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Abstract: Air-borne particulate matter, PM2.5 (PM having a diameter of less than 2.5 micrometers),
has aroused widespread concern and is a core indicator of severe air pollution in many cities globally.
In our study, we present a validated framework to predict the daily PM2.5 distributions, exemplified
by a use case of Shijiazhuang City, China, based on daily aerosol optical depth (AOD) datasets.
The framework involves obtaining the high-resolution spatiotemporal AOD distributions, estimation
of the spatial distributions of PM2.5 and the prediction of these based on a convolutional long
short-term memory (ConvLSTM) model. In the estimation part, the eXtreme gradient boosting
(XGBoost) model has been determined as the estimation model with the lowest root mean square error
(RMSE) of 32.86 µg/m3 and the highest coefficient of determination regression score function (R2) of
0.71, compared to other common models used as a baseline for comparison (linear, ridge, least absolute
shrinkage and selection operator (LASSO) and cubist). For the prediction part, after validation
and comparison with a seasonal autoregressive integrated moving average (SARIMA), which is a
traditional time-series prediction model, in both time and space, the ConvLSTM gives a more accurate
performance for the prediction, with a total average prediction RMSE of 14.94 µg/m3 compared to
SARIMA’s 17.41 µg/m3. Furthermore, ConvLSTM is more stable and with less fluctuations for the
prediction of PM2.5 in time, and it can also eliminate better the spatial predicted errors compared
to SARIMA.
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1. Introduction

In recent years, many cities globally, e.g., in China, have suffered an increase in air pollution
characterized by an increase in air-borne particulate matter [1], as this is easily perceivable by humans
via sight and ease of breathing, provoking a widespread concern about the occurrence of more frequent
severe air pollution incidents [2]. PM, an acronym for particulate matter, and PM2.5, which means
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particulate matter with a kinetic equivalent diameter of 2.5 microns or less in the air, have been
a focus for researchers and governments for several years who are concerned about air pollution.
The concentration of PM2.5 (we use PM2.5 only to represent PM2.5 in the remaining paper) is mainly
affected by various pollution sources and meteorological conditions such as automobile exhaust and
wind speed [3–5]. There is a positive correlation between the concentration of fine particles and the
incidence and mortality of humans due to cardiopulmonary and respiratory system diseases [6,7].
According to research, PM2.5 can penetrate into the lungs and bronchus. Long-term exposure to PM2.5

can increase the incidence and mortality of respiratory and cardiovascular diseases [2]. PM2.5 has
a small diameter and mass; it remains in the atmosphere for a long time and can be air-borne over
longer distances as it is so light. Hence, it can seriously affect the visibility of the atmosphere [8] and
people’s health and daily activities [9]. Hence, there is an urgent need to predict PM2.5 quickly and
accurately [10,11].

However, predicting future levels of PM2.5 is challenging, and there are several key limitations of
the current work. First, many studies focus on a prediction based on data from air quality stations,
which means they only predict the temporal distribution but not the spatial distribution, because such
stations are very sparsely distributed. They hardly consider the spatial autocorrelation between the
predictors, which can cause a much greater error in the prediction. Second, in terms of work to predict
future spatial PM2.5 distributions, they do not consider the PM2.5 estimation to get the distributions in
the whole continuous space. This entails using PM2.5 values obtained from an air pollution monitoring
station to estimate the PM2.5 values when there is no station to obtain the data at specific spatial points.
Note that this is a kind of prediction, but in this study, we call this spatial prediction an estimation.
Combining the first and second issues, there is currently no complete framework that not only estimates
the spatially continuous PM2.5 distributions but, also, predicts the distributions in the future. Third,
the spatial and temporal resolutions for the predicted PM2.5 distributions do not have a high enough
resolution—for example, daily for the temporal resolution combined with kilometers for the spatial
resolution. Finally, the models that are used in the estimation and prediction processes often lack a
base-line method for comparison and validation to better assess the accuracy of the new proposed
models. Such challenges and limitations in the current research (discussed in more detail in Section 2)
comprise the motivation for this current work.

China has realized the harmful influence from excessive PM2.5 levels since 2013, and the government
has made great efforts to reduce harmful emissions and, hence, haze. Despite the initial success in recent
years, the exposure level of PM2.5 in many areas of China, e.g., Hebei Province, is four times higher
than the World Health Organization (WHO) standard in 2019, according to a report from the Centre
for Research on Energy and Clean Air (CREA) (https://energyandcleanair.org/wp/wp-content/uploads/
2020/01/CREA-brief-China2019-Zh.pdf). As the capital of the Hebei Province, Shijiazhuang was one
of the areas most polluted by haze in China in 2016 [12]. The city still suffers from the most serious
haze pollution amongst all the cities in China in recent years, especially in the first half of 2019, with a
39-µg/m3 monthly average concentration of PM2.5 based on the National Urban Air Quality Report in
June 2019 of China (http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/201908/P020190821498490317309.pdf).
Thus, in this study, based on the raw datasets, including the daily aerosol optical depth (AOD),
PM2.5 from the monitoring sites, etc., we created a framework to predict the daily PM2.5 distributions,
exemplified for a use case for the city of Shijiazhuang in China. The time period of the study focuses on
the first half of the year 2019. We aim to demonstrate (test) the prediction capability of our framework
to predict about one month’s of PM2.5. The test data represents 20% of the whole dataset in many
prediction models. Hence, we just need to use about five months’ data in our study. So, we use only the
first five months’ data of 2019, which is from the 1 January 2019 to 31 May 2019 (151 days) in the case.

In this study, we aim to present a framework that not only estimates the spatially continuous
PM2.5 distributions but, also, predicts the distributions in the future at resolutions in time and space
that are both high-resolution (this is our main novelty, but see also the discussion in Section 5). For both
processes, we compare some popular regression models, machine-learning models and deep-learning
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methods to select the most accurate ones for use in our framework. In the prediction process, we adopt
a convolution long short-term memory (ConvLSTM) model, which is an improvement of the long
short-term memory (LSTM) model by adding convolution operations to predict the temporal and
spatial distributions of PM2.5 for future day(s) based upon referring to historical data.

The remainder of this article is organized as follows: Section 2 presents a literature review.
Section 3 presents the dataset we used and the method of our framework. The results are reported in
Section 4, and these are discussed in Section 5. In Section 6, our conclusions are proposed, and our
thoughts for future research are presented.

2. Literature Review

At present, PM2.5 data is mainly obtained from ground-monitoring stations and satellite data [13].
PM2.5 data from ground-monitoring stations is distributed as points. It is hard to gain a good spatial
coverage using the limited number of fixed monitoring facilities to obtain global PM2.5 data; therefore,
spatial interpolation is used to deduce unknown data, based on known data in the same region,
to make up for this deficiency. Commonly used methods to do this are inverse distance weighted
(IDW) interpolation, trend surface (TS) interpolation, ordinary kriging (OK) interpolation, collaborative
kriging (CK), radial basis function and so on. Obtaining PM10 and total suspended particles (TSP)
data is considered easier than obtaining PM2.5 and estimating missing PM2.5. Hwa Lung et al., [14]
proposed a Bayesian maximum entropy (BME) algorithm to calculate the ratio of PM2.5/PM10 and
PM2.5/TSP in Taipei, integrated with PM10 and TSP to interpolate PM2.5 data, to retrospectively estimate
the spatial and temporal distributions of PM2.5 in previous years. The stability of PM2.5/PM10 and
PM2.5/TSP ratios is based on a yearly time period, instead of shorter time periods such as months,
weeks and days. In areas where there is no PM2.5-monitoring facility, the most commonly used ancillary
data is AOD (aerosol optical depth), which is the integration of the aerosol extinction coefficient in
the vertical direction of the atmosphere that is relevant to the radiation wavelength, vertical profile,
particle size distribution and aerosol size [13]. It has been found that the particle size, especially
the PM2.5 particle size range, is closely related to the inversion of AOD from 0.1–2 nm in the visible
and near-infrared band ranges. The correlation between PM2.5 and AOD is influenced by numerous
elements such as meteorological factors (AOD vertical profile, temperature, humidity, wind speed, etc.)
and geographical factors (regional categories, road distribution, forest cover, etc.), which are important
to build the relationship between PM2.5 and AOD. Therefore, establishing a relevant prediction model
based on these auxiliary factors and AOD data can effectively obtain PM2.5 data, so as to monitor
and predict the PM2.5. Considering that monitoring stations are limited and unevenly distributed,
Rui et al., [15] used the AOD data, introduced a multiple linear regression model and determined the
relationship between PM2.5, AOD, meteorological factors and physical and chemical factors. Finally,
these researchers established a quantitative model to interpolate PM2.5 in Beijing. The results show that
this model can more accurately analyze the spatial and temporal distributions of PM2.5 in the study area.
However, the model does not consider changes in time and the spatial distribution. The resolution of
satellite data (from which the AOD data is derived) and the detailed composition of PM2.5 both play a
significant role in raising the precision of the model.

Much research has been undertaken to predict PM2.5. Yuanhua et al., [16] adopted a back
propagation (BP) artificial neural network to predict PM2.5 in Beijing and found that it can reflect the
variation of PM2.5 well, and based upon this, the PM2.5 is forecast. However, this model has high
requirements for the rationality of the method, and the configuration of the model is complicated.
Hongfu et al., [17] established a prediction model based on a GM (1,1) model where GM means grey
model—a grey forecasting model. They used historical PM2.5 data to predict PM2.5 in Changchun,
China for the next two days. The results showed that this model could be used to forecast haze
events, but the temporal resolution was a little low over one day or two days, instead of one hour
or two hours. Bingyue [18] used the eXtreme gradient boosting (XGBoost) model to monitor the air
quality data in Tianjin and predict PM2.5. This model has high precision, low overfitting probability
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and better performance compared to other models in terms of the numerical calculations. However,
only one monitoring station data is used in this research; the data is not multivariate, resulting in the
limited prediction ability of the XGBoost model, in this case. Huang et al., [19] found that the forecast
guidance provided by the NOAA (National Oceanic and Atmospheric Administration) NAQFC
(National Air Quality Forecasting Capability) has significant seasonal biases: in winter, there is an
overprediction phenomenon, while, in summer, there is an underprediction phenomenon. To reduce
the bias, the researchers integrated an analog ensemble bias correlation approach with NAQFC to
predict PM2.5 in the Lower Middle, the Upper Middle, the Southeast, the Northeast, the Pacific Coast
and the Rocky Mountains of the United States. The results show that this analog ensemble bias
correlation approach can improve the prediction accuracy.

The consideration of spatial data is also important for the temporal prediction model. Lei et al., [20]
proposed a spatial data-aided incremental support vector regression (SaIncSVR) model to predict PM2.5

over 13 monitoring stations in Auckland, New Zealand. It is found that the model can satisfactorily
deal with the short-term and missing data problems that exist in many prediction models compared
with a pure temporal IncSVR prediction model. However, this model does not take into account
the geographical features of the monitoring station, which are vital for the prediction ability of the
model. Zong et al., [21] introduced a RNN (recurrent neural network) model, aiming to establish a
universal prediction model by using the meteorological data and PM2.5 data of Beijing, Chengdu and
Shenyang. This found that the prediction model based on data from one of the cities can be generalized
to the other two cities, indicating that there is a close intrinsic correlation between PM2.5 source-sink
dynamics (defined as a theoretical model to describe how PM2.5 may affect the population growth
or decline of organisms) and environmental drivers. In addition, this correlation is common among
cities. Machine-learning or deep-learning models have a strong expressive ability when processing
nonlinear data [22], but different models have a similar prediction accuracy when they use the same
datasets. In order to improve the accuracy, Yegang [23] established a relationship between the AOD,
hourly forecast value of meteorological factors and PM2.5 based on an adaptive BP neural network
model to predict PM2.5 in Fuling, Chongqing. This model supports adaptive training and tuning;
therefore, it can suppress the overfitting phenomenon well, but the prediction of the PM2.5 time series
is influenced by numerous factors such as temperature and people’s activity, and the amount of
historical data is insufficient, which reduces the accuracy of the model. Wei et al., [24] proposed using
a PCA (principal component analysis) model and a least-squares support-vector machine (LSSVM)
model as an improved support-vector machine (SVM) model. Here, PCA accurately extracts useful
information and reduces the dimensionality of the input layer, and LSSVM reduces the computational
complexity; this hybrid strategy not only improves the prediction accuracy but, also, greatly increases
the prediction speed.

At present, there are many models that can be used to study, analyze and predict PM2.5, but few
of these consider spatial autocorrelation, and most of the models have a low temporal accuracy,
which cannot be used to predict PM2.5 in the next few hours or even days, which is of little use to
the establishment of air pollution warning systems. R.A. Bahari et al., [25] proposed a multilayer
perceptron (MLP) artificial neural network. Temperature inversion as a parameter was added to the
model to predict PM2.5 in the Tehran region for the next three days. It was found that temperature
inversion can improve the model and that the prediction accuracy was improved. This model takes
12 h as a temporal unit, draws the map of the temperature, wind direction, wind speed and so on
and gets the temperature inversion; finally, the PM2.5 in the next hours was predicted. However,
the prediction period of 12 h cannot adapt to a shorter period such as one hour. Ping et al., [26]
proposed a hybrid strategy based on a high-dimension association rules (HDAR) model, a modified
association framework (MAF) model, a learning vector quantization (LVQ) model and an adaptive
fuzzy neural network (AFNN) model, termed HML-AFNN (HML is the combination of these three
methods’ initial), to analyze and predict PM2.5 in the Beijing–Tianjin–Hebei region and the Pearl River
Delta region. This works as follows: (1) The HDAR model selects the cities where PM2.5 has strong
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correlations with weather factors within the study area. (2) The MAF model selects the spatial-temporal
factors and geographical factors that affect PM2.5 in the center of the study area from the above cities.
(3) The LVQ model divides all datasets into several datasets according to the PM2.5. (4) The AFNN
model analyzes and predicts the PM2.5 based on the above datasets. The results show that this hybrid
strategy has a better performance than any single model it uses, but it does not consider the spatial
autocorrelation between variables, so its prediction accuracy is not very high.

Chaotic phenomenon, a dynamic, complex form of uncertainty in complex nonlinear systems, is a
common phenomenon in nature. Lorenz et al., illustrated this with an example of a flying butterfly in
South America that could cause a hurricane in Florida in North America. This is the so-called butterfly
effect—that is, the chaotic system is sensitive to the initial value; a disturbance will completely deviate
from the original evolution direction after a long time, no matter how small it is [27]. To improve
the prediction accuracy, Yun et al., [28] introduced a multivariate chaotic time series model based
on chaotic theory to predict PM2.5 in Beijing. The phase space unit of the chaotic time series is first
expanded into a multi-time series phase space unit. Then, based on this, a multi-time series phase
space matrix is constructed. Finally, the radial basis function (RBF) neural network is introduced to
predict PM2.5. This is better than a traditional time-series prediction model; although it considers some
indicators, such as air pressure, temperature, wind direction, wind speed, dew point and so on and has
a high temporal accuracy, it does not consider the spatial autocorrelation between variables, which is
also vital to the improvement of the prediction accuracy.

Considering that PM2.5 data has strong nonlinear characteristics, and there are many difficulties to
monitor and acquire it, Haiming et al., [29] introduced a RBF neural network model, which improved
the classical BP neural network to imbue the model with a local learning ability. Normal air pollution
monitoring data and meteorological factors were considered as variables to predict PM2.5. The results
demonstrate that the RBF model has a stronger prediction ability compared to the BP model, but because
of the lack of samples, the prediction accuracy of some samples is reduced, which makes the model
difficult to adapt to complex dynamic weather conditions. There is some redundant information,
such as unused weather condition values in meteorological environmental data, so it is useful
to filter the data and eliminate the redundant information before predicting PM2.5 based on this.
Chen et al., [30] proposed a combined multifractal dimension–artificial bee colony–support vector
regression (MFD + ABC + SVR) hybrid strategy. MFD + ABC chooses the best feature dataset, in which
MFD is used as the evaluation criterion for selecting the dataset. ABC provides the search strategy.
Finally, an SVR model is used to predict PM2.5 the next day in Guangzhou and Shanghai. This hybrid
strategy optimizes the process of the input layer and improves the prediction accuracy, but the temporal
accuracy is not very high, and it does not consider the spatial autocorrelation.

The ConvLSTM model is an improved LSTM model that has good spatial-temporal characteristics.
It not only exhibits the temporal modeling ability of a LSTM, but it can also consider the influence
from the spatial neighborhood of a target area. Liu et al., [31] used a ConvLSTM model to analyze
historical traffic flow data and to make predictions, confirming that the ConvLSTM model has a
better performance than other models, such as LSTM. Qiao et al., [32] considered spatial-temporal
autocorrelation for the monitoring of health and proposed a time-distributed ConvLSTM model to
extract the spatial-temporal characteristics of a multi-sensor time series. It is found that the model
has a good applicability to health monitoring. Yuan et al., [33] proposed a heterogeneous ConvLSTM
framework to integrate spatial image features and spatial model sets to solve the spatial heterogeneity
problem in urban and rural areas. The results show that this framework can make reasonable predictions
and effectively improve the prediction accuracy. Yuan et al., [34] adopted a ConvLSTM model to predict
the spatial and temporal distributions of mobile phone users a day in advance based upon 15-day
historical CDR (Call Detail Record) data. The results show that a ConvLSTM model that considers a
spatial autocorrelation is more realistic and accurate compared with an autoregressive–moving-average
model (ARMA) model and LSTM model.
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Some models that predict PM2.5 focus on decreasing the redundancy of input data and increasing
the number of the related influence variables to improve the prediction accuracy, but models that
improve the temporal accuracy and spatial autocorrelation are not used widely. Therefore, in this
paper, we adopt a ConvLSTM model, which considers the spatial autocorrelation, to predict a PM2.5.
It has a high temporal precision hourly. The prediction time can be extended to 24 h or even several
days. The LSTM model has the structure of a recursive neural network. It can process time series data,
exhibiting time autocorrelation defined to represent the degree of similarity between a time series and a
lagged version of itself over successive time intervals. A ConvLSTM model improves on a LSTM model
through adding a convolution operation to the basic structure of the LSTM model, such that it not only
establishes temporal relationships such as a LSTM but, also, extracts spatial temporal characteristics
such as a CNN. This paper collects historical PM2.5 data and inputs it into the ConvLSTM model to
predict the temporal and spatial distributions of PM2.5 in the next day or over several days.

3. Data and Method

In this section, we introduce the datasets and the method. We use 7 types of raw datasets:
including the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm-based Level
2 gridded (L2G) aerosol optical thickness over land surfaces product (MCD19A2) data, the Goddard
Earth Observing System forward-processing (GEOS FP) data, air quality observation data, surface
meteorology observation data, SPOT/VEGETATION (Satellite Pour l’Observation de la Terre Vegetation),
ERA-nterim (ECMWF Reanalysis Interim) and the Shuttle Radar Topography Mission (SRTM) datasets.
These datasets are described in more detail in Section 3.1. Our method consists of 3 main parts, divided
into 9 smaller steps (see Section 3.2).

3.1. Data

3.1.1. Study Area and Period

In this study area, we focused on the city of Shijiazhuang, China, but because of the shape of the
city—it is an irregular polygon, while the predicted cell in this study consists of squares—the main
study area was set as a big square area with 165 km in length, which covered all the Shijiazhuang area
inside of it. The location of the city and the administrative units are shown in Figure 1. The study
period was from 1 January 2019 to 31 May 2019, totaling 5 months and 151 days. The details of the
data and the method of the framework are introduced in the next two subsections.
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3.1.2. Data Sources

MCD19A2 (https://ladsweb.modaps.eosdis.nasa.gov) is the abbreviation for the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) algorithm-based Level 2 gridded (L2G) aerosol
optical thickness over land surfaces product, which is produced daily at a 1-km pixel resolution
(https://lpdaac.usgs.gov/products/mcd19a2v006/). This product is a Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra and Aqua combined, which can make up for cloud coverage or
missing data in other situations and has the highest temporal resolution and has the spatial resolution
that is available to the public. The following Science Dataset (SDS) layers are involved in the MCD19A2
AOD data product: blue band AOD at 0.47 µm, green band AOD at 0.55 µm, fine mode fraction over
water, AOD uncertainty, smoke injection height (m above ground), column water vapor over land
and clouds (in cm), AOD QA (quality assurance), cosine of the solar zenith angle, AOD model at
900 m, cosine of the view zenith angle, scattering angle, relative azimuth angle and glint angle at 5 km.
The product L2G also includes a low-resolution image to show the AOD of the blue band at 0.47 µm,
which is created using a combination of all available satellite sensor orbits. From the product, we can
obtain high-temporal and -spatial resolution spatial AOD datasets, i.e., daily for time and 900 m for
space. In this study, we used the AOD at 0.55 µm, where AOD is a daily dataset that contains the data
collected when a satellite passes over the image area, so the daily data contains different amounts of
data (depending on the number of satellite transits in a day). In order to unify the temporal intervals
between AODs over the study period, we computed the daily average AODs and converted them into
an image format. There was a total of 151 images of AOD from 1 January to 31 May 2019.

GEOS FP files are produced with the Network Common Data Form (NetCDF-4) library;
the underlying format of this library is the hierarchical data format version 5 (HDF-5). The standard
of the GEOS FP file is tavg1_2d_flx_Nx (2D time-averaged surface flux diagnostics). This file
contains: the planetary boundary layer height (PBLH), surface layer height (HLML), total precipitation
(PRECTOT) and so on. Based on the GEO FP data in the Global Modeling and Assimilation Office
(GMAO) (https://gmao.gsfc.nasa.gov/), we can obtain hourly planetary boundary layer height (PBLH)
data from January 2019 to May 2019 in Shijiazhuang.

National air quality observation data in our study comes from the National Urban Air Quality
Real-time Publishing Platform (http://106.37.208.233:20035/) of the China Environmental Monitoring
Sites, including hourly PM2.5, PM10, SO2, NO, CO, etc. values. In our study area, there were 16 air
quality sites, and we extracted PM2.5 values on the sites as the dependent variables in the regression
model. The temporal resolution of the datasets was one hour. The distribution of the air quality sites is
shown in Figure 1.

The surface meteorology observation data was from the National Meteorological Science
Data Center of China (https://gmao.gsfc.nasa.gov/), including hourly observations of air pressure,
air temperature, relative humidity, wind speed, water vapor pressure precipitation and other factors.
All of this data was obtained from surface meteorology stations. In our study area, there were
31 stations, and we extracted the wind speed (m/s) and precipitation (mm) from the stations as the
key independent variables in the regression model according to previous studies [35], and the relative
humidity (percentage) values were extracted for correction of the AOD. The temporal resolution of the
datasets was set to be one hour. The distribution of the meteorology stations is shown in Figure 1.

The NDVI (normalized difference vegetation index) can precisely mirror the surface vegetation
coverage. This dataset is derived from the VEGETATION sensor on-board the SPOT satellite
platform [36]. The measurements of land surface reflectance in the visible and in the infrared domains
can be obtained from the VEGETATION instruments on-board SPOT4 (launched on April 1998) and
VEGETATION2 on-board SPOT5 (since February 2003) [37]. At present, the NDVI time series data
has been extensively used for the study of land use or cover change detection, vegetation dynamic
change monitoring, macro-vegetation cover classification and net primary productivity estimation.
This dataset effectively reflects the distribution and diversification of vegetation coverage in different
areas of the country at different spatial and temporal scales. In this investigation, we used the

https://ladsweb.modaps.eosdis.nasa.gov
https://lpdaac.usgs.gov/products/mcd19a2v006/
https://gmao.gsfc.nasa.gov/
http://106.37.208.233:20035/
https://gmao.gsfc.nasa.gov/


Remote Sens. 2020, 12, 2825 8 of 33

annual NDVI data in 2018 for China with a 1-km2 spatial resolution (http://www.resdc.cn/DOI, 2018,
doi:10.12078/2018060601).

In this study, the daily albedo (a measure of the amount of light that hits a surface that is reflected
without being absorbed) data that covers the study area and period is needed. This data can be obtained
from the European Centre for Medium-Range Weather Forecasts (ECMWF), which reanalyzes interim
(ERA-interim) daily data with a horizontal resolution of 0.25◦ × 0.25◦. This data with a global coverage
is suitable for implementing climate studies in different areas of the world because of its long-term
availability [38]. ERA-interim monthly averaged globally gridded meteorological data (fully described
by Berrisford et al., [39]), from 1 January 2019 to 31 May 2019, is used to extract the corresponding
daily albedo raster datasets.

The Shuttle Radar Topography Mission (SRTM) is a joint project between the National
Geospatial-Intelligence Agency (NGA) and National Aeronautics and Space Administration (NASA),
which offers an important step forward in the generation of digital elevation model (DEM) SRTM
data [40,41]. In this study, to estimate PM2.5, the elevation data is extracted as a significant feature
from 1:1,000,000 geomorphological maps of China [42]. The spatial resolution of the data is 90 m.

3.2. Method

The framework consists of 3 parts and 9 steps based upon the methods and the process introduced
in Figure 2. Part 1 illustrates the process to obtain high-resolution spatiotemporal AOD distributions.
Based on this, the process to build a regression model to compute PM2.5 distributions is presented
in part 2. Finally, based upon training high-resolution spatiotemporal PM2.5 distributions, we use
ConvLSTM to predict the test distributions, compared with a seasonal autoregressive integrated
moving average (SARIMA) model as a baseline to test the accuracy of the prediction.

3.2.1. Part 1: High-Resolution AOD Acquisition and Correction

The aim of the first part is to compute the spatiotemporal high-resolution AOD distributions with
correction processes for the reasons as follows: the air humidity has an effect on the aerosol optical
depth (AOD), with an increase in humidity, size of hygroscopicity and dissolved aerosol, the particles
will increase accordingly. There is a positive correlation between air humidity and aerosol optical
depth [43,44]. Besides, the PBLH has an impact on the relationship between surface PM2.5 and AOD.
The greater the PBLH, the greater the AOD, but the surface PM2.5 could be low [45,46]. Considering
such effects, we use relative humidity and PBLH to correct the AOD, which can make the relationship
between AOD and PM2.5 clearer. There are three steps to compute the corrected AOD distributions.

In the first step, we process the raw datasets of MCD19A2, GEOS FP and surface meteorology
observation data. We select and define AOD that is extracted from the MCD19A2 as the AOD-0 dataset.
Then, based on the GEOS FP data, the natural neighbor interpolation [47,48] method is utilized to
convert the PBLH into the same raster format files as the AOD dataset, which makes it easier to correct
the AOD. In terms of the surface meteorology observation data, we only extract the hourly relative
humidity data from the 31 stations, then compute the average values of the relative humidity for each
day in every station. For the daily average relative humidity, we use the inverse distance weighting
(IDW) [49,50] method to spatially interpolate the points data to the whole of the study area. The final
relative humidity distributions are the image files where a cell represents a 900-m-square space area,
which is the same as for the AOD-0 images.

http://www.resdc.cn/DOI
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Figure 2. The workflow of the framework to predict PM2.5. The definitions of abbreviations are
as follows: GEOS FP (Goddard Earth Observing System forward-processing), PBLH (planetary
boundary layer height), MCD19A2 (Multi-Angle Implementation of Atmospheric Correction (MAIAC)
algorithm-based Level 2 gridded (L2G)), AOD (aerosol optical depth), IDW (inverse distance
weighted), RHU(relative humidity), PRE (precipitation), NDVI (normalized difference vegetation
index), DEM (DEM), SPOT/VEGETATION (Satellite Pour l’Observation de la Terre Vegetation) ERA
(ECMWF Reanalysis), SRTM (Shuttle Radar Topography Mission), XGBoost (eXtreme gradient boosting),
ConvLSTM (convolutional long short-term memory), SARIMA (seasonal autoregressive integrated
moving average). And the correspondence of the colors and steps are as follows: step 1 (blue), 2 (green),
3 (brown), 4 (purple), 5 (yellow), 6 (dark blue), 7 (dark green), 8 (black) and 9 (red).

In the second step, we correct the AOD-0 for the first time by using relative humidity distribution
datasets. The correction equation is taken from [51,52]:

AOD1 = AOD0 ∗

(
1−

RH
100

)
(1)

where the RH represents the relative humidity, AOD0 is the AOD-0, and AOD1 is the AOD-1. In terms
of each corresponding cell, we use Equation (1) to correct AOD-0; then, we get the AOD-1 distributions.

The third step is based on the AOD-1 and PBLH datasets; we use the equation below to correct
the AOD again [45,52]:

AOD2 =
AOD1

PBLH
(2)

where AOD1 is the AOD-1, and AOD2 is the AOD-2. We get the AOD-2 distributions in the final step
of part 1, which are the high-resolution spatiotemporal AOD corrected distributions.

3.2.2. Part 2: Regression Modeling to Compute High-Resolution PM2.5

PM2.5 has a high correlation with AOD [43,51,53,54], but other meteorological factors also influence
the concentration of PM2.5. However, we can only obtain the accurate ground PM2.5 values from
the sparsely populated ground air quality station sites. If we want to get the spatially continuous
distributions of PM2.5, we need to estimate the concentration based on the AOD and other key
factors [13]. Thus, the purpose of this part is to build a regression model according to the ground truth
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PM2.5 data based upon the air quality station site points, and then, the model is used to estimate the
whole distribution in the whole city area. There are 4 steps to this part 2, beginning with step 4 and
following from the 3 steps in part 1. For the fourth step, we preprocess the air quality observation data
to extract the hourly PM2.5 values on the 16 air quality sites. The surface meteorology observation data
are used again to extract the wind speed and precipitation values. We still use IDW to obtain the raster
format image of the wind speed and participation values over the study period.

In the fifth step, we compute the daily average values of PM2.5, wind speed and precipitation for
the 16 sites in 151 days. The same preprocessing is used for the AOD-2 raster images. The PM2.5-AOD
relationship can establish a multivariate function, which is related to several influencing factors,
according to previous studies [55–57]. Hence, the following parameters are selected to improve the
PM2.5 estimation in our study, based upon albedo, precipitation, NDVI, wind speed and elevation,
which are constructed for modeling, where PM2.5 is regarded as the dependent variable and the others
are used as the independent ones in the next step.

The wind speed has a significant influence on personal exposure levels in PM2.5, because the
kind of coarse particles from resuspension shows a positive dependence on the wind speed [58,59].
Precipitation has a significant impact on the concentrations of PM2.5 [60,61], because precipitation has a
wet scavenging effect on particles, which is the major process by which the atmospheric self-purification
and a balance between the sources and sinks of atmospheric aerosols are maintained [62,63]. Elevation
is known to impact PM2.5 distributions, because PM2.5 is difficult to reach in higher elevations [64,65],
which results in a big difference between the lower region and higher one. Vegetation planted in urban
areas, urban forests and parks can remove particle pollutants [66], which means PM2.5 is influenced by
the vegetation in a city. Thus, the lack of NDVI, which is a satellite-based greenness index that measures
and monitors plant growth and vegetation density, might limit the capability of using green spaces
to explain PM2.5 changing [67]. Furthermore, albedo also plays a key role in the estimation process
of PM2.5 [35,68]. There is a strong correlation between the NDVI and surface albedo, i.e., with the
severity of desertification increased, vegetation coverage reduced and then the soil moisture decreased,
resulting in an increased albedo [69]. However, considering albedo is a response to the heterogeneity
of different land surface types, while NDVI focuses on the influence from the vegetation on PM2.5,
they have different priorities, and both of them contribute to the estimation of PM2.5 distribution,
which is important for use in a machine-learning model and to promote a good performance; hence,
we use these two key factors at the same time.

There are 151× 16 = 2416 sets of data points from the 151 days and 16 stations as the output of
this step.

For the sixth step, we need to build an estimation model to estimate PM2.5 in the whole study
area. Although we use the 2416 sets of data points, including humidity, albedo, precipitation, NDVI,
wind speed and elevation; yet, in this step, there are many missing values in the AOD distributions.
Some of the missing values’ regions cover some 16 stations, where the corresponding AOD cannot be
obtained. Thus, less than 2416 sets of data points would be input, but they are all independent variables,
while the corresponding PM2.5 values are the dependent variables. The output is the relationship
model that is trained by the input data. The most accurate model would be used to estimate continuous
spatial PM2.5 distributions based on the continuous spatial AOD distributions. According to the
study of Yongming et al., a cubist regression model is the best choice to estimate the concentrations of
ground-level PM2.5 [35]. At the same time, some other studies also test that the cubist model performs
well in similar situations [70,71]. Thus, in this study, we also select some popular traditional regression
models and machine-learning methods to build the estimation model between the PM2.5 and other
independent variables and then compare their accuracy.

The regression models that are used and compared in this step include: (1) linear, (2) ridge,
(3) Least Absolute Shrinkage and Selection Operator (LASSO), (4) cubist and (5) eXtreme gradient
boosting (XGBoost). LASSO is a variable selection and regularization method that can force some
secondary coefficients to be zero in order to shrink coefficients [72]. It can increase the explainability



Remote Sens. 2020, 12, 2825 11 of 33

of the model and decrease overfitting. Cubist is a rule-based tree model, which uses Quinlan’s M5
theory [73] to generate multiple linear regression models in the end nodes of the tree. When forecasting
the terminal nodes, the corresponding linear regression model can be used. The corresponding linear
regression model makes a prediction at the terminal node, which is then smoothed by combining it
with predictions from nearest-neighbor nodes within the tree to improve the prediction precision [74].
In addition, the cubist also builds several tree models (called committees), in which rule-based models
are built into each individual tree model [75]. The final forecast can be obtained by averaging the
forecasts of all committees. XGBoost is an integration tree method based on the principle of a gradient
lifting framework [76]. It can control overfitting and the complexity of the model by using regularization
techniques [77].

In the seventh step, we built a model between the PM2.5, AOD and other necessary weather
conditions, such as wind speed and humidity, and then, we needed to use this model to estimate
the spatially continuous PM2.5 distributions for the whole of the study area. Since there are many
missing values of AOD in space, we needed to interpolate the missing data based on the existing data.
The frequency of the 151 AOD maps that have missing values (null values) are shown in Figure 3.
In the histogram, we can see more than a half of AOD maps have more than 50% cells missing values,
and more than 27% (more than 41) AODs have 90%–100% missing-value cells. There are 14 AOD
maps that are totally null (100% missing-values cells). In terms of this issue, we propose a strategy as
follows: If there are even consecutive AODs, the first half would be replaced by the nearest AOD that
has values. However, if there are odd consecutive AODs that are all totally null, apart from the middle
one, the remaining AODs change to the even consecutive AODs; then, we use the same way as the
last strategy to replace only one middle AOD, which would be represented by the average AODs of
the two nearest ones. For example, here are 1 to 10 AODs; within these, the 3rd, 4th, 7th, 8th and 9th
AODs are totally null; then, because the 3rd and 4th are even consecutive AODs, the 3rd one would be
replaced by the 2nd one, and the 4th one would be replaced by the 5th one. On the other hand, if the
7th, 8th and 9th are odd consecutive AODs, the 7th one would be replaced by the 6th one, and the 9th
one would be replaced by the 10th one, while the middle one, the 8th AOD, would be computed as the
average maps of the 6th one and the 9th one.
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Figure 3. The frequency histogram of the AOD maps with missing values, where the orange bars
illustrate the volumes of the frequency. For example, there are 40 AODs (151× 26% ≈ 40) that have
0%–10% missing value cells, which is shown as the first bar from the left.

In terms of the AODs that have at least one cell with a value (not a null value), here, we use a Block
Statistics and Missing-value Padding (BSMP) method to turn the AODs into more spatially continuous
distributions. The BSMP method applies to a raster grid or image and consists of two parts. The block
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statistics tool conducts a neighborhood operation, which means inputting pixel calculation statistics
information, where these pixels belong to a set of fixed nonoverlapping square areas, also called
blocks or windows (in order to avoid ambiguity, we use “window” in the latter part of this paper).
Such statistics (for example, maximum, average or sum) apply to all input pixels contained within
each window. After getting the calculation result value of a single window, a window is specified,
and the calculation result will be assigned to all pixel positions contained in the minimum boundary
rectangle within the window. The missing-value padding (padded cell) is used to combine the original
raster with the new raster that is generated after the block statistics. The cell that already has a value
keeps the original value, while the missing-value cell obtains a new value from the block statistic.
The workflow for the BSMP is shown in Figure 4.
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(white) cells in (a) have no values where (a) shows the original raster of a case of AOD distribution.
(b) shows the process of the block statistic for the original raster, while the result of the BSMP after one
round has been shown in (c).

The BSMP has two key characteristics. First, the size of the window can dictate the number of
padded cells. The larger the window is, the larger the number of padded cells is. Second, according to
Tobler’s First Law of Geography [78], “everything is related to everything else, but near things are
more related to each other”.

There are a number of cells that have missing values in many cases of AOD distributions. The larger
the window is, the lower the accuracy of the value in the padded cell that is computed. That is,
we use the BSMP to let a cell that has no data get a value. If there are many cells that have data in the
block, the non-cell can get a value with a higher accuracy, but if only a few cells exist, the non-cell
can still get a value, but the accuracy is lower. In order to get higher, more accurate values for the
padded cells, based on the characteristics of the BSMP method, a smaller-sized window is needed,
which also means that only one round of BSMP would not be enough. Thus, one process might use
BSMP for several rounds to make up all the missing values for one AOD distribution. However,
with an increasing number of BSMP rounds, the computed value for the padded cell would get a lower
accuracy, though the window size does not decrease. This is because the new round BSMP uses cells
that just are filled. There are some new errors that are generated, but there were some old errors that
were generated by the last round, so, the sum error increases with new rounds (defined as situation 1).
However, if we enlarge the size of the window in the latter rounds of the BSMP (defined as situation 2),
the cumulative error would be similar to strategy 1. At the same time, situation 2 can improve the
efficiency of the BSMP, because it can decrease the number of BSMP rounds by increasing the size of
the window.
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Thus, combining the two key characteristics of the BSMP, we use multi-rounds of BSMP to
interpolate the missing data based on the existing data, which, as the number of rounds increases, the size
of the window increases as well, until all the missing values have been interpolated (see Section 4.1.2).

After applying the BSMP method, the missing values in the AOD are filled. In the final step, 7,
of this part, we use the trained models that have been selected with the highest estimation accuracy to
estimate the PM2.5 based on the AOD datasets. In this process, we create a fishnet-like grid to divide the
whole of the study area into square cells. Since the study region is a 165 × 165 km square, to make the
data structure more suitable for the prediction models, the grid in this area consists of 50× 50 = 2500 cells,
and each cell is a 3300 × 3300 m square. Thus, all datasets would be reformatted from the original
resolution (i.e., 900 m resolution of AOD) to 3300 m resolutions for every distribution that is in each
time node (day), which is for the prediction part. Then, we can obtain the daily spatially continuous
PM2.5 distributions for the whole of the study area. These distribution maps are then used as the input
into the next prediction processing part, 3.

3.2.3. Part 3: Prediction of High-Resolution PM2.5 Distributions

In this last part, 3, that is the core component of the prediction framework, there are 2 steps to
predict the high-resolution spatiotemporal PM2.5. We continue to use the index in the previous part, 2,
to present the eighth and ninth steps. Please note that in this 3rd part, we focus on the estimation of
the high-resolution PM2.5 in a spatial area by using the 7 variables to input to the estimation models.
However, the datasets are extracted from the different dates, which means the time factor in this
processing has not been considered. However, in this part, we focus on the spatiotemporal prediction
for PM2.5, so we need to define the spatial and temporal resolutions. The temporal resolution is a day,
because daily AOD data is the highest resolution that we can obtain this data for (see Section 3.1.2),
and the spatial resolution is set to be 3300 m in this prediction part for the reason given below.

In the eighth step, we applied two prediction models to the SARIMA dataset (used as a baseline)
and ConvLSTM (used in the final prediction part of our framework).

The input of data is 151 PM2.5 distribution images with a 3300 m spatial resolution. However,
the approaches for inputting data into these two models are different. In terms of the SARIMA
model, we regard each cell as a single input, which means every cell has a time series consisting of
151 concentration values. The model is built 2500 times, because there are 2500 cells.

The SARIMA model used in this study is originally proposed by Box and Jenkins, which is the
most general form of a univariate class of models [79]. It has been widely studied and used in different
fields, such as industry, economy and, more recently, in public health. In this study, this model is
utilized for the prediction of a PM2.5 time series.

Since the PM2.5 distribution changes with time in a specific spatial area, such as within one city or
province, we need to determine if they have a trend that increases or decreases values in the series in
the dataset. The initial process is that a first-order difference of the series zt is given by wt, the difference
between points in the series, calculated as:

wt = zt − zt−1, (3)

We may also write wt in terms of the backward shift operator B as:

wt = (1− B)zt, (4)

and, hence, the dth order differencing is obtained as (1− B)dzt.
Besides this trend, the seasonality needs to be considered as well. Thus, Box and Jenkins have

extended the above idea of ordinary differencing by forming seasonal differences:

wt = zt − zt−1 = (1− Bs)zt (5)
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where s is the seasonal period of the data. Consequently, the seasonal autoregressive integrated moving
average (SARIMA), which is the most general Box–Jenkins model, has the following form:

φ(B)Φ(Bs)(1− Bs)D(1− B)dzt = θ(B)Θ(Bs)at, (6)

with:
φ(B) = 1−φ1B− · · · −φpBp, (7)

θ(B) = 1− θ1B− · · · − θqBq,

Φ(Bs) = 1−Φ1Bs
− · · · −ΦpBsP

Θ
(
BS
)
= 1−Θ1BS

− · · · −ΘQBsQ

where p represents the auto-regressive order; q represents the moving average order; d represents the
number of differencing operations and P, D and Q represent the corresponding seasonal orders.

After removing the trend and seasonal components, the model-fitting process includes the
identification, parameter estimation and diagnostic verification. Based on the estimated autocorrelation
function (ACF) and the estimated partial autocorrelation function (PACF), a tentative autoregressive
moving average (ARMA) process is developed in the recognition phase. We compare the shape of the
ACF and PACF of the PM2.5 time series with the shape of the theoretical model. In this comparison,
we can define p and q.

It is worth mentioning that, in our study, for each validation, we need to build 2500 SARIMA models
for 2500 PM2.5 time series in each cell; this is computationally intensive and is quite time-consuming.
In order to simplify the process, for every distribution that consists of 2500 cells, we compute the
average PM2.5. One hundred and fifty-one-day average PM2.5 values are regarded as the input of the
SARIMA, then, to calculate the best parameters. The best output parameters are defined as the global
parameters that would be used for each of the 2500 cells in the next process. Then, we still build 2500
SARIMA models for the 2500 times series in each cell, but we use the same global parameters for all
2500 SARIMA models in each validation. We have 10 validation groups; thus, we used 10 sets of global
parameters in total.

Long short-term memory (LSTM) is a kind of recurrent neural network (RNN) node structure,
which can deal well with time series data that generally has temporal autocorrelations [33]. This model
can successfully learn and generalize the attributes of a time series, such as a road traffic flow [80] and
a financial stock options return [81]. The battery state affected by various interconnection gates is the
core concept of LSTM. The unit state acts as the transmission highway, and the relevant information is
transferred down the sequence chain as the “memory” of the network. A cell state can carry relevant
information to the whole process of sequence processing. Therefore, even information from an earlier
time step can enter a later time step, thus minimizing the impact of the short-term memory. With the
development of the cell state, information is added or removed through the gate, just like a kind of
neural network, which decides what information is allowed to exist in the cell state (during training)
by learning the relevant information [82]. In a LSTM network, at each time step t, the hidden state ht

is updated by the current data, i.e., at the same time step Xt, the hidden states at the previous time
step ht−1, the input gate it, the forget gate ft, the output gate ot and a memory cell Ct are updated as
well [83]. The basic principle of this model is the same as that of a ConvLSTM. Therefore, the equation
is not repeated here, which will be described in the introduction of the ConvLSTM model later.

A ConvLSTM model is a variant of a LSTM, which is used to deal with spatial-temporal
predictions. It was first proposed by Shi et al., [84]. At first, it was used for real-time precipitation
predictions—amongst which, real-time prediction is used as a very short-range prediction technology
using the estimated values of velocity and motion direction. In this paper, we follow the formulation of
ConvLSTM according to [84], which includes inputs X1, . . . , Xt; cell outputs C1, . . . , Ct; hidden states
h1, . . . , ht; gates it, ft and ot and uses a three-dimensional (3D) tensor structure. In the three-dimensional
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space-time tensor of the input elements of the ConvLSTM network, the first two dimensions are
spatial dimensions, and the third dimension is the temporal dimension. Just like the original LSTM
model, the transformation from input to state and from state to state involves the convolution of the
three-dimensional output tensor. The following equation can be used to further build the model,
where ∗ represents convolution operation, and ◦ represents Hadamard product.

it = σ(Wxi ∗Xt + Whi ∗ ht−1 + Wci ◦ ht−1 + bi), (8)

ft = σ
(
Wx f ∗Xt + Wh f ∗ ht−1 + Wc f ◦ ht−1 + b f

)
,

ot = σ(Wxo ∗Xt + Who ∗ ht−1 + Wco ◦ ht−1 + bo),

Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt + Whc ∗ ht−1 + bc),

ht = ot ◦ tanh(Ct)

Θ
(
BS
)
= 1−Θ1BS

− · · · −ΘQBsQ,

In the above equations, it, ft and ot are the outputs of the input gate, forget gate and output
gate for time step t. Ct is the cell output at time step t. ht is the hidden state of a cell at time step t.
Sigmoid (σ) is used as the gating function for the three gates, since it outputs a value between 0 and
1 corresponding to either how it does not allow an information flow through the gate or it allows a
complete information flow through the gate. On the other hand, in order to overcome the problem
of a vanishing gradient (which is the problem in using a gradient-based learning method and back
propagation to train an artificial neural network), a function (tanh) is needed. W and b are a weight
matrix and deviation vector parameter, respectively, which need to be learned during training the
ConvLSTM model. Then, we input the PM2.5 grids into the ConvLSTM model and use the validation
strategies below.

As the dataset used in this study is a time series, we present a cross-validation strategy, as shown
in Figure 5. We validate the prediction models 10 times, which utilizes 10 different data groups
that are extracted from the original dataset. Each group consists of 151 − 9 = 142 days of data,
142 × 80% ≈ 114 days that are used to train the models and the next 28 days’ data is then used or
prepared to be tested.
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and are represented by symbol ellipses (“ . . . ”), such as February and March.

Ninth step—the final step.
After training and predicting the two models 10 times, we assess the results by calculating the

root mean square error (RMSE) and the R2 (coefficient of determination) regression score function [85]
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of the tested data and the predicted data. The RMSE represents the absolute fit between the model and
the data and how close the observed data points are to the predicted values of the model, while R2

reflects the relative fit result. We compute the results of these two indicators as the average results for
each cell at one-time intervals (one hour). Nevertheless, for the purpose of assessments in different
scales to compare the two models, we assess and present the two results in time and space, respectively,
by only using RMSE to reflect the absolute value, which makes them easier to be distinguished.

In the temporal scale, for every fishnet (grid) that consists of 2500 cells, there are three features
defined for each cell: the original PM2.5 value (F1), predicted PM2.5 value by SARIMA (F2) and the
predicted PM2.5 value using ConvLSTM (F3). We calculate the RMSE between the 2500 F1 and 2500 F2;
the result is defined as R1. Then, we calculate the RMSE between the 2500 F1 and 2500 F3. The result
is defined as R2. For every validation group, there are 28 days to be tested, and there are 28 R1 and
28 R2 values that can be arranged by time flow. While we build models in 10 validations, there are
10 group results. In every group, there are 28 R1s and 28 R2s. R1 and R2 reflect the accuracy of the two
predicted results that can be assessed and compared between the two prediction models in time.

According to the discussion above, there are three features for each cell in every different fishnet.
In terms of the same cell in different fishnets, we extracted all 28 F1, 28 F2 and 28 F3 values. Then,
we calculated the RMSE between the 28 F1 and 28 F2 values, resulting in R3, and calculated the RMSE
between the 28 F1 and the 28 F3 values as result R4. Finally, there were 2500 R3s and 2500 R4s. Since we
validated the models 10 times, there were 10 groups of results. R3 and R4, which reflect the accuracy of
the two predicted results, can be assessed and compared between the two prediction models in space.

4. Results

This section presents the results of applying our PM2.5 prediction framework in Shijiazhuang
City. First, it shows some examples of the preprocessing, the data used, including the distributions of
the input variables for the estimation models, and the BSMP processing based on the remote-sensing
dataset. Then, the results are presented and discussed. The estimation methods are compared. Then,
the most accurate method is used to build a model to estimate the spatiotemporal high-resolution
PM2.5 over the whole study area and period. Finally, we show the prediction results using the SARIMA
and ConvLSTM models with a cross-validation, and then, finally, we report the comparison of accuracy
between these two models.

4.1. Data Reprocessing

4.1.1. Data Preparation for Estimation Models

In this part, we introduce an example of the preprocessing results for the used datasets in the
estimation model. Six distributions, including albedo, precipitation, relative humidity, wind speed,
elevation and NDVI, are illustrated in Figure 6, where albedo, precipitation, relative humidity and
wind speed distributions are from 1 January 2019, and the NDVI distribution is from December 2018.
For the six kinds of distributions, the precipitation, relative humidity and wind speed distributions
are generated by an IDW method based on the data from meteorology stations (points). Albedo,
precipitation, relative humidity and wind speed distributions have 151 maps over the study period,
while the elevation and NDVI data are from one map.

These datasets have two functions: First, in step 5 of part 2, we extract the values from the
air quality sites, then use them to train an estimation model. In this step, the value sets of albedo,
precipitation, relative humidity and wind speed used are from the 151 maps, but the other two are
from the individual maps. Second, after getting a complete estimation model, we can use the datasets
by combining the AOD distributions to get the PM2.5 distribution that covers the whole study area.
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Figure 6. Examples of the distributions of the 6 factors that contribute to the PM2.5-AOD relationship.
(a–d) show cases of the albedo, precipitation, relative humidity and wind speed distributions in Jan 2019;
(e) shows the elevation distribution of the study area, while (f) illustrates the NDVI that in Dec 2018.
In (b), because there is no precipitation in that day, the black cells, which mean the 0 values, cover the
whole study area.

4.1.2. BSMP Processing

We show the processing of the BSMP method that creates the spatial distributions for all 151 days’
AOD in Figure 7. In this process, different AOD distributions need different numbers of BSMP rounds
depending on the number of cells that are missing values. We show an example of one of the total
151 AOD distributions in Figure 7 (1 January 2019), which needs five rounds of BSMP. The settings of
the window sizes in the five rounds are 5× 5, 10× 10, 15× 15, 20× 20 and 25× 25.Remote Sens. 2020, 08, x 18 of 33 
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Figure 7. An example of the processing of the BSMP method using an AOD-2 distribution from the
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AOD-2 distribution. “SJZ” is the abbreviation of Shijiazhuang City; “AOD-2” is not the original AOD
but the corrected AOD using Equations (1) and (2).
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Note that the dataset of the upgraded AOD distributions that have used BSMP 151 times has only
one function: After getting a completed estimation model, it is used to get the PM2.5 distribution that
covers the whole study area by combining the other five key factors’ distributions.

4.2. PM2.5 Estimation Model

4.2.1. Model Performance and Comparison

Following the workflow of step 5 in part 2, we use five models/methods to estimate the PM2.5

based upon six features. Since there are several null values in the AOD datasets for the results because
of MODIS satellite orbit spacing issues, cloud coverage problems and the limitations of the inversion
algorithms, we extracted 1159 arrays from 2416 data arrays as the input into the five models. Here,
we use a five-fold validation strategy to test the models. The specific process used is as follows.
We divide the datasets into five subsets. While the first four subsets have 232 arrays, the last subset has
231 arrays (total: 1159). Then, one of the subsets is used as the validation dataset, and the rest are used
as the training dataset. The training is repeated 10 times, until all the subsets are used as the validation
dataset at least once.

On the basis of comparison between the verification and training data, the root mean square error
(CV-RMSE) and the coefficient of determination (CV-R2) are used to validate the accuracy of each
estimated model. While determining the best model for PM2.5 estimation based on accuracy, a variable
importance analysis was also performed to evaluate the contribution of each predictor in the PM2.5

prediction. This method is based on the F Score (feature score) measure, which simply summarizes the
number of times each feature is used in the decision trees.

Parameters of the machine-learning models were optimized with an auto-process, which means
we set a range of every parameter for each model and then processed the cross-validation; the parameter
set with the most accurate estimation results would be regarded as the determined parameters. Here,
we report the determined parameters of the models below:

• Ridge: alpha = 0.001 (alpha is the regularization strength).
• LASSO: alpha = 0.001 (alpha is the constant that multiplies the L1 term).
• Cubist: committees = 1000.
• XGBoost: max_depth = 8, subsample = 0.8, colsample_bytree = 0.8, eta = 0.3 and num_boost_round

= 1000. (The max_depth is the maximum depth of a tree, subsample is the subsample ratio of the
training instances, colsample_bytree is the subsample ratio of columns when constructing each
tree and num_boost_round is the number of boosting iterations.).

Based on the results of the optimized models, the CV-RMSE ranged from 32.86µg/m3 to 52.23µg/m3,
and the CV-R2 ranged from 0.17 to 0.71 (Table 1). Among all, XGBoost had the best performance,
while cubist is the model with the worst performance determined by CV-RMSE. The results are
different from a similar study [35], where the cubist model gave the best performance. The reason
why this happened is that the performance of a regression or machine-learning method is based on
different geographic and environmental situations. The results in [35] could not be used in our case,
which demonstrated that this comparison is necessary. With the optimal parameters, the CV-RMSE
and CV-R2 of XGBoost were 32.86 µg/m3 and 0.71. We chose XGBoost to build an estimation model in
the last part of this paper.

Table 1. The cross-validation results of predictions from the 5 estimation methods. CV means the cross
validation RMSE means the root mean square error and R2 means the determination regression.

Model CV-RMSE (µg/m3) CV-R2

Linear 46.69 0.41
Ridge 49.67 0.33

LASSO 46.71 0.41
Cubist 52.23 0.17

XGBoost 32.86 0.71
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4.2.2. XGBoost Estimation

A positive but medium correlation was observed based on the evaluation of an empirical
relationship between the observed PM2.5 and satellite-derived AOD (Figure 8a), with a correlation
coefficient (R) of 0.58 (R2 = 0.34), while the p-value < 0.01, which provides the evidence to use the AOD
to estimate the PM2.5. For the best model, the predicted and observed values were well-aligned with
the line of the best fit (Figure 8b), indicating the high accuracy of the PM2.5 estimation using XGBoost.
The RMSE of the final estimation is 13.31 µg/m3, while the R2 is as high as 0.96, which means XGBoost
is truly a good model with excellent performance for this use case.
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Figure 8. The relationship of the AOD and PM2.5 and the regression results of XGBoost: (a) is the linear
regression result of the AOD and PM2.5 where red points are the fitting coordinate points, (b) shows the
prediction and comparison results of the observed and estimated PM2.5 illustrated by green points and
(c) is the importance analysis result that shows the feature importance ranking for the trained XGBoost
model with blue bars. ALB means albedo.

We notice that, in Figure 8b, there is a significant underestimation of values larger than
300. However, there are only 15 to 20 values with a significant underestimation out of a total
of 1159 observations. Less than 2% of points could be regarded as outliers that might be caused by
accidents, i.e., inputting corrupted data like all input independent variables are 0 or negative numbers.
The settings of the XGBoost parameters may result in this situation as well. This needs further testing.

Based on the variable importance analysis, the predictors with the highest contributions to the
XGBoost model were the daily AOD and albedo (Figure 8c). Compared with study [35], the results are
similar, but the feature elevation is at the second place in the ranking, while in this study, the AOD and
albedo are the top two features based on the F score, which is defined as the sum number of times a
feature have been used in the decision trees of the model. The higher the score is, the more important
the feature is. The third to sixth influencing features in this study are wind speed, elevation, NDVI and
precipitation. The influence from the NDVI on the estimation in both studies is not high. The first
three features have the greatest impact on the estimation, which accounts for up to 76%, but they have
similar values.

Next, we use spatially continuous AOD distributions with high resolution that are computed
by a BSMP method to train a XGBoost model to estimate the spatiotemporal high-resolution PM2.5

distributions of the whole of Shijiazhuang City over the 151 days. Some estimated PM2.5 map examples
are shown as Figure 9.

From the five subfigures, we can see in the example in March 2019, the PM2.5 was distributed
with a higher level compared to the other four examples. The average PM2.5 value was higher than
115 µg/m3, which belongs to moderate pollution based on the air quality standards of China (http:
//english.mee.gov.cn/), and some of the regions have been covered by heavy pollution (150–250 µg/m3)
and even serious pollution (250–500 µg/m3). For the example on the 1st of January 2019, the PM2.5

was still at a higher level and had an average value was about 80 µg/m3. However, in another three
cases, the PM2.5 was at low levels at minor pollution (75–115 µg/m3) or good air quality (35–75 µg/m3).

http://english.mee.gov.cn/
http://english.mee.gov.cn/
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When in the winter or early spring in China, the combustion of fuel for heating releases a lot of
PM2.5, with the daily industrial production still working, resulting in the situations like the first and
third examples. However, in February, the PM2.5 seemed to fall dramatically. This is because the
Spring Festival of China was on the 5th of Feb., when most Chinese people were on holiday, reducing
industrial emissions, which contributed to decreasing the PM2.5 emissions. When the weather warmed
in April and March, the air quality got better as the emissions of the pollutants decreased.
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4.3. Prediction

4.3.1. SARIMA

With respect to the method described in Section 3.2.3, we built 10 SARIMA models for 10 validations.
In every model, we used ACF to test if the time series of the spatial average PM2.5 had a trend. In the
10 validation processes, all groups of the time series are stationary. At the same time, a normal trend
would exist in a year or decade period, which means we do not need to model our data using difference
processing. Thus, the parameter d in all validations is set to be 0. The other parameters determined
by the ACF process are shown in Table 2. Then, we built SARIMA for each 2500 cells’ time series
and repeated it for 10 times. Since the prediction results consist of two dimensions, time and space,
we reported the final prediction results in Section 4.3, giving a comparison of the two models.

Table 2. The parameters of the seasonal autoregressive integrated moving average (SARIMA) models
for the 10 validation groups.

Parameters G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

p 18 30 18 18 30 30 12 18 12 18
d 0 0 0 0 0 0 0 0 0 0
q 2 4 2 5 4 4 2 5 2 5
P 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1
Q 1 1 1 1 1 1 1 1 1 1
s 7 7 7 7 7 7 7 7 7 7
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4.3.2. ConvLSTM

For each round of the prediction, the parameters of the model included the kernel size, which we
proposed to be 3 × 3. We use 40 convolutional filters that can extract important features from the
convolution layers, with five units for each. In order to improve the generalization ability and to
prevent overfitting (which is the production of an analysis that corresponds too closely or exactly to
a particular set of data and may, therefore, fail to fit additional data or predict future observations
reliably in machine-learning or deep-learning models), the recurrent weight dropout was set to 0.2 in
the model; the number of training times (epochs) was set as 500, whilst the Adam optimizer [86] was
used with a learning rate of 0.001 and a decay rate of 0.9. The result is shown as Figure 10.Remote Sens. 2020, 08, x 22 of 33 
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This figure shows the training epoch of the results and the mean absolute error (MAE), which is
called a loss function in machine learning or deep learning. It is noted that, when the epoch was
less than 30, the loss dropped rapidly, but when the epoch was greater than 30 and less than 200,
the average value of the loss of the 10 groups started to fall slowly. After 200 epochs, the average
loss decreased very slowly and was relatively stable around 100. In the next section, we analyze the
accuracy of the prediction results of the two models.

4.4. Accuracy Analysis

The overall accuracy of the prediction results can be reflected by the RMSE of the tested and
predicted values. The total average RMSEs of the two prediction results for the 2500 cells in the
10 validations are reported in Table 3. It is noted that the accuracy of the prediction results of the
ConvLSTM model is higher than SARIMA, where the total average of the ConvLSTM model’s RMSE is
14.94, while the SARIMA-predicted RMSE is 17.41. Since the structure of the overall process of this
study is multilayered both in the spatial and temporal scales, in order to compare the two prediction
results clearly, we compute the RMSE results by the method in Section 3.2.3. Then, we assess and
discuss the results separately in time and space in the next section.
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Table 3. The average root mean square error (RMSE) of the prediction results for all cells in the 10
validation groups.

Model G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Mean

C 14.78 15.00 15.60 15.27 14.85 15.19 14.88 14.45 15.09 14.30 14.94
S 17.15 22.33 16.14 16.67 21.79 20.53 14.39 15.68 14.10 15.29 17.41

Note: S means the SARIMA model, and C means the convolutional long short-term memory (ConvLSTM) model.

4.4.1. Comparison in Time

The tested ConvLSTM-predicted and SARIMA-predicted PM2.5 over the 28 days in the 10 different
groups are shown in Figure 11. We can see that the original concentrations change with time in every
group, which are the average values of the 2500 cell concentrations. The fitting degree of the other two
lines with the original tested line reflects the accuracy of the predictions of the two models.

We notice that, in Figure 11, the PM2.5 values are low (<40 µg/m3) in all the groups, whereas,
in Figure 8, the value ranges have a much higher maximum. The reason why this happens is as follows:
Figures 8 and 11 illustrate two totally different processing results, while Figure 8 shows the estimation
results and Figure 11 shows the prediction results. Figure 8a shows the relationship of the AOD and
PM2.5 in the estimation part. There are 1159 sets of the data array that are from 16 station points in
151 days. This means that, in each day’s distribution for every factor, there are only 16 real measured
PM2.5-value air quality site points. However, Figure 11 shows the tested ConvLSTM-predicted, and the
SARIMA-predicted, PM2.5—e.g., (a) illustrates the first group’s comparison results. Every point in
the line graph (<40 µg/m3) is the average value of one distribution that has been divided into a grid
format consisting of 50× 50 = 2500 cells.

To summarize, the reason why the values in Figure 11 are so low while the other ones are higher
is as follows: First, they are from different processes; one is from the estimation process, and the other
is from the prediction process. Second, the lower ones are the average values for a whole region,
while the higher ones are from single points. The average ones always reflect the overall situation,
while the single ones just show the specific cases. For example, if there is only one value of 11, and the
other nine values are 1, the average of the 10 values is two, which is much lower than 11. Third,
the lower ones are the estimated results using XGBoost, which have been validated in Section 4.2,
while the higher ones are the real measured PM2.5 values.

However, it is difficult to see the differences between the prediction results of the two models in
Figure 7. Thus, we calculate the RMSE between the 2500 F1s and 2500 F2s to get R1 and, then, calculate
the RMSE between the 2500 F1s and 2500 F3s to get the R2. The 28 R1s and 28 R2s over every 28 days
in 10 validations is shown in Figure 12.

In Figure 12, we see that the RMSE of the predicted results by ConvLSTM is higher overall than
the ones by SARIMA over the 28 days in all 10 validations, which means the accuracy of the prediction
of ConvLSTM is higher overall than SARIMA in a temporal scale. Among them, especially G0, G1,
G4 and G5 show a better performance for the prediction. For most days, the RMSEs of the ConvLSTM
model are lower than SARIMA, keeping to around 10, especially for the 10th to 12th of May 2019.
The SARIMA model’s prediction accuracy is lower than the average level of itself. However, in some
periods, it is higher. For example, on 23 May 2019, the RMSE of the SARIMA was lower than the
ConvLSTM one in groups 6, 7 and 8. However, the overall results demonstrate the higher prediction
capability of ConvLSTM compared to SARIMA. The less fluctuating curve shows that ConvLSTM is
more stable than SARIMA to predict in time.
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Figure 11. The tested ConvLSTM-prediction, and the SARIMA-prediction, for PM2.5. (a–j) illustrate
the 10 group comparison results, respectively. “Date index” is defined as the 28 predicted days in
each group based on Figure 5, in different subplots; the index represents different ranges of dates, i.e.,
in Group 0, index 0 to 27 represents the dates 25 April to 22 May, while it represents the dates 26 April
to 23 May in Group 1.

4.4.2. Comparison in Space

In the spatial scale, we compute the 168 F1, 168 F2 and 168 F3. Then, we calculate the RMSE
between the 28 F1 and 2 F2 to get R3 and calculate the RMSE between 28 F1 and 28 F3 to reach R4.
There are 2500 R3 and 2500 R4 in 10 validations. We plot the frequency distribution histogram of R3
and R4 for the 10 groups, as shown in Figure 13, to compare the prediction accuracy of the two models
in space. In terms of the SARIMA results, the RMSE ranges from 0 to 60 for all groups, while the
ConvLSTM ones range from 0 to 30. For all groups of the SARIMA model, the RMSE occupies the
most range, from 0 to 10, and the frequency is about 1150, followed by RMSE ranging from 10 to 20,
and the average frequency is about 1100. In terms of the ConvLSTM, the RMSE occupies the most
places, from 10 to 20, and the frequency is about 1250, followed by the RMSE ranging from 0 to 10,
and the average frequency is about 1150. Although the SARIMA has less RMSEs that are lower than a
ConvLSTM, it also has a greater number of higher RMSEs that range from 20 to 60, accounting for 10%
((1100 + 1150) ÷ 2500 = 0.9 = 90%), while the ConvLSTM has less than 5% of RMSEs distributed in
this range ((1150 + 1250) ÷ 2500 = 0.96 > 95%).
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Figure 12. The root mean square errors (RMSEs) of the SARIMA and ConvLSTM models in time.
All groups’ data share the same x-axis, while, in the y-axis, there are 10 bins, such that every bin spans
the RMSE from 0 to 50, where 50 could also be the start of the next bin.

Then, we output the RMSEs as the maps of Shijiazhuang, where the different colors in the cell
represent the RMSE values of the prediction. The results are illustrated in Figure 14. The whiter areas
in the figure correspond to a higher error (RMSE) of the user density prediction. On the contrary,
the darker area indicates a lower error. Consequently, the distribution of errors can indicate the role of
the prediction model in space.

Intuitively, in all the prediction RMSE maps of SARIMA, there are much greater numbers of the
whiter cells that represent the highest errors of the prediction that are surrounded by the cells with a
much blacker color. Intuitively, the overall RMSE distribution results of SARIMA have more whiter
cells, which represent a higher error of prediction, while the distributions are uneven, especially in G1,
G4 and G5. However, we use ConvLSTM to predict the PM2.5 distribution, because the convolution is
used when we train the models, which considers the surrounding cells’ values, which is different from
SARIMA, where the maps of the RMSEs have more blacker cells. The ConvLSTM model considers the
spatial autocorrelation that it is more suitable for the prediction of a PM2.5 distribution, which proves
that the ConvLSTM model is much more accurate than the SARIMA model in space.
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Figure 13. Frequency distribution histogram of the RMSEs of the SARIMA and ConvLSTM models in
space. The x-axis of all subplots shows the RMSE values, while the y-axis represents the frequency.
(a–t) alternately represent the RMSE frequency distribution of SARIMA (red bars) and ConvLSTM
(blue bars).



Remote Sens. 2020, 12, 2825 26 of 33

Remote Sens. 2020, 08, x 26 of 33 

 

(a–t) alternately represent the RMSE frequency distribution of SARIMA (red bars) and ConvLSTM 
(blue bars). 

Then, we output the RMSEs as the maps of Shijiazhuang, where the different colors in the cell 
represent the RMSE values of the prediction. The results are illustrated in Figure 14. The whiter areas 
in the figure correspond to a higher error (RMSE) of the user density prediction. On the contrary, the 
darker area indicates a lower error. Consequently, the distribution of errors can indicate the role of 
the prediction model in space. 

 
Figure 14. The spatial distribution of the RMSEs of the SARIMA and ConvLSTM models. (a–t)
alternately show the RMSE maps of the SARIMA and ConvLSTM in Shijiazhuang. The color bar from
left to right are from white, blue to red, green, and final to dark. The more left the color is, the larger
the value of RMSE is.



Remote Sens. 2020, 12, 2825 27 of 33

5. Discussion

The above results suggest that our framework is able to be used for high-resolution PM2.5

distribution predictions based on the input multi-resource databases. To better understand the
ability of our framework, this section examines the methods from two perspectives: first, from the
characteristics of the prediction framework, and second, from the contributions of the framework as a
value added to existing theories or methods for PM2.5 predictions.

5.1. The Characteristics of the Prediction Framework

One of the important characteristics of this framework is that it selects the most suitable prediction
method by comparing the estimation or prediction effect of different existing models in a specific scene,
so the prediction capability of this framework is relatively objective, with a high precision compared
with other related studies that use more limited methods. The second characteristic is that this
framework does not need to use any other auxiliary datasets for the time prediction part, because the
prediction mechanism of the ConvLSTM model in this study is based upon the internal mechanism
of time autocorrelation and space autocorrelation through training the historical spatial-temporal
PM2.5 distribution. The third characteristic is that the framework starts from a multisource original
dataset, and after data fusion, the estimation or automatic selection of parameters of the prediction
model and other processes, the final prediction products that can be directly used in other studies are
obtained. In this process, the framework considers and solves most of the possible problems: For
example, the PM2.5 value has only air quality sites’ data. Thus, we use AOD as the basis and other
meteorological factors as the auxiliary to input the XGBoost model to establish an estimation model
to obtain spatial continuous PM2.5 distributions to solve. In terms of the AOD spatial missing value
problem, we use the BSMP method to make up for or fill in the missing value of the AOD, so that the
AOD can cover the whole study area and can then be converted into PM2.5 spatial distributions.

5.2. Contributions

This study is of great significance, not only from the perspective of GI Science theory but, also,
from the perspective of applying efficient and high-precision prediction PM2.5 time-space distributions
to practical problems. The main novel contributions of this paper are as follows.

(1) We present a framework that not only estimates the spatially continuous PM2.5 distributions but,
also, predicts the distributions in the future at high-resolution resolutions in time and space.

(2) In the spatial estimation process, we compare some popular regression models and
machine-learning methods to select the most accurate model to be used in the framework.

(3) In the prediction process, we use a ConvLSTM model, as a proven accurate deep-learning model,
for the reason that we need to consider the spatial autocorrelation. This is a key process used
for prediction related to a continuous region, compared with a traditional time series prediction
model and seasonal autoregressive integrated moving average (SARIMA), and is used to test the
accuracy and stability of the ConvLSTM.

At the current time, high-precision and high-resolution PM2.5 spatiotemporal predictions are
becoming more and more important for environmental protection and public health and safety
decision-making. At the same time, the availability of multisource heterogeneous PM2.5 data and
the inconsistent estimation and prediction of PM2.5 indicates that a unified framework for use by
researchers is lacking. Hence, a complete, unified, efficient and high-precision prediction framework is
extremely important. Thus, the framework of this paper makes it possible to predict the concentration
of PM2.5 based on the original multisource data.

The prediction framework in this paper differs from previous single-prediction research, because ours
is based on the raw data from the data-collection machines, such as satellite sensors. After comparing
the spatial PM2.5 estimation by the XGBoost model, the spatial continuous distribution is obtained,
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and finally, the spatial-temporal distribution of PM2.5 is predicted using a ConvLSTM model. To the
best of our knowledge, there does not yet exist a complete prediction framework at such a high spatial
resolution combined with such a high temporal resolution. We applied a ConvLSTM to predict a PM2.5

spatial-temporal distribution for the first time; the results also show the utility of our method for this
application. Therefore, this study opens up a new perspective for the spatiotemporal predictions of
PM2.5, which can predict both spatial and temporal distributions of PM2.5 at a high resolution.

6. Conclusions

This study presents a framework to predict the daily PM2.5 distributions using a case study
of Shijiazhuang City, China, based on the daily aerosol optical depth (AOD) datasets and other
supplementary raw data. The framework consists of three main parts and nine steps within this.
In part 1, the framework obtains high-resolution spatiotemporal AOD distributions, then builds a
machine-learning model to estimate the spatial distributions of the PM2.5 in part 2. Finally, based on
training high-resolution spatiotemporal PM2.5 distributions, this framework uses a ConvLSTM model
to predict the testing distributions with 3300 × 3300 m-squared spatial resolution, compared with a
SARIMA model, to test the accuracy.

In part 2, we compared some popular regression and machine-learning models, including linear,
ridge, LASSO regressions, cubist and XGBoost, to build a relationship among the PM2.5 monitoring
values: AOD, humidity, precipitation, albedo, NDVI, wind speed and elevation. With the optimal
parameters and cross-validation, XGBoost was determined as the estimation model in the framework,
with the lowest RMSE 32.86 µg/m3 and highest R2 0.71 compared to the four other models. As there
can be many missing values for the AOD in space, we proposed a Block Statistics and Missing-value
Padding (BSMP) method to derive more whole spatially continuous distributions for the AOD. Then,
in the third part, the ConvLSTM was selected as a deep-learning method to be used for spatiotemporal
PM2.5 predictions. After 10 validations and a comparison with SARIMA in both time and space,
ConvLSTM clearly produces more accurate predictions, with a total average prediction RMSE of
14.94 µg/m3 compared to SARIMA’s 17.41 µg/m3. In terms of the prediction in time, ConvLSTM is more
stable, with less fluctuations for prediction, while, on a spatial scale, ConvLSTM can better eliminate
the error that is caused by spatial differences than SARIMA; thus, it has a higher prediction accuracy.

In the future, we aim to improve the framework. We can apply the framework to study more areas,
such as other cities that suffer severe haze, and apply it on a larger scale (region), such as a province or
a country, to test the robustness of the framework. In addition, because we cannot get the missing
values of the AOD in our datasets, the BSMP needs to be validated. Plus, in the estimation part, we can
analyze other factors that might contribute to the AOD-PM2.5 association models, then compare and
validate them to get the best key factors to input into the estimation models, which could improve the
efficiency of the framework. In the prediction part, we could improve the ConvLSTM model through
considering multi-input features—for example, the spatiotemporal features of the pollution source of
PM2.5 could be considered as a key condition to increase the accuracy of the prediction.

We used 3.3 km as the spatial resolution. This represents about a 10% part of a typical Chinese city
district size of 8.7 square kilometers (http://www.demographia.com/db-beijing-ward.htm). This spatial
resolution is driven by the size of the city we studied (Shijiazhuang, China) and the use of a
computationally efficient ConvLSTM model for predictions that divided this city area into 50 × 50 cells,
which meant that our model would typically take 10 h to run on a current laptop/personal computer.
An even higher spatial resolution could also be investigated, such as 1.85 km or even 0.925 km, but this
would require the use of a much faster computer or a much longer computation time. Note also
that the temporal resolution used for evaluating the prediction part is daily, as determined by that of
the input AOD dataset, although the predictive capability of our ConvLSTM model is much higher
hourly. In the future, we could evaluate the higher hourly temporal resolution predictions of the model
through comparisons with the air quality data from air quality (monitoring) stations.

http://www.demographia.com/db-beijing-ward.htm
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