, in Table 2. The theoretical values are likely slightly lower
(~20%) because the radiometer was not perfectly stable in temperature during the experiment, and the
bandwidth of the ideal rectangular filter assumed in Equation (11) overestimates the bandwidth of the
real filter. The experimentally-determined NE∆T values do closely follow the trend of the respective
theoretical values, suggesting that the radiometer is indeed measuring Gaussian thermal noise.

The difference between the mean noise temperature of the external resistive sources and their
mean physical temperature was 0.02 K for the H polarization port, and 0.26 K for the V polarization
port. The larger difference for the vertical polarization port could have been due to non-uniform
heating of the cable or non-ideal thermal contact of the temperature sensor to the resistive source.
The absolute accuracy specification of the thermocouple sensors is only 1 K. Considering this, measured
noise temperatures of the external resistive source (attached to the H port) agree with its physical
temperatures within the uncertainty of the sensors.
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3.3. Uncertainty Characterization

With uncorrelated variables, the systematic uncertainty of calibrated noise temperature at the
switch-port reference plane can be expressed using the variance formula as [30]:

∆Tp
in =

√√√∆TRS
∂Tp

in

∂TRS


2

+

∆TACS
∂Tp

in

∂TACS


2

+

∆uRS
∂Tp

in

∂uRS


2

+

∆uACS
∂Tp

in

∂uACS


2

+

∆up
∂Tp

in

∂up


2

, (12)

where the ∆ prefix refers to the uncertainty associated with the proceeding variable. The systematic
uncertainties ∆uRS, ∆uACS, ∆up of the measured voltages uRS, uACS, up are <0.01 mV. When converted
to temperature units by multiplication by the gain G (~5 K/mV), these are much smaller than the
uncertainties ∆TRS = ∆TACS ' 1K of measured physical temperatures TRS, TACS. Thus Equation (12)
can be simplified to:

∆Tp
in �

√√√∆TRS
∂Tp

in

∂TRS


2

+

∆TACS
∂Tp

in

∂TACS


2

, (13)

with:
∂Tp

in

∂TRS
=

up
− uRS

uRS − uACS
+ 1, (14)

and:
∂Tp

in

∂TACS
=

uRS − up

uRS − uACS
, (15)

where the partial derivatives are calculated from the substitution of Equations (8) and (9) into (10). Given
the specified temperature sensor uncertainty ∆TRS = ∆TACS ' 1K, and the ACS RMSE ∆TACS = 0.66 K
from Section 3.1, the systematic uncertainty ∆Tp

in of PoLRa noise temperature measurements Tp
in at

the input ports p = {H, V} can be calculated from Equation (13). We calculate ∆Tp
in for a range of

up, covering the range 50 K ≤ Tp
in ≤ 350 K expected for measurements of terrestrial scenes. The total

uncertainty ∆Tp
in,tot of measured noise temperatures at the radiometer ports p = {H, V} is then

calculated as the root sum square of the systematic and statistical contributions:

∆Tp
in,tot =

√
∆Tp

in
2 + NE∆T2 . (16)

The systematic uncertainty ∆Tp
in and total uncertainty ∆Tp

in,tot are plotted for two different
integration times in Figure 8. The uncertainty reaches a minimum when the measured noise temperature
is roughly in-between the two calibration references (the RS and the ACS), and increases when the
measured noise temperature requires extrapolation beyond the calibration reference points.

Additional uncertainty sources, such as non-linearity, mismatch, and isolation [31], have been
neglected in this analysis, as they are considered small compared to the uncertainty associated with
the temperature sensors. Linearity estimates are provided with the detector, and mismatch between
components and switch ports were all measured below −20 dB. The above uncertainty analysis has
only considered internal uncertainty sources impacting the noise temperatures Tp

in measured at the
input ports p = {H, V} of the switch.

When the antenna is viewing a natural footprint at the ground, additional uncertainty sources
will arise, including potential radio-frequency interference (RFI). Though many modern radiometers
have recently used high sample rate digital back ends for frequency-domain RFI mitigation, this
approach still results in residual RFI, and is not foolproof [32]. Gaussian fitting of samples in the time
domain is also an adequate means of RFI detection, as demonstrated in [28,33,34]. The Portable L-band
Radiometer (PoLRa) discussed here uses the direct-detection architecture with total power detection
for stability, simplicity, and low power consumption. Digital back ends of similar radiometers have
been shown to consume at least 19 W [35], which is significantly more than the ~4 W used by PoLRa.
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Conversion from antenna temperatures to footprint brightness temperatures used for retrieval of
geophysical state parameters may also require a correction to consider the relatively large field-of-view
of the antenna. When viewing the ground at non-nadir incidence angles, the linear polarizations at
the antenna plane only correspond to the same linear polarizations at the boresight of the antenna.
At off-nadir angles, the emissions from the ground must be corrected for polarization mixing; a
detailed description of this procedure is provided in Appendix A of [20]. PoLRa-based retrievals of
geophysical parameters, such as soil moisture, will be validated in the future using a network of in-situ
soil moisture sensors.

4. Discussion

The design and characterization of the Portable L-band Radiometer (PoLRa) was outlined.
Detailed technical discussion is presented to demonstrate that the radiometer hardware is functioning
as expected, and to provide an estimate of its noise temperature measurement uncertainty.

While using a similar architecture common with other radiometers, PoLRa is unique in its
antenna design, simple electronics, low power consumption, cost-effectiveness, and no required active
temperature control. The radiometer presented here requires no temperature stability, due to the
novel active cold source (ACS) characterization approach. Modeled cold-sky brightness temperature
was used to characterize the response of ACS noise temperature to its varying physical temperature
over the range of expected operational temperatures. This initial characterization allows full internal
calibration of the radiometer afterwards, without need for further sky measurements.

The uncertainty of measured physical temperatures of the internal calibration noise sources (RS
and ACS) are one of the primary contributors to the total uncertainty of noise temperatures measured at
PoLRa’s input ports. The accuracy of the radiometer could likely be improved by improving the quality
of the temperature sensor, but this would also necessitate investigation of second-order uncertainty
terms, such as the non-linearity and mismatch. Total uncertainty values ranging between 0.6 K and
1.4 K, for the range of noise temperatures expected for measurements over natural footprints, is still
low compared to satellite-based passive L-band measurements. For instance, SMOS has an uncertainty
of 3 K or greater [36,37], and the NASA SMAP radiometer has a comparable uncertainty of 1.3 K [3].

The PolRa, with total mass less than 4 kg, including all mounting hardware, can be mounted on
an unmanned aerial vehicle (UAV) such as a multi-copter drone, or can be used as a ground-based
instrument on a tower or a simple pole. The radiometer could also be mounted on other vehicles,
such as agricultural tractors, cars, or used on an aircraft. The low power consumption of the system
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allows operation with a compact battery, or with a small solar panel and battery system for off-grid
ground-based use. The cost-effective design allows for production of a large number of such radiometers,
which would allow for use in widespread networks valuable for satellite ground-validation purposes,
or mass production of the hardware for use in agriculture and civil engineering.

Applications in agriculture could be for drone-based soil moisture and vegetation water content
mapping. Soil moisture information could be used to inform smart irrigation systems, saving water,
reducing crop stress, and increasing crop yield. Vegetation water content retrievals could be used for
assessing crop health, and ripeness of crops, such as wheat and cereals, for optimal harvest timing.

Uses of the drone-based PoLRa in civil engineering would include finding leaks in levees and
dams, and assessing soil moisture for surveys and building planning. Other potential uses of PoLRa in
the future include landslide risk prediction and mitigation, and mitigating avalanche risk by spatial
mapping of snow wetness and density.

This publication has introduced the hardware design, characterization, calibration, and uncertainty
analysis of the PoLRa radiometer. We have only included free-space measurements of cold-sky for
characterization of the active cold source (ACS) calibration reference. Other measurements introduced
here have been performed in the laboratory. Future publications will introduce both ground- and
drone-based measurements using the PoLRa, and associated retrievals of environmental parameters,
including soil moisture and vegetation optical depth, for instance.

5. Conclusions

We have introduced a small, low-mass, and cost-effective L-band radiometer design, and
provided characterization results to demonstrate its performance. L-band, with the lowest-frequency
passive-protected band, from 1400–1427 MHz, provides penetration into natural media, such as soil
and vegetation.

By mounting a portable low-mass radiometer on a multi-copter drone, pixel size of ~6 m or less is
achievable. The PoLRa is also convenient as a ground-based radiometer for satellite validation networks,
or any brightness temperature time-series measurement, and can be mounted on a simple automatic
weather station type of infrastructure. This paper introduced the hardware design, calibration,
characterization, and uncertainty analysis of the radiometer. The drone-based demonstration and
results are reserved for a following publication.

We presented the block diagram of the direct-detect total power radiometer and the measured
front-end filter response of the system. The radiometer is estimated to have a system noise temperature
of Tsys = 627 K, based on the cascaded noise figure of the front-end and first LNA. The unique
air-gapped patch antenna array design was shown, and the simulated and measured return loss and
gain pattern presented. The antenna has a half-power full beamwidth of 37◦, and is nearly symmetric
with azimuth angle, resulting in a circular nadir-viewing pixel.

Section 3 presented the characterization of the active cold source (ACS) reference, the noise
equivalent delta (∆) temperature (NE∆T), and the total radiometric uncertainty. The ACS was
characterized along with the cable and antenna loss factor to a noise temperature root mean square
error (RMSE) of 0.66 K. The experimentally determined NE∆T for an integration time of τ � 1 s is
0.14 K, which is in close agreement with the theoretical value of 0.12 K, determined from the system
noise temperature, integration time, and bandwidth. An integration time of 1 s actually takes about
4.4 s total, due to calibration views and views of the two polarizations. An integration time more
realistic for future drone-based operation is about 100 ms, corresponding to a total measurement time
of 480 ms and NE∆T of 0.4 K.

The total uncertainty of the radiometer is the combination of systematic and statistical uncertainty
contributions. The systematic uncertainty is determined from propagation of the calibration reference
uncertainties, whereas the statistical uncertainty is equivalent to the NE∆T, and is a function of the
integration time. The total uncertainty is found to range between 0.6 K and 1.4 K over a range of
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expected natural brightness temperatures from 50 K to 350 K. This value is less than the radiometric
uncertainty of the ESA SMOS satellite, and comparable to that of NASA’s SMAP instrument.

6. Patents

A European Patent Office application was the result of the antenna and electronics design of the
radiometer discussed in this paper. The patent is filed in the name of the Swiss Federal Research
Institute WSL, with Dr. Derek Houtz as the inventor.

Author Contributions: Conceptualization: D.H.; methodology: D.H., M.S., and R.N.; software: D.H.; validation:
D.H., M.S., and R.N.; formal analysis: D.H.; investigation: D.H., M.S., and R.N.; resources: D.H., M.S., and R.N.;
data curation: D.H.; writing—original draft preparation: D.H.; writing—review and editing: R.N. and M.S.;
visualization: D.H.; supervision: M.S.; project administration: M.S.; funding acquisition: D.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from
space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39,
1729–1735. [CrossRef]

2. Le Vine, D.M.; Lagerloef, G.S.; Colomb, F.R.; Yueh, S.H.; Pellerano, F.A. Aquarius: An instrument to monitor
sea surface salinity from space. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2040–2050. [CrossRef]

3. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.;
Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE. 2010, 98,
704–716. [CrossRef]

4. Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.;
Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens.
2012, 50, 1384–1403. [CrossRef]

5. Schwank, M.; Naderpour, R.; Mätzler, C. “Tau-Omega”- and Two-Stream Emission Models Used for Passive
L-Band Retrievals: Application to Close-Range Measurements over a Forest. Remote Sens. 2018, 10, 1868.
[CrossRef]

6. Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S.
SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2010, 98, 649–665. [CrossRef]

7. Rodríguez-Fernández, N.J.; Mialon, A.; Mermoz, S.; Bouvet, A.; Richaume, P.; Al Bitar, A.; Al-Yaari, A.;
Brandt, M.; Kaminski, T.; Le Toan, T. An evaluation of SMOS L-band vegetation optical depth (L-VOD)
data sets: High sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 2018, 15, 4627–4645.
[CrossRef]

8. Li, X.; Al-Yaari, A.; Schwank, M.; Fan, L.; Frappart, F.; Swenson, J.; Wigneron, J.-P. Compared performances
of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream
microwave emission models. Remote Sens. Environ. 2020, 236, 111502. [CrossRef]

9. Naderpour, R.; Schwank, M. Snow Wetness Retrieved from L-Band Radiometry. Remote Sens. 2018, 10, 359.
[CrossRef]

10. Schwank, M.; Naderpour, R. Snow Density and Ground Permittivity Retrieved from L-Band Radiometry:
Melting Effects. Remote Sens. 2018, 10, 354. [CrossRef]

11. Houtz, D.; Naderpour, R.; Schwank, M.; Steffen, K. Snow wetness and density retrieved from L-band satellite
radiometer observations over a site in the West Greenland ablation zone. Remote Sens. Environ. 2019,
235, 111361. [CrossRef]

12. Schwank, M.; Matzler, C.; Wiesmann, A.; Wegmuller, U.; Pulliainen, J.; Lemmetyinen, J.; Rautiainen, K.;
Derksen, C.; Toose, P.; Drusch, M. Snow Density and Ground Permittivity Retrieved from L-Band Radiometry:
A Synthetic Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3833–3845. [CrossRef]

http://dx.doi.org/10.1109/36.942551
http://dx.doi.org/10.1109/TGRS.2007.898092
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1109/TGRS.2012.2184548
http://dx.doi.org/10.3390/rs10121868
http://dx.doi.org/10.1109/JPROC.2009.2033096
http://dx.doi.org/10.5194/bg-15-4627-2018
http://dx.doi.org/10.1016/j.rse.2019.111502
http://dx.doi.org/10.3390/rs10030359
http://dx.doi.org/10.3390/rs10020354
http://dx.doi.org/10.1016/j.rse.2019.111361
http://dx.doi.org/10.1109/JSTARS.2015.2422998


Remote Sens. 2020, 12, 2780 14 of 15

13. Rautiainen, K.; Parkkinen, T.; Lemmetyinen, J.; Schwank, M.; Wiesmann, A.; Ikonen, J.; Derksen, C.;
Davydov, S.; Davydova, A.; Boike, J. SMOS prototype algorithm for detecting autumn soil freezing.
Remote Sens. Environ. 2016, 180, 346–360. [CrossRef]

14. Rautiainen, K.; Lemmetyinen, J.; Schwank, M.; Kontu, A.; Menard, C.B.; Matzler, C.; Drusch, M.; Wiesmann, A.;
Ikonen, J.; Pulliainen, J. Detection of soil freezing from L-band passive microwave observations. Remote Sens.
Environ. 2014, 147, 206–218. [CrossRef]

15. Kaleschke, L.; Tian-Kunze, X.; Maass, N.; Makynen, M.; Drusch, M. Sea ice thickness retrieval from SMOS
brightness temperatures during the Arctic freeze-up period. Geophys. Res. Lett. 2012, 39. [CrossRef]

16. Acevo-Herrera, R.; Aguasca, A.; Bosch-Lluis, X.; Camps, A.; Martínez-Fernández, J.; Sánchez-Martín, N.;
Pérez-Gutiérrez, C. Design and first results of an UAV-borne L-band radiometer for multiple monitoring
purposes. Remote Sens. 2010, 2, 1662–1679. [CrossRef]

17. McIntyre, E.M.; Gasiewski, A.J. An ultra-lightweight L-band digital Lobe-Differencing Correlation Radiometer
(LDCR) for airborne UAV SSS mapping. In Proceedings of the 2007 IEEE International Geoscience and
Remote Sensing Symposium, Barcelona, Spain, 23 July 2007; pp. 1095–1097.

18. Davenport, I.J.; Fernández-Gálvez, J.; Gurney, R.J. A sensitivity analysis of soil moisture retrieval from the
tau-omega microwave emission model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1304–1316. [CrossRef]

19. Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A Model for Microwave Emission from
Vegetation-Covered Fields. J. Geophys. Res. Ocean. Atmos. 1982, 87, 1229–1237. [CrossRef]

20. Naderpour, R.; Houtz, D.; Schwank, M. Snow Wetness Retrieved from Close-Range L-band Radiometry in
the Western Greenland Ablation Zone. J. Glaciol. 2020, in press.

21. De Roo, R.D.; Ruf, C.S.; Sabet, K. An L-band radio frequency interference (RFI) detection and mitigation
testbed for microwave radiometry. In Proceedings of the 2007 IEEE International Geoscience and Remote
Sensing Symposium, Barcelona, Spain, 23 July 2007; pp. 2718–2721.

22. Application Notes. 57-1: Fundamentals of RF and Microwave Noise Figure Measurements. 2000. Available
online: https://www.keysight.com/ch/de/assets/7018-06808/application-notes/5952-8255.pdf (accessed on
24 July 2020).

23. Schwank, M.; Wiesmann, A.; Werner, C.; Matzler, C.; Weber, D.; Murk, A.; Volksch, I.; Wegmuller, U. ELBARA
II, an L-band radiometer system for soil moisture research. Sensors 2010, 10, 584–612. [CrossRef]

24. Pellarin, T.; Wigneron, J.P.; Calvet, J.C.; Berger, M.; Douville, H.; Ferrazzoli, P.; Kerr, Y.H.; Lopez-Baeza, E.;
Pulliainen, J.; Simmonds, L.P.; et al. Two-year global simulation of L-band brightness temperatures over
land. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2135–2139. [CrossRef]

25. Le Vine, D.M.; Abraham, S. Galactic noise and passive microwave remote sensing from space at L-band.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 119–129. [CrossRef]

26. Sobjaerg, S.S.; Skou, N.; Balling, J.E. Measurements on active cold loads for radiometer calibration. IEEE Trans.
Geosci. Remote Sens. 2009, 47, 3134–3139. [CrossRef]

27. de la Jarrige, E.L.; Escotte, L.; Goutoule, J.; Gonneau, E.; Rayssac, J. SiGe HBT-based active cold load for
radiometer calibration. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 238–240. [CrossRef]

28. Naderpour, R.; Schwank, M.; Matzler, C. Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter
Season L-Band Measurements Data-Processing and Analysis. Remote Sens. 2017, 9, 1185. [CrossRef]

29. Racette, P.; Lang, R.H. Radiometer design analysis based upon measurement uncertainty. Radio Sci. 2005, 40,
1–22. [CrossRef]

30. Ku, H.H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 1966, 70, 263–273.
[CrossRef]

31. Randa, J.P. Uncertainties in NIST Noise-Temperature Measurements. In Technical Note (NIST TN)-1502; 1998.
Available online: https://www.nist.gov/publications/uncertainties-nist-noise-temperature-measurements
(accessed on 24 July 2020).

32. Majurec, N.; Park, J.; Niamsuwan, N.; Frankford, M.; Johnson, J.T. Airborne L-band RFI observations in
the smapvex08 campaign with the L-band interference suppressing radiometer. In Proceedings of the 2009
IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12 July 2009;
pp. 158–161.

33. Guner, B.; Johnson, J.T.; Niamsuwan, N. Time and frequency blanking for radio-frequency interference
mitigation in microwave radiometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3672–3679. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2016.01.012
http://dx.doi.org/10.1016/j.rse.2014.03.007
http://dx.doi.org/10.1029/2012GL050916
http://dx.doi.org/10.3390/rs2071662
http://dx.doi.org/10.1109/TGRS.2005.845640
http://dx.doi.org/10.1029/JC087iC13p11229
https://www.keysight.com/ch/de/assets/7018-06808/application-notes/5952-8255.pdf
http://dx.doi.org/10.3390/s100100584
http://dx.doi.org/10.1109/TGRS.2003.815417
http://dx.doi.org/10.1109/TGRS.2003.817977
http://dx.doi.org/10.1109/TGRS.2009.2017015
http://dx.doi.org/10.1109/LMWC.2010.2042564
http://dx.doi.org/10.3390/rs9111185
http://dx.doi.org/10.1029/2004RS003132
http://dx.doi.org/10.6028/jres.070C.025
https://www.nist.gov/publications/uncertainties-nist-noise-temperature-measurements
http://dx.doi.org/10.1109/TGRS.2007.903680


Remote Sens. 2020, 12, 2780 15 of 15

34. Tarongi, J.M.; Camps, A. Normality analysis for RFI detection in microwave radiometry. Remote Sens. 2010,
2, 191–210. [CrossRef]

35. Lahtinen, J.; Ruokokoski, T.; Kristensen, S.S.; Skou, N. Intelligent Digital Back-End for Real-Time RFI Detection and
Mitigation in Microwave Radiometry. 2011. Available online: https://www.researchgate.net/publication/268063678_
Intelligent_Digital_Back-End_for_Real-Time_RFI_Detection_and_Mitigation_in_Microwave_Radiometry
(accessed on 24 July 2020).

36. Munoz-Sabater, J.; de Rosnay, P.; Jimenez, C.; Isaksen, L.; Albergel, C. SMOS brightness temperature angular
noise: Characterization, filtering, and validation. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5827–5839.
[CrossRef]

37. McMullan, K.; Brown, M.A.; Martín-Neira, M.; Rits, W.; Ekholm, S.; Marti, J.; Lemanczyk, J. SMOS:
The payload. IEEE Trans. Geosci. Remote Sens. 2008, 46, 594–605. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs2010191
https://www.researchgate.net/publication/268063678_Intelligent_Digital_Back-End_for_Real-Time_RFI_Detection_and_Mitigation_in_Microwave_Radiometry
https://www.researchgate.net/publication/268063678_Intelligent_Digital_Back-End_for_Real-Time_RFI_Detection_and_Mitigation_in_Microwave_Radiometry
http://dx.doi.org/10.1109/TGRS.2013.2293200
http://dx.doi.org/10.1109/TGRS.2007.914809
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Hardware 
	RF Front End 
	Back End and Processing 
	Antenna Design and Characterization 

	Radiometer Characterization 
	Active Cold Source Characterization 
	Radiometer Stability 
	Uncertainty Characterization 

	Discussion 
	Conclusions 
	Patents 
	References

