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Abstract: Digital Image Correlation (DIC) has become a popular tool in many fields to determine
the displacements and deformations experienced by an object from images captured of the object.
Although there are several publications which explain DIC in its entirety while still catering to
newcomers to the concept, these publications neglect to discuss how the theory presented is
implemented in practice. This gap in literature, which this paper aims to address, makes it difficult to
gain a working knowledge of DIC, which is necessary in order to contribute towards its development.
The paper attempts to address this by presenting the theory of a 2D, subset-based DIC framework that
is predominantly consistent with state-of-the-art techniques, and discussing its implementation as a
modular MATLAB code. The correlation aspect of this code is validated, showing that it performs on
par with well-established DIC algorithms and thus is sufficiently reliable for practical use. This paper,
therefore, serves as an educational resource to bridge the gap between the theory of DIC and its
practical implementation. Furthermore, although the code is designed as an educational resource,
its validation combined with its modularity makes it attractive as a starting point to develop the
capabilities of DIC.
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1. Introduction

Digital image correlation (DIC) determines the displacements and deformations at multiple points
spanning the surface of an object (full-field displacements and deformations) from images captured of
the object. It is type of a full-field, non-contact optical technique and these techniques are categorised
as either interferometric or non-interferometric. The interferometric techniques, such as Electronic
Speckle Pattern Interferometry and Moiré Interferometry, require a coherent light source and need to
be isolated from vibrations [1]. As such, their utilisation is in the confines of a laboratory. In contrast,
non-interferometric techniques, DIC and the grid method require simple incoherent light and are
more robust with regards to ambient vibrations and light variations [2]. Thus, non-interferometric
techniques are more attractive due to their less stringent requirements and are mostly used in open
literature. DIC allows for a more straightforward setup compared to the grid method as it only requires
a random, irregular pattern on the surface of the object instead of a regular grid.

These advantages of DIC over other full-field, non-contact optical techniques, along with the
decreasing cost and increasing performance of digital cameras, has led to widespread use of DIC
in various fields. Some applications of DIC include: (i) performing human pulse monitoring [3,4];
(ii) analysing the stick-slip behaviour of tyre tread [5]; (iii) determining the mechanical properties
of biological tissue [6–8]; (iv) in situ health monitoring of structures and components [9–11];
(v) analysing vibration of components [12,13]; and (vi) remote sensing applications [14–17]. However,
DIC has received the most attention, and thus development, for applications in experimental solid
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mechanics. As such, this paper will predominantly focus on DIC in the context of experimental solid
mechanics applications.

In the field of experimental solid mechanics, measuring the displacement and deformation
experienced by a specimen, as a result of an applied load, is essential to quantify its mechanical
properties. As such, DIC is advantageous for three reasons: Firstly, its full-field nature allows more
complex constitutive equations to be used to determine more than one material property at a time,
using methods such as the virtual fields method [18–20] and the finite element model updating
method [21]. Secondly, the non-contact nature of DIC avoids altering mechanical properties of the
materials being tested, such as in the case of determining the material properties of biological tissue [6–8]
and hyper-elastic materials [22]. Lastly, DIC allows the specimen to be exposed to harsh environments,
such as high-temperature applications, while still being able to take measurements, provided the
specimen is visible [23].

When DIC was first introduced by Peters and Ranson in 1982 [24], it used a simple cross-correlation
criterion with a zero-order shape function (SF) and could not account for the deformation of the
specimen or variations in ambient light. Between 1983 and 1989, Sutton and his colleagues improved
the technique by introducing the first-order SF [25], the normalised cross-correlation criterion which is
more robust against light variations [26], the Newton–Raphson (NR) optimisation method [27] and
bi-cubic b-spline interpolation [28]. The two-dimensional (2D) DIC technique was extended to three
dimensions (3D or stereovision DIC) in 1993 by Luo et al. [29] and to digital volume correlation (DVC)
in 1999 by Bay et al. [30] using X-Ray tomography-computed images.

The most significant contributions to the current state-of-the-art DIC technique, as identified by
Pan [2], occurred during the 21st century. In 2000, Schreier et al. [31] proved that bi-quintic b-spline
interpolation is the best interpolation method for accurate sub-pixel displacements. In the same year,
Lu and Cary [32] introduced the second-order SF to account for more complex deformations. In 2004,
Baker and Matthews [33] proposed the inverse compositional Gauss–Newton (IC-GN) optimisation
method using the sum of squared difference correlation criterion which is more efficient than the
NR method. However, Tong showed in 2005 [34] that the zero-mean normalised sum of squared
difference (ZNSSD) correlation criterion is the most reliable and so Pan et al. [35] adapted the IC-GN
method to use the ZNSSD criterion in 2013. Finally, Gao et al. [36] introduced the second-order SF to
the IC-GN method in 2015. The IC-GN method is considered to be the state-of-the-art optimisation
method because it has been shown to be theoretically equivalent to the NR method [33] while offering
improved accuracy, robustness to noise and computational efficiency in practice [37].

The DIC process is complicated, comprising of several intricate elements, including correlation,
camera calibration, transformation of displacements between the device and real-world coordinates
and strain computation. Successful application of DIC requires an understanding of all these elements
and thus newcomers to the field need to overcome a difficult learning curve. To this end, there are
several papers which give a comprehensive breakdown of the theory involved in the DIC process,
such as the papers by Pan et al. [35], Gao et al. [36] and Blaber et al. [38]. However, in order to contribute
towards the development of DIC, a deep understanding of the DIC process and its elements is required.
It is incredibly time-consuming to gain this working knowledge due to a lack of publications that
directly bridge the gap between the theory and its implementation in code. More specifically, papers
either do not provide code that details the implementation of the theory in practice [35,36] or the code
that they provide is too complex to be beneficial as a learning resource [38].

This paper aims to bridge the gap between the theory and implementation of DIC. It does this by
firstly presenting the theory for a 2D, subset based DIC framework that is predominantly consistent
with current state-of-the-art practices. Thereafter the implementation of the theory of the framework as
the provided 117 line MATLAB code is discussed. Lastly the correlation aspect of the code is validated
using the DIC Challenge image sets documented by Reu et al. [39]. More specifically, its results are
discussed in parallel with those obtained using either the commercial software package by LaVision
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(Davis) and the open-source software Ncorr [38] or, to results documented in the DIC Challenge
paper [39], in order to draw conclusions.

The framework, referred to as the ADIC2D framework, is implemented using MATLAB because
its simple syntax does not distract the reader from the mathematics of the code. Additionally, its built-in
functions are used to simplify the code and improve its efficiency. The code is modular, allowing
readers to progressively build up their understanding of the code so that recognising the connection
between the theory and code is straightforward. Moreover, this modularity allows for rapid adaption
of the code thereby encouraging readers to develop the capabilities of DIC.

2. Framework Theory

DIC consists of four processes: calibration, correlation, displacement transformation and strain
computation. Calibration involves determining the parameters of the camera model which relates
the location of a point on an object in the real world to the location of the corresponding point in an
image taken of the object. Correlation calculates how portions of the object, captured in the image set,
displace throughout the image set. Displacement transformation then uses the parameters determined
by calibration to transform the pixel displacements determined by correlation to metric displacements
in the real world. Finally strain computation determines the strain fields experienced by the specimen
from the displacement fields.

2.1. Calibration

Calibration determines the parameters of the camera model. ADIC2D uses the pinhole camera
model to transform the location of a point in the real world to the idealised location of the point in the
image. Then, a radial distortion model is used to relate the idealised location of this point to its actual
distorted location, as illustrated in Figure 1.

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 31 

 

The framework, referred to as the ADIC2D framework, is implemented using MATLAB because 
its simple syntax does not distract the reader from the mathematics of the code. Additionally, its built-
in functions are used to simplify the code and improve its efficiency. The code is modular, allowing 
readers to progressively build up their understanding of the code so that recognising the connection 
between the theory and code is straightforward. Moreover, this modularity allows for rapid adaption 
of the code thereby encouraging readers to develop the capabilities of DIC.  

2. Framework Theory 

DIC consists of four processes: calibration, correlation, displacement transformation and strain 
computation. Calibration involves determining the parameters of the camera model which relates the 
location of a point on an object in the real world to the location of the corresponding point in an image 
taken of the object. Correlation calculates how portions of the object, captured in the image set, 
displace throughout the image set. Displacement transformation then uses the parameters 
determined by calibration to transform the pixel displacements determined by correlation to metric 
displacements in the real world. Finally strain computation determines the strain fields experienced 
by the specimen from the displacement fields. 

2.1. Calibration 

Calibration determines the parameters of the camera model. ADIC2D uses the pinhole camera 
model to transform the location of a point in the real world to the idealised location of the point in 
the image. Then, a radial distortion model is used to relate the idealised location of this point to its 
actual distorted location, as illustrated in Figure 1. 

 
Figure 1. Schematic diagram illustrating how the camera model is comprised of the pinhole camera 
model and radial distortion model. 

2.1.1. Homogeneous Coordinates 

The pinhole camera model works with homogeneous coordinates as these allow rotation, 
translation, scaling and perspective projection to be applied using matrix multiplication. An ݊ -
element vector, which represents a point in ݊-dimensional space, is converted to homogeneous 
coordinates by appending a scaling variable of unity to the end of the vector. Converting back from 
homogeneous coordinates involves dividing each element of the vector by the last element, the 
scaling variable, before removing the last element. Homogeneous coordinate vectors are indicated by 
underlining the variable name. For more information on homogeneous coordinates, refer to the work 
of Bloomenthal and Rokne [40]. 

2.1.2. Pinhole Camera Model 

The pinhole camera model relates the location of a point in the world coordinate system (CS) to 
its corresponding idealised location in the sensor CS. The 3D world CS is defined such that its x-y 

Figure 1. Schematic diagram illustrating how the camera model is comprised of the pinhole camera
model and radial distortion model.

2.1.1. Homogeneous Coordinates

The pinhole camera model works with homogeneous coordinates as these allow rotation,
translation, scaling and perspective projection to be applied using matrix multiplication. An n-element
vector, which represents a point in n-dimensional space, is converted to homogeneous coordinates by
appending a scaling variable of unity to the end of the vector. Converting back from homogeneous
coordinates involves dividing each element of the vector by the last element, the scaling variable,
before removing the last element. Homogeneous coordinate vectors are indicated by underlining the
variable name. For more information on homogeneous coordinates, refer to the work of Bloomenthal
and Rokne [40].
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2.1.2. Pinhole Camera Model

The pinhole camera model relates the location of a point in the world coordinate system (CS) to its
corresponding idealised location in the sensor CS. The 3D world CS is defined such that its x-y plane is
coincident with the surface of the specimen under consideration: 2D DIC is limited to determining
displacements that occur within this x-y plane. The 2D sensor CS is defined such that its x-y plane is
coincident with the plane of the charge-coupled device which captures light rays incident upon its
surface as an image.

Let the homogeneous coordinates in the world and sensor CS be x̂w =
[

x̂w ŷw ẑw 1
]T

and

x̂s =
[

x̂s ŷs 1
]T

, respectively. Note that the circumflex indicates that the coordinates are ideal
(undistorted). The pinhole camera model is given as [41]:

αx̂s = α


x̂s

ŷs

1

 =

ξx cs cx

0 ξy cy

0 0 1




R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3




x̂w

ŷw

ẑw

1

 = KVx̂w, (1)

where matrices V and K contain the extrinsic and intrinsic camera parameters respectively. The extrinsic
camera parameters define a rotation matrix R and a translation vector T which define the position
and orientation of the world CS relative to the position and orientation of the camera. Thus,
the extrinsic camera parameters change if the relative position or orientation between the specimen
and camera change.

In contrast, the intrinsic camera parameters remain unchanged because they are only dependent
on the camera system. The parameters ξx and ξy perform scaling from metric units to units of pixels.
This paper uses millimetres as the metric units. The parameters cx and cy apply translation such that
the origin of the sensor CS is at the top left of the image as shown in Figure 1. The parameter cs

converts from an orthogonal CS to a skewed sensor CS. Here, cs = 0 since an orthogonal sensor CS is
assumed. The parameter α is an arbitrary scaling variable of the homogeneous coordinates which is
factored out. For more information on the pinhole camera model refer to the work of Zhang [41] and
Heikkila et al. [42].

2.1.3. Radial Distortion Model

According to Tsai [43] and Wei et al. [44], the difference between the ideal and actual image can be
well accounted for by using only a radial distortion model. Radial distortion is caused by the lens
system having different magnification levels depending on where the light ray passes through the
lenses. The image experiences either an increase (pincushion distortion) or decrease (barrel distortion)
in magnification with increasing distance from the optical axis. The radial distortion model requires

that x̂s be converted to normalised ideal image coordinates, x̂n =
[

x̂n ŷn
]T

, using the inverse of the
intrinsic parameter matrix as

x̂n =

[
x̂n

ŷn

]
=

[
1 0 0
0 1 0

]
(K−1x̂s). (2)

This equation includes a matrix to convert from homogeneous coordinates to Cartesian coordinates.

x̂n is related to the normalised, distorted image coordinates, xn =
[

xn yn
]T

, as [41]

xn = (1 + κ1x̂T
n x̂n + κ2(x̂T

n x̂n)
2
)x̂n, (3)
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where κ1 and κ2 are the unit-less radial distortion parameters that quantify the severity of the distortion.

xn is converted to distorted coordinates in the distorted sensor CS, x =
[

x y
]T

, as

x =

[
x
y

]
=

[
1 0 0
0 1 0

]
K


xn

yn

1

. (4)

2.1.4. Calibration Process

Calibration determines the extrinsic, intrinsic and radial distortion parameters using images taken
of a calibration plate. A calibration plate is an object with a flat surface having a high contrast regular
pattern which contains distinctive, point-like features called calibration targets (CTs). It is used to
define a set of 3D coordinates in the world CS and a corresponding set of distorted, 2D coordinates in
the distorted sensor CS.

The 3D coordinates of these CTs in the world CS are predefined. In fact, they lie on the x-y plane of
the world CS and define its position and orientation. The set of corresponding distorted, 2D coordinates
in the sensor CS can be determined by locating the CTs in an image taken of the calibration plate.
These two sets of 3D and 2D coordinates are used to solve for the parameters of the camera model,
which describe the relationship between the two. This is done in two steps.

The first step determines initial estimates for the extrinsic and intrinsic camera parameters using
the closed form solution method proposed by Zhang [41]. The initial estimate of the radial distortion
parameters is set to zero.

The second step works with two sets of CTs in the distorted sensor CS: the true CTs,

xtrue =
[

xtrue ytrue
]T

, obtained directly from the calibration images and the calculated CTs,

xcalc =
[

xcalc ycalc
]T

, obtained by transforming the known CTs of the world CS to the distorted
sensor CS using the camera model and the current estimate of the calibration parameters. The difference
between the true and calculated CTs is quantified as the total projection error, Eproj, given as

Eproj =
L∑

l=1

M∑
m=1

((xcalc
lm − xtrue

lm )
2
+ (ycalc

lm − ytrue
lm )

2
). (5)

There are L many calibration images and M many CTs per calibration image. The second step uses
iterative non-linear least-squares optimisation to solve for the calibration parameters which minimise
Eproj. Note that multiple calibration images are used in order to form an over-determined system of
equations. This makes the calibration process less sensitive to noise inherent in the images. For more
information on the calibration process refer to the work of Zhang [41] and Heikkila et al. [42].

The last process in calibration corrects T for the thickness of the calibration plate, ρ, such that
the x-y plane of the world CS is coincident with the surface of the specimen under consideration.
The corrected translation vector, Tspec, that replaces T in Equation (1) is determined as

Tspec = T−R


0
0
ρ

, (6)

where T and R are the translation vector and rotation matrix determined by the above calibration process.

2.2. Correlation

Correlation considers two images: a reference image, F, representing the specimen at time t = 0,
and a deformed image, G, representing the specimen at time t = 1. F is broken up into subsets which are
groups of neighbouring pixels. Conceptually, correlation attempts to determine how a reference subset
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(f) must displace and deform such that it matches a corresponding subset, the investigated subset (g)
in G. In practice, however, f remains unchanged while its pixel centre positions (hereafter referred to
as pixel positions) are displaced and deformed according to W, a predefined SF, resulting in the query
points of the investigated subset. The investigated subset is obtained by sampling the deformed image
at these query points. To better understand this, some details of correlation need to be explained.

Correlation operates in the distorted sensor CS, as illustrated in Figure 2. f’s centre position,

xo =
[

xo yo
]T

, has been displaced by u and v in the x- and y-direction, respectively, to obtain g’s

centre position, xd =
[

xd yd
]T

. The ith pixel position of f, given by xi =
[

xi yi
]T

, is based on xo

and the distance from xo to xi, ∆xi =
[

∆xi ∆yi
]T

, as

xi = ∆xi + xo =

[
xi
yi

]
=

[
∆xi
∆yi

]
+

[
xo

yo

]
. (7)
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Similarly, the corresponding ith query point of g, x′i =
[

x′i y′i
]T

, is based on xo and the distance

from xo to x′i , ∆x′i =
[

∆x′i ∆y′i
]T

, as

x′i = ∆x′i + xo =

[
x′i
y′i

]
=

[
∆x′i
∆y′i

]
+

[
xo

yo

]
. (8)

∆x′i is defined relative to xo because xd is unknown prior to correlation. u and v are a special case
of ∆x′i and ∆y′i for the pixel at the centre of the investigated subset. ∆x′i is determined using W which
modifies ∆xi according to a given displacement and deformation quantified by the shape function
parameters (SFPs), P, as

∆x′i = W(∆xi, P). (9)

Each pixel of the investigated subset, gi, is populated by sampling the light intensity of the
deformed image at x′i . However, images are discrete and so interpolation must be used to obtain these
light intensities of G at non-integer locations. As such, F and G are treated as functions which return
the light intensity at a location in the image. For G this involves interpolation. The pixels of f and g are
populated by sampling these functions as

fi = F(xo + ∆xi)and gi = G(xo + W(∆xi, P)). (10)
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The similarity between f and g is quantified by the correlation criterion. Correlation aims to find
the SFPs which define an investigated subset which closely matches the reference subset.

2.2.1. Correlation Criterion

The two most popular types are the ZNSSD and zero-mean normalised cross-correlation (ZNCC)
criteria, which are robust against offset and scaling changes in light intensity. The ZNSSD criterion,
which has a range of {CZNSSD ∈ R|0 ≤ CZNSSD ≤ 4}, where 0 indicates a perfect match, is calculated as

CZNSSD =
I∑

i=1

 fi − f

f̃
−

gi − g
g̃

2

, (11)

where I is the number of pixels contained within a subset, f =
∑I

i fi
I and g =

∑I
i gi
I are the mean

light intensity values, and f̃ =

√∑I
i=1 ( fi − f )

2
and g̃ =

√∑I
i=1 (gi − g)2 are the normalisation

functions of subsets f and g, respectively. Similarly, the ZNCC criterion, which has a range of
{CZNCC ∈ R|−1 ≤ CZNCC ≤ 1}, where 1 indicates a perfect match, is given as

CZNCC =
I∑

i=1

( fi − f )(gi − g)

f̃ g̃
(12)

Pan et al. [45] proved that these two criteria are related as

CZNCC = 1−
CZNSSD

2
. (13)

The more computationally efficient ZNSSD criterion is evaluated within ADIC2D; however, it is
reported as the ZNCC coefficient, using Equation (13), because its range is more intuitive. For more
information on correlation criteria refer to the work of Pan et al. [45].

2.2.2. Shape Function

The most common SFs are the zero (WSF0), first (WSF1) and second-order SFs (WSF2) expressed
as [32]

WSF0(∆xi, PSF0) =

[
1 0 u
0 1 v

]
∆xi
∆yi
1

,
WSF1(∆xi, PSF1) =

[
1 + ux uy u

vx 1 + vy v

]
∆xi
∆yi
1



and WSF2(∆xi, PSF2) =

[ 1
2 uxx uxy

1
2 uyy 1 + ux uy u

1
2 vxx vxy

1
2 vyy vx 1 + vy v

]


∆x2
i

∆xi∆yi
∆y2

i
∆xi
∆yi
1


,

(14)

where u and v represent the displacement of xo in the x- and y-directions respectively, and their
derivatives (subscript x and y) define the deformation with respect to the reference subset. Specifically,
ux, uxx, vy and vyy represent elongation while uy, vx, uyy, vxx, uxy and vxy represent shearing of the
subset. Higher order SFs, containing higher order displacement derivatives, allow for more complex
deformation as shown in Figure 3.
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This enables higher order SFs to more reliably track subsets in complex displacement fields.
The elements of P, for each SF order, are stored as

PSF0 =
[

u v
]T

,

PSF1 =
[

u ux uy v vx vy
]T

and PSF2 =
[

u ux uy uxx uxy uyy v vx vy vxx vxy vyy
]T

.

(15)

2.2.3. Interpolation

Interpolation determines the value at a query point (x′i ) in an image by fitting an equation to
the surrounding light intensity data and evaluating the equation at x′i . Polynomial interpolation and
b-spline interpolation, shown in Figure 4 for the one-dimensional case, are the most popular types
for DIC.
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Polynomial interpolation fits a local polynomial equation of order n to a window of data of size
n + 1 as shown in grey in Figure 4b for cubic polynomial interpolation. The resulting interpolation
equation is a piecewise polynomial where only the central portion of each local polynomial equation is
used. The interpolation equation is C0 and C1 continuous for linear and cubic polynomial interpolation,
respectively. Refer to the work of Keys [46] for more information on cubic polynomial interpolation.
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In contrast, b-spline interpolation builds up an interpolation equation from locally supported
basis functions. More specifically, a basis function is defined at each data point and the coefficients
of all these basis functions are determined simultaneously from the data. This is done such that the
summation of the basis functions forms the interpolation equation as shown in Figure 4c. For cubic
b-spline, the interpolation equation is C2 continuous. Refer to the work of Hou et al. [47] for an in-depth
discussion of bi-cubic b-spline interpolation.

The interpolation method should be as exact as possible in order for correlation to determine
sub-pixel displacements reliably and efficiently because interpolation is the most time consuming part
of correlation for iterative, sub-pixel DIC [48].

2.2.4. Gaussian Filtering

High order interpolation methods, such as bi-cubic b-spline interpolation, are sensitive to high
frequency noise contained in the images [49]. A Gaussian low-pass filter is used to attenuate the high
frequency noise of each image of the image set in order to reduce the bias of the displacement results
caused by the interpolation method. Gaussian filtering convolves a 2D Gaussian point-spread function
with the image. The Gaussian function consists of a window size, β (in pixels), and standard deviation,
σg, to determine a weighted average light intensity at each pixel position in the filtered image from a
window of pixels in the unfiltered image. The Gaussian point-spread function is scaled such that the
sum of itself equals 1.

Although interpolation is only required for G, all the images of the image set (including F) need to
be filtered such that the light intensity patterns of the subsets, considered by the correlation criterion,
are directly comparable. Despite the fact that variance of the displacement results is independent of
the interpolation method, it is dependent on the image detail which is reduced by smoothing [50].
Therefore β and σg should be chosen to reduce bias while not significantly increasing variance. For more
information on Gaussian filtering refer to Pan’s work [49].

2.2.5. Optimisation Method

The optimisation problem aims to minimise the correlation criterion (Equation (11)) by using the
IC-GN method to iteratively solve for the optimal SFPs. An illustration of this process is shown in
Figure 5. Substituting Equation (10) into Equation (11) results in an expression in terms of F and G being
obtained. In addition, Equation (11) is modified to include an iterative improvement estimate, ∆P.
Normally, iterative updating uses the forward additive implementation in which both ∆P and P are
applied to the investigated subset as P + ∆P. However, for the inverse compositional implementation
∆P is applied to the reference subset and the current estimate of P is applied to the investigated subset.
Thus, the objective function is given as

CObjFun =
I∑

i=1

F(xo + W(∆xi, ∆P)) − f

f̃
−

G(xo + W(∆xi, P)) − g
g̃

2

. (16)

Taking the first-order Taylor series expansion of Equation (16) in terms of ∆P gives

CObjFun =
I∑

i=1

F(xo + ∆xi) + ∇fi
∂Wi
∂P ∆P− f

f̃
−

G(xo + W(∆xi, P)) − g
g̃


2

, (17)
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where ∇fi =
[
∂ fi
∂x

∂ fi
∂y

]
is the light intensity gradient of f and ∂Wi

∂P is the Jacobian of the SF at each

pixel position. For the zero, first and second-order SFs ∂Wi
∂P is given as [32,33]

∂WSF0
i

∂PSF0 =

[
1 0
0 1

]
,

∂WSF1
i

∂PSF1 =

[
1 ∆xi ∆yi 0 0 0
0 0 0 1 ∆xi ∆yi

]
and

∂WSF2
i

∂PSF2 =

 1 ∆xi ∆yi
∆x2

i
2 ∆xi∆yi

∆y2
i

2 0 0 0 0 0 0

0 0 0 0 0 0 1 ∆xi ∆yi
∆x2

i
2 ∆xi∆yi

∆y2
i

2

.
(18)
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Setting Equation (17) to zero and taking the derivative with respect to ∆P gives the first-order,
least-squares solution. Rearranging to make ∆P the subject of the equation yields

∆P = −H−1
I∑

i=1

(∇fi
∂Wi
∂P

)
T
 fi − f −

f̃
g̃
(G(xo + W(∆xi, P)) − g)

, (19)

where H is the Hessian given by Equation (20) and the remaining terms, within the summation,
of Equation (19) form the Jacobian, J. H is independent of the SFPs and remains constant during
iterations. Thus, Equation (20) can be pre-computed before iterations begin.

H =
I∑

i=1

[
(∇fi

∂Wi
∂P

)
T
(∇fi

∂Wi
∂P

)

]
. (20)

Note that since ∆P is applied to the reference subset, each iteration solves for a set of SFPs which if
applied to the reference subset would improve the correlation criterion. However, instead of applying
∆P to the reference subset it is used to improve the estimate of the SFPs of the investigated subset.
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More specifically, the updated SFPs of the investigated subset, Pupdate, are obtained by composing the
inverted iterative improvement, ∆P, with the current estimate, P, as

Pupdate = ω(P) ω(∆P)−1, (21)

where ω is a function which populates a square matrix with the values of the SFPs as [36]

ωSF0(PSF0) =


1 0 u
0 1 v
0 0 1

,
ωSF1(PSF1) =


1 + ux uy u

vx 1 + vy v
0 0 1



and ωSF2(PSF2) =



1 + A1 A2 A3 A4 A5 A6

A7 1 + A8 A9 A10 A11 A12

A13 A14 1 + A15 A16 A17 A18
1
2 uxx uxy

1
2 uyy 1 + ux uy u

1
2 vxx vxy

1
2 vyy vx 1 + vy v

0 0 0 0 0 1


,

(22)

where A1 through A18 are
A1 = 2ux + u2

x + uuxx, A2 = 2uuxy + 2(1 + ux)uy,
A3 = u2

y + uuyy, A4 = 2u(1 + ux),
A5 = 2uuy, A6 = u2,

A7 = 1
2 (vuxx + 2(1 + ux)vx + uvxx), A8 = uyvx + uxvy + vuxy + uvxy + vy + ux,

A9 = 1
2 (vuyy + 2(1 + vy)uy + uvyy), A10 = v + vux + uvx,

A11 = u + vuy + uvy, A12 = uv,
A13 = v2

x + vvxx, A14 = 2vvxy + 2vx(1 + vy),
A15 = 2vy + v2

y + vvyy, A16 = 2vvx,
A17 = 2v(1 + vy) and A18 = v2.

The optimisation method is computationally efficient because before iterations begin the following
are computed: (i) H and its inverse; (ii) the interpolation coefficients of G; and (iii) the image gradients
of F using the Prewitt gradient operator. Each iteration step involves evaluating W (Equation (14))
using the current estimate of P to obtain ∆x′i , which is used by Equation (8) to compute x′i , interpolating
G at x′i in order to compute g, g and g̃ and finally computing ∆P using Equation (19). For each iteration
P is updated using Equation (21). Iterations continue until the stopping criterion deems that P is a
solution. The correlation coefficient is then computed using Equation (11) substituted into Equation (13)
and u and v are obtained from the SFPs.

2.2.6. Stopping Criterion

Iterations stop once the change in SFPs, ‖∆P‖, is below a specified threshold referred to as the
stopping criterion value (ψ) [35]. The expressions for ‖∆P‖ for the SF orders are [36]

‖∆PSF0
‖ =

[
∆u2 + ∆v2

]0.5
,

‖∆PSF1
‖ =

[
∆u2 + (∆uxζ)

2 + (∆uyζ)
2 + ∆v2 + (∆vxζ)

2 + (∆vyζ)
2
]0.5

and ‖∆PSF2
‖ =

[
∆u2 + (∆uxζ)

2 + (∆uyζ)
2 + ( 1

2 ∆uxxζ)
2
+ ( 1

2 ∆uxyζ)
2
+ ( 1

2 ∆uyyζ)
2
+

∆v2 + (∆vxζ)
2 + (∆vyζ)

2 + ( 1
2 ∆vxxζ)

2
+ ( 1

2 ∆vxyζ)
2
+ ( 1

2 ∆vyyζ)
2
]0.5

,

(23)

where ζ =
2√I−1

2 is the furthest distance from xo.
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2.3. Displacement Transformation

Displacement transformation maps u and v from the distorted sensor CS to the world CS. First,
the position of the investigated subset, xd, is determined as[

xd

yd

]
=

[
xo

yo

]
+

[
u
v

]
. (24)

An exact analytical solution for the inverse of Equation (3) does not exist because it requires
determining the roots of a polynomial of degree greater than four [51]. As such distortion is removed
from the reference and investigated subset positions using non-linear, least-squares optimisation.

The resulting undistorted sensor coordinates of the subset before, x̂o =
[

x̂o ŷo
]T

, and after

deformation, x̂d =
[

x̂d ŷd
]T

, are transformed to the world CS using the inverse of the pinhole
camera model as

1
α


x̂w

ŷw

1

 = (


ξx cs cx

0 ξy cy

0 0 1




R11 R12 T1

R21 R22 T2

R31 R32 T3

)
−1

x̂s

ŷs

1

. (25)

The corrected translation vector determined by Equation (6) is used in Equation (25). The resulting

position of the reference, x̂o
w =

[
x̂o

w ŷo
w

]T
, and investigated subsets, x̂d

w =
[

x̂d
w ŷd

w

]T
, in the world

CS are used to determine the metric displacement experienced by the subset,
[

ûw v̂w
]T

, as[
ûw

v̂w

]
=

[
x̂d

w
ŷd

w

]
−

[
x̂o

w
ŷo

w

]
. (26)

2.4. Strain Computation

Strains are computed from the gradients of the displacements determined using Equation (26).
A method of smoothing displacements before differentiation is recommended because these
displacements contain noise which is amplified by differentiation. The method of point-wise
least-squares proposed by Pan et al. [52] fits a planar surface to a window of displacement data
using linear, least-squares optimisation with the subset of interest located at the centre of the window.
The resulting equation for the planar surface is differentiated to determine the displacement gradients
for the subset of interest. This is done for each subset and these displacement gradients are used to
calculate the strains.

3. Framework Implementation

The ADIC2D framework, provided in Appendix A, is called from the command
prompt as “ProcData = ADIC2D(FileNames, Mask, GaussFilt, StepSize, SubSize, SubShape,

SFOrder, RefStrat, StopCritVal, WorldCTs, ImgCTs, rho)” requiring input variables as defined
in Table 1 and providing an output variable as a structured array containing data for each analysed
image d and subset q as detailed in Table 2.

3.1. ADIC2D Function

ADIC2D is the main function and is outlined in Table 3. Its purpose is to set up the DIC problem
and call the appropriate subroutines. ADIC2D defines variables on a per image and subset basis to
allow for complete flexibility in assigning Xos, SubSize, SubShape and SFOrder, i.e., on a per subset
basis. Although ADIC2D is capable of this, it assigns the same SubSize, SubShape and SFOrder to each
subset (in line 8 based on the inputs) since this is the most common use case. Output variables are
pre-assigned in line 8 to allow for the collection of input data used and efficient storage of computed
variables. Note that the SFPs are stored in a vector P which corresponds to the size of the second-order
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SFP vector in Equation (15). Thus, the second-order SFPs of P, not used by the specified SF order,
remain zero.

Table 1. Description of the required input variables for the ADIC2D framework.

Variable Variable Description

FileNames
Cell array of character vectors containing the image file names of the image set d.
All images need to be the same size.

Mask
Logical matrix, which is the same size as the images, indicating which pixels should not be
analysed during correlation.

GaussFilt
Define the standard deviation and window size for the Gaussian filter in pixels as
[FiltSigma, FiltSize] respectively where {FiltSigma ∈ R+|FiltSigma > 0} and
{FiltSize ∈ N}.

StepSize Step size in pixels {StepSize ∈ N}.
SubSize Subset size in pixels {SubSize = 2k + 1|k ∈ N}.
SubShape Subset shape {SubShape ∈ ‘Square’, ‘Circle’}.
SFOrder Dictates the SF order {SFOrder ∈ Z|0 ≤ SFOrder ≤ 2}.
RefStrat Logical statement dictating reference image strategy (Section 3.2).

StopCritVal Defines the stopping criterion value {StopCritVal ∈ R+|StopCritVal > 0}.

WorldCTs
Location of CTs in the world CS defined according to MATLAB’s
estimateCameraParameters function.

ImgCTs
Location of CTs in the sensor CS defined according to MATLAB’s
estimateCameraParameters function.

rho Calibration plate thickness in millimetres.

Table 2. Accessing the output variables for image d (contained in ProcData(d)) and subset number q.

Variable Variable Description

ImgName Image name.
ImgSize(b) Image size (b = 1 for rows and b = 2 for columns).
ImgFilt(b) Standard deviation (b = 1) and window size (b = 2) for the Gaussian filter respectively in pixels.
SubSize(q) Subset size in pixels.
SubShape(q) Subset shape.
SFOrder(q) SF order.
Xos(b,q) Reference subset position in the distorted sensor CS (b = 1 for xo and b = 2 for yo).
Xow(b,q) Reference subset position in the world CS (b = 1 for x̂o

w and b = 2 for ŷo
w).

P(b,q) SFPs (b = 1 for u and b = 7 for v).
C(q) ZNCC coefficient.

Uw(b,q) Displacement in the world CS (b = 1 for ûw and b = 2 for v̂w).
Iter(q) Number of iterations until stopping criterion is satisfied (maximum of 100 iterations).
CamParams Calibration parameters.

Table 3. ADIC2D algorithm summary.

Line Numbers Task Performed

Lines 2–4 Compute image names, number of images and size of the first image;
Lines 5–6 Create regularly spaced reference subset positions, Xos;
Line 7 Remove subsets containing invalid pixels which are defined by Mask;
Line 8 Pre-assign ProcData structure;
Line 9 Call subroutine ImgCorr to perform image correlation;

Line 10 Call subroutine CSTrans to perform transformation from the distorted sensor CS to the
world CS;

ADIC2D calls the subroutine ImgCorr to perform the image correlation as presented above.
ImgCorr’s input variables are n (the total number of images in the set), the pre-assigned variables
in ProcData, FileNames, RefStrat and StopCritVal. The output variables are P, C, Iter and
StopVal which are stored in ProcData. The computed SFPs are then passed to CSTrans to transform
displacements to the world CS. CSTrans’s input variables are n, ProcData, WorldCTs, ImgCTs and
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rho. The output variables are Xow, Uw and MATLAB’s CamParams (containing the intrinsic, extrinsic,
and radial distortion parameters) which are stored in ProcData. Note that within the subroutines
ProcData is shortened to PD.

The presented framework assumes a constant, regularly spaced Xos defined using StepSize and
SubSize. Subsets which contain pixels that Mask indicates should not be analysed are removed.

3.2. Correlation Implementation

Correlation is performed using five subroutines: (i) ImgCorr, which performs the correlation on
an image bases, i.e., between F and G; (ii) SubCorr, which performs the correlation on a subset basis;
(iii) SFExpressions, which defines anonymous functions based on the SF order; (iv) SubShapeExtract,
which determines input data for SubCorr based on the subset shape, size and position; and (v) PCM,
which determines initial estimates for the displacement SFPs.

SubCorr’s input variables are the interpolation coefficients, fi, ∇fi, SubSize, SFOrder, Xos, ∆xi,
initial estimates for P and StopCritVal. Note that throughout Section 3.2 variables with subscript i
refer to the full set of this variable for a subset (i.e., ∇fi refers to ∇fi ∀ i ∈ I). SubCorr’s output variables
are P, C, Iter and StopVal. SFExpressions’s input variable is SFOrder with outputs as anonymous
functions to compute W, ∇fi

∂Wi
∂P and ‖P‖. Moreover, two functions are included to computeω (given in

Equation (22)) and to extract the SFPs from ω.
The framework considers two subset shapes, square and circular, which are commonly employed

in subset based DIC. For circular subsets SubSize defines the diameter of the subset. SubShapeExtract
is used to determine fi, ∇fi and ∆xi for a subset based on the inputs SubSize, SubShape, Xos, F, ∇F
and SubExtract. ∇F is the light intensity gradient of the entire reference image and SubExtract is
an anonymous function, defined in line 2 of ImgCorr, which extracts a square subset from a matrix
based on the position and size of the subset. PCM returns u and v based on inputs F, G, SubSize, Xos
(passed as two vectors as required by arrayfun) and SubExtract.

Furthermore, two reference strategies are considered, namely, an absolute and an incremental
strategy. The absolute strategy defines the first image as F (i.e., FileNames(1)), whereas the incremental
strategy defines the previous image as F (FileNames(d-1)). The incremental strategy handles large
deformations between images more reliably; however, if total displacements are required, it suffers
from accumulative errors. The variable RefStrat is set to 0 or 1 for the absolute or incremental strategy
respectively. Alternate reference strategies may be set by modifying line 8 in ImgCorr.

Moreover, ADIC2D considers the zero, first and second-order SFs, as outlined in Section 2.2.2.
Set SFOrder to 0, 1 or 2 for the zero, first and second-order SFs, respectively.

3.2.1. ImgCorr Function

ImgCorr uses two nested for-loops as summarised in Table 4. The outer loop cycles through the
image set, whereas the inner loop cycles through the subsets. ImgCorr reads the appropriate image pairs
F and G from the image set, depending on the chosen reference strategy, and filters both using MATLAB’s
imgaussfilt function. Alternate image filters can be employed by modifying line 5 and 9. Bi-cubic
b-spline interpolation coefficients are computed using MATLAB’s griddedInterpolant function.
Alternate interpolation methods can be set by either modifying line 6 by replacing ‘spline’ with ‘linear’
or ‘cubic’, or replacing it with an alternate interpolation algorithm, such as MATLAB’s spapi function
for higher order spline interpolation. griddedInterpolant was used for computational efficiency.

For an incremental strategy, Xos is displaced using the displacement SFPs from the
previous correlation run, to track the same light intensity patterns within the reference subsets.
These displacements SFPs are rounded, as suggested by Zhou et al. [53], such that the pixel positions
of the reference subset have integer values and avoid the need for interpolating the reference subset.
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Table 4. ImgCorr algorithm summary.

Line Numbers Task Performed

Line 2 Define SubExtract function to extract square subset data;
Line 3 for image number d = 2 to d = n, do
Line 4 Define G
Line 5 Perform Gaussian filtering on G using MATLAB’s imgaussfilt function;
Line 6 Compute interpolation coefficients using MATLAB’s griddedInterpolant function;
Line 7 if first image of correlation run or Refstrat is incremental, do
Line 8 Define F;
Line 9 Perform Gaussian filtering on F using MATLAB’s imgaussfilt function;
Line 10 Compute gradients for F (compute ∇F);

Lines 11–12 Displace Xos with previous image correlation run displacements
(incremental strategy);

Line 13 Call subroutine PCM to compute initial estimates of displacement SFPs;
Line 14 else, do
Line 15 Set P(d) ← P(d − 1);
Line 16 end if

Line 17 Initialise temporary storage variables used to save correlation information during the
inner loop;

Line 18 for subset number q = 1 to number of subsets, do
Line 19 Call subroutine SubShapeExtract;
Line 20 Call subroutine SubCorr;
Line 21 end for
Line 22 Save correlation information to PD variable;
Line 23–24 Show results for image d correlation;
Line 25 end for

Correlation of each subset requires SFP initial estimates. For the first run, ADIC2D uses a Phase
Correlation Method (PCM) to determine initial estimates. Subsequent correlation runs use the previous
correlation run’s SFPs as an initial estimate. However, PCM is used for every run in the incremental
strategy, as it allows for better stability if large displacements are expected. PCM can be used between
each run by replacing line 15 with line 13. Moreover, alternate initial estimate strategies can be
implemented by changing line 13. The PCM algorithm is discussed in Section 3.2.5.

The inner loop correlates each subset by using SubShapeExtract to determine the data for a
subset while SubCorr uses this data to perform correlation of the subset. The loop can be implemented
using parallel processing to reduce computation time by changing line 18 to a parfor-loop. However,
during a parfor-loop the outputs of SubCorr cannot be saved directly to a structure variable. It is for
this reason that they are saved to the temporary storage variables (initiated in line 17) during the loop
and assigned to PD thereafter.

3.2.2. SubShapeExtract Function

SubShapeExtract returns the data sets of fi, ∇fi and ∆xi for a subset based on its intended shape,
size and position, as outlined in Table 5. Note that these output data sets are in the form of vertical
vectors. Alternative subset shapes can be added to this function provided they produce the same
output data sets.

For a square subset SubExtract is used to extract the appropriate elements from the input
matrices (F and ∇F) which correspond to the pixels of the subset. ∆xi is determined in line 7 according
to SubSize.

For circular subsets the same process is followed. This results in temporary data sets fi, ∇fi and
∆xi which correspond to a square subset of size equal to the diameter of the intended circular subset.
A mask identifying which elements, of these data sets, fall within the radius of the intended circular
subset is computed in line 13 using ∆xi.This mask is used to extract the appropriate elements from the
temporary data sets of the square subset resulting in the appropriate data sets for the circular subset.
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Table 5. SubShapeExtract algorithm summary.

Line Numbers Task Performed

Line 2 switch SubShape;
Line 3 case SubShape = ‘Square’, do
Line 4–6 Extract fi and ∇fi using SubExtract;
Line 7 Compute ∆xi using SubSize;
Line 8 case SubShape = ‘Circle’, do
Line 9–11 Extract fi and ∇fi using SubExtract;
Line 12 Compute ∆xi using SubSize;
Line 13 Determine mask of elements that fall within the circular subset;
Line 14–16 Use mask to extract appropriate data for circular subset;
Line 17 end switch

3.2.3. SubCorr Function

SubCorr is at the heart of ADIC2D and performs the subset-based correlation, as summarised in
Table 6. It follows the theoretical framework presented in Section 2.2.

Table 6. SubCorr algorithm summary.

Line Numbers Task Performed

Line 2 Call SFExpressions to assign equations dependent on the SF order;
Line 3 Compute ∇fi

∂Wi
∂P ;

Line 4 Compute H−1, Equation (20);
Line 5 Compute normalisation values f and f̃ ;
Line 6 Initialise flag ← 0, iter ← 0 and ∆P← 1 ;
Line 7 while flag = 0, do
Line 8 Compute ∆x′i Equation (14), using estimates of P
Line 9 Compute g using interpolation coefficients;
Line 10 Compute normalisation values g and g̃;
Line 11 Compute ‖∆P‖using Equation (23);
Line 12 if ‖∆P‖ < StopCritVal or iter > 100, do
Line 13 Set iter ← 1;
Line 14 Compute C, Equation (11) substituted into Equation (13);
Line 15 else, do
Line 16 Compute J, Summation expression of Equation (19);
Line 17 Compute ∆P, Equation (19);
Line 18 Update P, Equation (21);
Line 19 end if
Line 20 Set iter ← iter + 1
Line 21 end while

3.2.4. SFExpressions Function

SFExpressions returns five anonymous functions based on the SF order specified and is outlined in
Table 7. W, defines Equation (14), dFdWdP defines∇fi

∂Wi
∂P , SFPVec2Mat defines Equation (22), Mat2SFPVec

extracts P from SFPVec2Mat and StopCrit defines Equation (23). Additional SFs, such as higher order
polynomials, can be added after line 20 provided they are consistent with the outputs of SFExpressions.

Table 7. SFExpressions algorithm summary.

Line Numbers Task Performed

Line 2 switch SFOrder
Line 3–8 case SFOrder = 0, do assign functions for zero-order SF;
Line 9–14 case SFOrder = 1, do assign functions for first-order SF;
Line 15–20 case SFOrder = 2, do assign functions for second-order SF;
Line 21 end switch
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3.2.5. PCM Function

PCM performs correlation using the zero-order SF in the frequency domain to obtain initial
displacement estimates. The algorithm is summarised in Table 8. PCM is efficient; however, it is
limited to integer pixel displacements and can only use square subsets. Moreover, PCM is only capable
of determining a reliable initial estimate if the displacement is less than half of SubSize. For more
information on PCM, refer to the work of Foroosh et al. [54].

Table 8. PCM algorithm summary.

Line Numbers Task Performed

Line 2 Compute normalised cross-power spectrum in the frequency domain;
Line 3 Convert back to spatial domain;
Line 4 Find index of the maximum correlation coefficient;

Line 5 Compute index vector which relates indices of the correlation coefficient matrix to the
displacements they correspond to;

Line 6–7 Obtain displacements using index of the maximum correlation coefficient;

3.3. CSTrans Function

CSTrans performs CS and displacement transformations from the distorted sensor CS to the
world CS as outlined in Table 9. CSTrans uses MATLAB’s image calibration toolbox to determine
calibration parameters according to Section 2.1 which are used to perform the transformations detailed
in Section 2.3. Note that the extrinsic calibration parameters, extracted in line 8, are based on the final
set of CTs in the sensor CS (ImgCTs(:,:,end)). Alternate calibration algorithms may be implemented
by replacing lines 13 and 14.

Table 9. CSTrans algorithm summary.

Line Numbers Task Performed

Line 2 if calibration targets are given, do

Line 3 Compute calibration parameters using MATLAB’s
estimateCameraParameters function;

Line 4 else, do
Line 5 Set unit calibration parameters and pass to MATLAB’s cameraParameters function;
Line 6 Assign CTs in the distorted sensor and world CSs using Xos;
Line 7 end if
Line 8 Extract appropriate extrinsic parameters;
Line 9 Compute Tspec, Equation (6);
Line 10 for image number d = 1 to d = n, do
Lines 11–12 Compute xd, Equation (24);

Line 13–14 Compute xo
w and xd

w using MATLAB’s undistortPoints and
pointsToWorld functions;

Line 15 Compute ûw and v̂w, Equation (26);
Line 16 Save calibration parameters;
Line 17 end for

4. Validation

ADIC2D was validated using the 2D DIC Challenge image sets that were created using TexGen [55]
or Fourier methods [56] as documented by Reu et al. [39]. Homoscedastic Gaussian noise was applied
to each image set to simulate camera noise. As stated by Reu et al. [39], “image noise is specified as
one standard deviation of the grey level applied independently to each pixel”. The respective noise
levels are listed in Table 10. Samples 1–3 contain rigid body translations to assess the performance of
the ADIC2D framework in the “ultimate error regime” [57]. This type of analysis aims to highlight
the errors caused by contrast and noise, in the absence of complex displacement fields, interacting
with the numerical processes of correlation [39,58]. Sample 14 contains a sinusoidal displacement
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field with increasing frequency. This type of analysis aims to highlight the compromise between noise
suppression and spatial resolution (SR) [39].

Table 10. Details for the samples of the DIC Challenge [39].

Name Method Noise Contrast Images Displacement field

Sample 1 TexGen 1.5 Varying 21 Shift of 0.05 pixels in both directions per image
Sample 2 TexGen 8 0–50 21 Shift of 0.05 pixels in both directions per image
Sample 3 Fourier 1.5 0–200 12 Shift of 0.1 pixels in both directions per image

Sample 14 Fourier 5 0–200 4 Sinusoid in the x-direction of increasing frequency
(amplitude 0.1 pixels)

CS transformations were not performed during the validation process, by setting WorldCTs = 0,
ImageCTs = 0 and rho = 0. A stopping criterion of StopCritVal = 10−4, limited to 100 iterations
per subset (line 12 in SubCorr), was used. The Gaussian image filter was set to FiltSize = 5 as this
offers the best compromise between reducing bias and avoiding increasing variance [49]. FiltSigma is
specified on a per sample basis.

4.1. Quantifying Error

Bias, variance, root-mean square error (RMSE) and SR were used to quantify errors. Bias refers to
the mean of the absolute error (MAEu, MAEv) between the correlated and true values, while variance
refers to the standard deviation of the absolute error (σu, σv). These are computed as

MAEu =

∑Q
q=1

∣∣∣∣ucalc
q −utrue

q

∣∣∣∣
Q , MAEv =

∑Q
q=1

∣∣∣∣vcalc
q −vtrue

q

∣∣∣∣
Q , (27)

σu =

√∑Q
q=1 (

∣∣∣∣ucalc
q −utrue

q

∣∣∣∣−MAEu)
2

Q−1 and σv =

√∑Q
q=1 (

∣∣∣∣vcalc
q −vtrue

q

∣∣∣∣−MAEv)
2

Q−1
(28)

where ucalc
q and vcalc

q are the correlated, utrue
q and vtrue

q the true displacements in the x- and y-direction
respectively and Q is total number of subsets. Bornert et al. [57] introduced a RMSE which summarises
the full-field displacement errors as a single number calculated as

RMSEu =

√∑Q
q=1 (u

calc
q −utrue

q )
2

Q , and RMSEv =

√∑Q
q=1 (v

calc
q −vtrue

q )
2

Q . (29)

Strain bias, variance and RMSE are calculated in the same way. SR is defined as the highest
frequency of a sinusoidal displacement field at which the code is capable of capturing the peak
displacements and strains within 95% and 90% of the true values, respectively [39]. SR is reported as
the period such that lower values indicate better performance across all error metrics.

4.2. Samples 1–3

Samples 1–3 were correlated using ADIC2D, Justin Blaber’s Ncorr (version 1.2) and LaVision’s
DaVis (version 8.4). Ncorr was used as it is well-established [59,60] and its correlation process is
similar in theory to ADIC2D with the exception that it uses bi-quintic b-spline interpolation and the
reliability-guided displacement tracking (RGDT) strategy proposed by Pan [61]. DaVis uses bi-sextic
b-spline interpolation and was included to compare ADIC2D to a commercial software package.

ADIC2D was used by setting SubShape = ‘Circle’, StepSize = 5 pixels, SFOrder = 1 and
SubSize to 21, 41 and 81 pixels. A FiltSigma of 0.4, 0.8 and 0.6 was used for Samples 1, 2 and 3
respectively. Subsets of size 21, 41 and 81 pixels had 5000, 4500 and 3650 subsets per image respectively.

The following procedure is used to determine the error metrics for each sample on a per algorithm
and per subset basis: (i) the displacement errors in the x- and y-direction were computed for each
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subset; (ii) these displacement errors were used to determine the error metrics in each direction for all
subsets throughout the image set; and (iii) Pythagoras’ theorem was used to determine the magnitude
of each error metric, in pixels (pix), which is reported in Tables 11–13 for Samples 1–3, respectively.

Table 11. Sample 1 error analysis reported at ×10−3 pix.

Code
Subset Size 21 Subset Size 41 Subset Size 81

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

ADIC2D 2.32 2.59 3.48 1.08 0.88 1.4 0.634 0.481 0.796
Ncorr 2.31 2.63 3.5 0.995 0.822 1.29 0.504 0.402 0.645
DaVis 1.34 1.05 1.7 0.652 0.497 0.819 0.317 0.246 0.401

Table 12. Sample 2 error analysis reported at ×10−1 pix.

Code
Subset Size 21 Subset Size 41 Subset Size 81

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

ADIC2D 3.49 4.24 5.5 1.16 0.917 1.48 0.519 0.391 0.65
Ncorr 5.59 5.96 8.17 2.05 1.71 2.67 0.956 0.759 1.22
DaVis 1.84 1.57 2.42 0.781 0.599 0.985 0.377 0.281 0.47

Table 13. Sample 3 error analysis reported at ×10−3 pix.

Code
Subset Size 21 Subset Size 41 Subset Size 81

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

ADIC2D 9.75 8.17 12.7 3.77 2.9 4.76 1.87 1.4 2.34
Ncorr 9.18 7.58 11.9 3.97 3.05 5.01 2.36 1.7 2.91
DaVis 5.16 4.02 6.54 2.47 1.9 3.12 1.29 1 1.64

Sample 1 reflects robustness to contrast changes, Sample 2 reflects robustness to higher noise
content with a limited contrast range and Sample 3 reflects effects due to the interpolation method used.

ADIC2D’s performance for Sample 1 is similar to that of Ncorr (up to 26% higher error). It is
noted that ADIC2D does not use the RGDT strategy and therefore is somewhat more susceptible to
contrast changes compared to Ncorr.

The improved performance of ADIC2D over Ncorr for Sample 2 (up to 48% improvement) is
reasoned to be due to the SF order used to obtain an initial estimate of the SFPs. ADIC2D uses the
zero-order SF resulting in reliable estimates of the SFPs. In contrast, Ncorr uses an overmatched
first-order SF which causes estimates to take on spurious values, due to noise, causing correlation to
proceed along an unfavourable solution path. Moreover, DaVis removes displacement results with
poor correlation coefficients thereby not providing a true reflection of the overall error for Sample 2.

Sample 3 highlights the effect of lower order b-spline interpolation for smaller subsets. ADIC2D
uses lower order b-spline interpolation, in comparison to Ncorr and DaVis, resulting in less accurate
matching for smaller subsets (ADIC2D for SubSize = 21 has a 7% higher RMSE relative to Ncorr).

4.3. Sample 14

ADIC2D was used for Sample 14 by setting SubShape = ‘Square’, StepSize = 5, pixels, SFOrder
= 1, FiltSigma = 0.4 and SubSize to 25, 31, 51 and 71 pixels. A window of 9 measurement points was
used to compute strain data. Table 14 shows the displacement and strain results in the x-direction,
for the last image of the set, that were analysed using the MATLAB code provided by the DIC
Challenge [39]. Codes A and G published in [39], which exhibit the best noise suppression (variance)
and SR, respectively, are included for comparison. Subsets of size 25, 31, 51 and 71 pixels had 43,700,
43,700, 42,600 and 40,600 subsets per image.
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Table 14. Sample 14 error analysis in the x-direction for last image of the image set [39].

Code/Subset
Size

Displacement Strain

RMSE
(pix)

Variance
(pix)

Max Bias
(pix)

SR
(pix)

RMSE
(pix/pix)

Variance
(pix/pix)

Max Bias
(pix/pix)

SR
(pix)

Code G 0.010 0.010 0.012 100 453 429 923 74
ADIC2D 25 0.018 0.017 0.015 1629 598 406 1488 173
ADIC2D 31 0.014 0.013 0.017 160 600 335 1674 182
ADIC2D 51 0.014 0.007 0.033 257 839 193 2720 233
ADIC2D 71 0.022 0.005 0.059 354 1255 125 4412 294

Code A 0.022 0.005 0.056 716 1131 172 3399 410

ADIC2D is capable of dealing with high frequency displacement fields. For a subset size of
71 pixels ADIC2D performs similarly to code A (within 0.1% difference) with the exception of an
improved SR (51%) and higher maximum bias (5%). As the subset size decreases so does the RMSE,
bias and SR while variance increases. Figure 6 illustrates this increase in noise suppression with
increase in subset size. For SubSize = 25 pixels, the error metrics increase (except strain SR as illustrated
in Figure 7b), indicating a limitation of ADIC2D with regards to noise suppression and SR for smaller
subset sizes (as shown in Figure 7a). The strain SR does not increase because strain experiences
more spatial filtering than displacement for the reasons outlined in the DIC Challenge paper [39].
Although ADIC2D cannot achieve results similar to code G, the results in Table 14 indicate that the
noise suppression and SR are within the range of established DIC codes evaluated in the DIC Challenge
paper [39].
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5. Discussion

The code was designed with modularity in mind. Firstly, it is modular in that each main
task is performed by a separate subroutine such that the reader can progressively build up their
understanding of the overall code by considering individual subroutines. This is particularly evident
for the correlation subroutines which separate correlation such that the logistics of preparing data for
correlation (ImgCorr), the core correlation operations (SubCorr), the effect of different SF orders on
correlation (SFExpressions), how data sets are prepared for different subset shapes (SubShapeExtract)
and determining initial estimates of the SFPs (PCM) can be considered separately.

Secondly, the code allows for changing of the SF order, subset shape, interpolation method and
Gaussian filtering parameters. Although the effect of these on the displacement and strain results is
well documented [31,49,62], this code allows the reader to easily investigate the effect of these in a
practical manner.

The effect of the subset shape is subtle. The displacement determined at the centre of a subset
is essentially the average of the displacement experienced by the light intensity pattern contained
within the subset. However, the farther a pixel is from the subset centre, the less representative
its displacement is of the displacement occurring at the subset centre. As such, circular subsets
have become favoured since the pixels of their pixels are evenly distributed around the subset
centre in a radially symmetric manner. However, since the trade-off is not significant and square
subsets are simpler from a mathematical and programming viewpoint, many DIC algorithms still use
square subsets.

Thirdly, the code is modular in that it allows the subset size, subset shape and SF order to be
assigned on a per subset and per image basis. Traditionally, DIC makes use of a single subset size,
subset shape and SF order for all subsets across all images. However, there has been a growing interest
in the field of DIC to create algorithms which adaptively assign these parameters such that they are
the most appropriate for the displacement and speckle pattern that the subset is attempting to track
resulting in more reliable displacements being computed. The modularity of ADIC2D means it is
straightforward to couple it with such an adaptive strategy.

In order to keep the code simple two aspects were neglected that would have otherwise made the
correlation aspect of ADIC2D consistent with the current state-of-the-art as identified by Pan [2]. Firstly,
ADIC2D makes use of bi-cubic b-spline interpolation, as opposed to the recommended bi-quintic
b-spline interpolation. As stated in the work of Bornert et al. [57] the errors in the “ultimate error
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regime” are reduced by increasing the degree of the interpolation method particularly for smaller
subsets. This is reflected in Table 13, which shows that although the error metrics of ADIC2D are better
than that of Ncorr for larger subsets, the opposite is true for the subset size of 21 pixels.

Secondly, ADIC2D does not use the RGDT strategy. While ADIC2D uses the optimal SFPs of
a subset for the previous image pair as an initial estimate of the SFPs for the current image pair,
RGDT only does this for the subset with the best correlation coefficient for the previous image pair.
It then uses the SFPs of this subset, for the current image pair, as initial estimates to correlate its
neighbouring subsets. It then repeatedly identifies the subset with the best correlation coefficient,
which has neighbouring subsets which have not yet been correlated, and uses its SFPs to correlate
its neighbouring subsets. This is repeated until all the subsets have been correlated for the current
image pair.

Thus, ADIC2D is susceptible to propagating spurious SFPs of a subset through the image set
which the RGDT strategy would have avoided. The effect of this is reflected in the results of Table 11
which shows how ADIC2D struggles to perform as consistently as Ncorr in the presence of contrast
changes in the image set.

Despite this, ADIC2D performs on par with established DIC algorithms. More specifically, (i) it is
capable of dealing with contrast changes as shown in Table 11; (ii) it handles high levels of noise within
the images sufficiently well as reflected in the results of Table 12; (iii) although displacement results of
smaller subsets suffer due to its lower order bi-cubic b-spline interpolation, its interpolation method
is sufficient achieving results similar to Ncorr as show in Table 13; and (iv) it has noise suppression
and spatial resolution characteristics that fall within the range of those reported for established DIC
algorithms as shown in Figure 7.

Thus, ADIC2D can be considered sufficiently reliable for use in the field of experimental solid
mechanics. However, ADIC2D is not limited to this field since its modularity means it can be easily
adapted for various applications and specific use cases. Furthermore, validation of ADIC2D coupled
with its modularity not only makes it attractive as a learning resource, but also as a starting point to
develop the capabilities of DIC.

6. Conclusions

This paper presents the theory of a 2D, subset based DIC framework (ADIC2D) that is
predominantly consistent with current state-of-the-art techniques, and illustrates its numerical
implementation in 117 lines of MATLAB code. ADIC2D allows for complete flexibility in assigning
correlation attributes on a per image and per subset basis. ADIC2D includes Gaussian image filtering
parameters, square or circular subset shape selection, zero, first and second-order SFs, reference image
strategy selection, interpolation method flexibility, image calibration using MALAB’s image calibration
toolbox and displacement transformation. Moreover, the presented code is modular. Sections of the
framework can readily be changed enabling the reader to gain a better understanding of DIC as well as
to contribute to the development of new DIC algorithm capabilities. Validation of ADIC2D shows that
it performs on par with established DIC algorithms.
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Abbreviations

α Homogeneous scaling variable
β Window size for the Gaussian filter
cs Skew of sensor coordinate system (intrinsic camera parameter)
cx, cy Translation applied to sensor coordinate system (intrinsic camera parameter)
CZNSSD Zero-mean normalised sum of squared difference correlation criterion
CZNCC Zero-mean normalised cross correlation criterion
CObjFun Objective function of correlation
Eproj Total projection error
F Reference image
f Reference subset
f Mean light intensity of reference subset
f̃ Normalisation function of reference subset
∇F Light intensity gradient of the reference image

∇fi =
[
∂ fi
∂x

∂ fi
∂y

]
Light intensity gradient of the reference subset

G Deformed image
g Investigated subset
g Mean light intensity of investigated subset
g̃ Normalisation function of investigated subset
H Hessian of the optimisation equation
I Number of pixels per subset (counter is i)
J Jacobian of the optimisation equation
K Intrinsic camera parameters
κ1,κ2 Radial distortion parameters
L Number of calibration images (counter is l)
M Number of calibration targets per calibration image (counter is m)
MAEu, MAEv Mean absolute error
ω Function to populate a square matrix with the shape function parameters
ψ Stopping criterion value
P Shape function parameters
Pupdate Updated shape function parameters
∆P Iterative improvement estimate of the shape function parameters
Q Number of subsets per an image (counter is q)
R Rotation matrix
RMSEu, RMSEv Root mean square error
ρ Calibration plate thickness
σg Standard deviation of the Gaussian function for Gaussian filtering
σu, σv Variance (standard deviation of the absolute error)
t Time
T Translation vector
Tspec Translation vector corrected for the thickness of the calibration plate
u Displacement in the x-direction in the distorted sensor coordinate system

utrue True displacement of subset in the x-direction in the distorted sensor
coordinate system

ucalc Calculated displacement of subset in the x-direction in the distorted sensor
coordinate system

ûw Undistorted metric displacement in the x-direction in the world coordinate system
ux, uy, uxx, uxy, uyy Derivatives of the x-direction displacement
V Extrinsic camera parameters
v Displacement in the y-direction in the distorted sensor coordinate system

vtrue True displacement of the subset in the y-direction in the distorted sensor
coordinate system

vcalc Calculated displacement of the subset in the y-direction in the distorted sensor
coordinate system
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v̂w Undistorted metric displacement in the y-direction in the world coordinate system
vx, vy, vxx, vxy, vyy Derivatives of the y-direction displacement
W Shape function
∂Wi
∂P Jacobian of the shape function in terms of the shape function parameters for pixel i

x̂w =
[

x̂w ŷw ẑw
]T Ideal world coordinates

x̂s =
[

x̂s ŷs
]T Ideal sensor coordinates

x̂n =
[

x̂n ŷn
]T Normalized ideal image coordinates

xn =
[

xn yn
]T Normalized distorted image coordinates

x =
[

x y
]T Distorted sensor coordinates

xtrue =
[

xtrue ytrue
]T True location of the calibration targets in the distorted sensor coordinate system

xcalc =
[

xcalc ycalc
]T Location of the calibration targets in the distorted sensor coordinate system

predicted by the camera model

xo =
[

xo yo
]T Centre of reference subset in the distorted sensor coordinate system

x̂o =
[

x̂o ŷo
]T Centre of reference subset in the undistorted sensor coordinate system

xd =
[

xd yd
]T Centre of investigated subset in the distorted sensor coordinate system

x̂d =
[

x̂d ŷd
]T Centre of investigated subset in the undistorted sensor coordinate system

xi =
[

xi yi
]T ith pixel position of the reference subset in the distorted sensor coordinate system

x′i =
[

x′i y′i
]T ith pixel position of the investigated subset in the distorted sensor

coordinate system

∆xi =
[

∆xi ∆yi
]T Distance from the reference subset centre to ith pixel position of reference subset

∆x′i =
[

∆x′i ∆y′i
]T Distance from the reference subset centre to ith pixel position of investigated subset

x̂o
w =

[
x̂o

w ŷo
w

]T Undistorted reference subset position in the world coordinate system

x̂d
w =

[
x̂d

w ŷd
w

]T Undistorted investigated subset position in the world coordinate system

ξx, ξy Scaling of metric units to pixels (intrinsic camera parameter)

ζ
Maximum distance of a pixel of the reference subset to the centre of the
reference subset

Appendix A

The ADIC2D code can be accessed on GitHub at https://github.com/SUMatEng/ADIC2D.

1 function ProcData=ADIC2D(FileNames,Mask,GaussFilt,StepSize,SubSize,
SubShape,SFOrder,RefStrat,StopCritVal,WorldCTs,ImgCTs,rho)

2 [~,ImNames]=cellfun(@fileparts,FileNames,’Uni’,0);
3 n=numel(FileNames);
4 [r,c]=size(im2double(imread(FileNames{1})));
5 [XosX,XosY]=meshgrid(((SubSize+1)/2+StepSize):StepSize:

(c-(SubSize+1)/2-1-StepSize),((SubSize+1)/2+StepSize):
StepSize:(r-(SubSize+1)/2-1-StepSize));

6 Xos=[XosX(:)’; XosY(:)’];
7 Xos=Xos(:,arrayfun(@(X,Y) min(min(Mask(Y-(SubSize-1)/2:Y+(SubSize-

1)/2,X-(SubSize-1)/2:X+(SubSize-1)/2))),Xos(1,:),Xos(2,:))==1);
8 ProcData=struct(’ImgName’,ImNames,’ImgSize’,repmat({[r,c]},1,n),

‘ImgFilt’,repmat({GaussFilt},1,n),’SubSize’,repmat({SubSize*ones([1,
size(Xos,2)])},1,n),’SubShape’,repmat({repmat(SubShape,size(Xos,2),1)},
1,n),’SFOrder’,repmat({repmat(SFOrder,size(Xos,2),1)},1,n),’Xos’,repmat
({Xos},1,n),’P’,repmat({zeros([12,size(Xos,2)])},1,n),’C’,repmat({ones
([1,size(Xos,2)])},1,n),’StopVal’,repmat({ones([1,size(Xos,2)])*StopCritVal},
1,n),’Iter’,repmat({zeros([1,size(Xos,2)])},1,n));

9 ProcData=ImgCorr(n,ProcData,FileNames,RefStrat,StopCritVal); % Section 3.2.1
10 ProcData=CSTrans(n,ProcData,WorldCTs,ImgCTs,rho); % Section 3.3

1 function PD=ImgCorr(n,PD,ImNames,RefStrat,StopCritVal)
2 SubExtract=@(Mat,Xos,SubSize) Mat(Xos(2)-(SubSize-

1)/2:Xos(2)+(SubSize-1)/2,Xos(1)-(SubSize-1)/2:Xos(1)+(SubSize-1)/2);
3 for d=2:n, tic; % outer loop
4 G=im2double(imread(ImNames{d}));

https://github.com/SUMatEng/ADIC2D
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5 if all(PD(d).ImgFilt), G=imgaussfilt(G,PD(d).ImgFilt(1),
‘FilterSize’,PD(d).ImgFilt(2)); end % Section 2.2.4

6 InterpCoef=griddedInterpolant({1:1:size(G,1),1:1:size(G,2)}, G,’spline’);
% Section 2.2.3

7 if any([RefStrat==1,d==2])
8 F=im2double(imread(ImNames{d-1}));
9 if all(PD(d).ImgFilt), F=imgaussfilt(F,PD(d).ImgFilt(1),

‘FilterSize’,PD(d).ImgFilt(2)); end % Section 2.2.4
10 [dFdx,dFdy]=imgradientxy(F,’prewitt’);
11 PD(d).Xos(1,:)=PD(d-1).Xos(1,:)+fix(PD(d-1).P(1,:));
12 PD(d).Xos(2,:)=PD(d-1).Xos(2,:)+fix(PD(d-1).P(7,:));
13 [PD(d).P(1,:),PD(d).P(7,:)]=arrayfun(@(XosX,XosY,SubSize)

PCM(F,G,SubSize,XosX,XosY,SubExtract),PD(d).Xos(1,:),PD(d).Xos(
2,:),PD(d).SubSize); % Section 3.2.5

14 else
15 PD(d).P=PD(d-1).P;
16 end
17 P=zeros(size(PD(d).P)); C=zeros(size(PD(d).C));

Iter=zeros(size(PD(d).C)); StopVal=ones(size(PD(d).C));
18 for q=1:size(PD(d).Xos,2) % inner loop (can be changed to parfor

for parallel processing)
19 [f,dfdx,dfdy,dX,dY]=SubShapeExtract(PD(d).SubSize(q),

PD(d).SubShape(q,:),PD(d).Xos(:,q),F,dFdx,dFdy,SubExtract); % Section 3.2.2
20 [P(:,q),C(q),Iter(q),StopVal(q)]=SubCorr(InterpCoef,f,dfdx,

dfdy,PD(d).SubSize(q),PD(d).SFOrder(q),PD(d).Xos(:,q),dX,dY,PD(
d).P(:,q),StopCritVal); % Section 3.2.3

21 end
22 PD(d).P=P; PD(d).C=C; PD(d).Iter=Iter; PD(d).StopVal=StopVal;
23 if rem(d-2,10)==0, fprintf(’Image/Total| Time (s) | CC (min) | CC

(mean) | Iter (max) \n’); end
24 fprintf(’ %4.d/%4.d | %7.3f | %.6f | %.6f | %3.0f

\n’,d,n,toc,min(PD(d).C),nanmean(PD(d).C),max(PD(d).Iter));
25 end

1 function [f,dfdx,dfdy,dX,dY]=SubShapeExtract(SubSize,SubShape,Xos,F,
dFdx,dFdy,SubExtract)

2 switch SubShape
3 case ’Square’
4 f(:)=reshape(SubExtract(F,Xos,SubSize),[SubSize*SubSize,1]);
5 dfdx(:)=reshape(SubExtract(dFdx,Xos,SubSize), [SubSize*SubSize,1]);
6 dfdy(:)=reshape(SubExtract(dFdy,Xos,SubSize), [SubSize*SubSize,1]);
7 [dX,dY]=meshgrid(-(SubSize-1)/2:(SubSize-1)/2, -(SubSize-

1)/2:(SubSize-1)/2); dX=dX(:); dY=dY(:);
8 case ’Circle’
9 f=SubExtract(F,Xos,SubSize);
10 dfdx=SubExtract(dFdx,Xos,SubSize);
11 dfdy=SubExtract(dFdy,Xos,SubSize);
12 [dX,dY]=meshgrid(-(SubSize-1)/2:(SubSize-1)/2,-(SubSize-1)/2:(SubSize-1)/2);
13 mask_keep=sqrt(abs(dX).ˆ2+abs(dY).ˆ2)<=(SubSize/2-0.5);
14 f=f(mask_keep);
15 dfdx=dfdx(mask_keep); dfdy=dfdy(mask_keep);
16 dX=dX(mask_keep); dY=dY(mask_keep);
17 end

1 function [P,C,iter,StopVal]=SubCorr(InterpCoef,f,dfdx,dfdy,SubSize,
SFOrder,Xos,dX,dY,P,StopCritVal)

2 [W,dFdWdP,SFPVec2Mat,Mat2SFPVec,StopCrit]=SFExpressions(SFOrder); % Section 3.2.4
3 dfdWdP=dFdWdP(dX(:),dY(:),dfdx(:),dfdy(:));
4 Hinv=inv(dfdWdP’*dfdWdP); % inverse of Equation (20)
5 f_bar=mean(f(:)); f_tilde=sqrt(sum((f(:)-f_bar).ˆ2));
6 flag=0; iter=0; dP=ones(size(P));
7 while flag==0
8 [dXY]=W(dX(:),dY(:),P); % Equation (14)
9 g=InterpCoef(Xos(2).*ones(size(dXY,1),1)+dXY(:,2),

Xos(1).*ones(size(dXY,1),1)+dXY(:,1));
10 g_bar=mean(g(:)); g_tilde=sqrt(sum((g(:)-g_bar).ˆ2));
11 StopVal=StopCrit(dP,(SubSize-1)/2); % Equation (23)
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12 if any([StopVal<StopCritVal,iter>100])
13 flag=1;
14 C=1-sum(((f(:)-f_bar)/f_tilde-(g(:)-g_bar)/g_tilde).ˆ2)/2;

% Equation (11) substituted into Equation (13)
15 else
16 J=dfdWdP’*(f(:)-f_bar-f_tilde/g_tilde*(g(:)-g_bar));

% Summation of Equation (19)
17 dP([1:SFOrder*3+0ˆSFOrder 7:6+SFOrder*3+0ˆSFOrder])= -Hinv*J; % Equation (19)
18 P=Mat2SFPVec(SFPVec2Mat(P)/SFPVec2Mat(dP)); % Equation (21)
19 end
20 iter=iter+1;
21 end

1 function [W,dFdWdP,SFPVec2Mat,Mat2SFPVec,StopCrit]=
SFExpressions(SFOrder)

2 switch SFOrder
3 case 0 % Zero order SF
4 W=@(dX,dY,P) [P(1)+dX,P(7)+dY]; % Equation (14)
5 dFdWdP=@(dX,dY,dfdx,dfdy) [dfdx,dfdy];
6 SFPVec2Mat=@(P) reshape([1,0,0,0,1,0,P(1),P(7),1],[3,3]); % Equation (22)
7 Mat2SFPVec=@(W) [W(7),0,0,0,0,0,W(8),0,0,0,0,0];
8 StopCrit=@(dP,Zeta) sqrt(sum((dP’.*[1,0,0,0,0,0,1,0,0,0,0,0])

.ˆ2)); % Equation (23)
9 case 1 % First order SF
10 W=@(dX,dY,P) [P(1)+P(3).*dY+dX.*(P(2)+1),

P(7)+P(8).*dX+dY.*(P(9)+1)]; % Equation (14)
11 dFdWdP=@(dX,dY,dfdx,dfdy) [dfdx,dfdx.*dX,dfdx.

*dY, dfdy,dfdy.*dX,dfdy.*dY];
12 SFPVec2Mat=@(P) reshape([P(2)+1,P(8),0,P(3),P(9)+1,0,P(1),

P(7),1],[3,3]); % Equation (22)
13 Mat2SFPVec=@(W) [W(7),W(1)-1.0,W(4),0,0,0,W(8),W(2),

W(5)-1.0,0,0,0];
14 StopCrit=@(dP,Zeta) sqrt(sum((dP’.*[1,Zeta,Zeta,0,0,0,1,Zeta,

Zeta,0,0,0]).ˆ2)); % Equation (23)
15 case 2 % Second order SF
16 W=@(dX,dY,P) [P(1)+P(3).*dY+P(4).*dX.ˆ2.*(1/2)+P(6).*dY.ˆ2.*

(1/2)+dX.*(P(2)+1)+P(5).*dX.*dY,P(7)+P(8).*dX+P(10).*dX.ˆ2.*(1/2)+
P(12).*dY.ˆ2.*(1/2)+dY.*(P(9)+1)+P(11).*dX.*dY]; % Equation (14)

17 dFdWdP=@(dX,dY,dfdx,dfdy) [dfdx,dfdx.*dX,dfdx.*dY,
(dfdx.*dX.ˆ2)/2,dfdx.*dX.*dY,(dfdx.*dY.ˆ2)/2,dfdy,dfdy.*dX,dfdy.
*dY,(dfdy.*dX.ˆ2)/2,dfdy.*dX.*dY,(dfdy.*dY.ˆ2)/2];

18 SFPVec2Mat=@(P) reshape([P(2)*2+P(1)*P(4)+P(2)ˆ2+1,
P(1)*P(10)*1/2+P(4)*P(7)*(1/2)+P(8)*(P(2)*2+2)*1/2,P(7)*P(10)+P(8)ˆ2,
P(4)*1/2,P(10)*1/2,0,P(1)*P(5)*2+P(3)*(P(2)*2+2),P(2)+P(9)+P(2)*P(9)+
P(3)*P(8)+P(1)*P(11)+P(5)*P(7)+1,P(7)*P(11)*2.0+P(8)*(P(9)+1)*2,P(5),
P(11),0,P(1)*P(6)+P(3)ˆ2,P(1)*P(12)*1/2+P(6)*P(7)*1/2+P(3)*(P(9)+1),
P(9)*2+P(7)*P(12)+P(9)ˆ2+1,P(6)*1/2,P(12)*1/2,0,P(1)*(P(2)+1)*2,P(7)+
P(1)*P(8)+P(2)*P(7),P(7)*P(8)*2,P(2)+1,P(8),0,P(1)*P(3)*2,P(1)+P(1)*P(9)+
P(3)*P(7),P(7)*(P(9)+1)*2,P(3),P(9)+1,0,P(1)ˆ2,P(1)*P(7),P(7)ˆ2,P(1),
P(7),1],[6,6]); % Equation (22)

19 Mat2SFPVec=@(W) [W(34),W(22)-1,W(28),W(4).*2,W(10),W(16).*2,
W(35),W(23),W(29)-1,W(5).*2,W(11),W(17).*2];

20 StopCrit=@(dP,Zeta) sqrt(sum((dP’.*[1,Zeta,Zeta,0.5*Zeta,
0.5*Zeta,0.5*Zeta,1,Zeta,Zeta,0.5*Zeta,0.5*Zeta,0.5*Zeta]).ˆ2)); % Equation (23)

21 end

1 function [u,v]=PCM(F,G,SubSize,XosX,XosY,SubExtract)
2 NCPS=(fft2(SubExtract(F,[XosX,XosY],SubSize))

.*conj(fft2(SubExtract(G,[XosX,XosY],SubSize))))./abs(fft2(SubExtract(
F,[XosX,XosY],SubSize)).*conj(fft2(SubExtract(G,[XosX,XosY],SubSize))));

3 CC=abs(ifft2(NCPS));
4 [vid,uid]=find(CC==max(CC(:)));
5 IndShift=-ifftshift(-fix(SubSize/2):ceil(SubSize/2)-1);
6 u=IndShift(uid);
7 v=IndShift(vid);

1 function PD=CSTrans(n,PD,WorldCTs,ImgCTs,rho)
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2 if WorldCTs~=0 | ImgCTs~=0
3 CamParams=estimateCameraParameters(ImgCTs,WorldCTs); % Section 2.1.4
4 else
5 CamParams=cameraParameters(’ImageSize’,PD(1).ImgSize,

‘IntrinsicMatrix’,eye(3),’WorldPoints’,PD(1).Xos’,’RotationVectors’,
[0,0,0],’TranslationVectors’,[0,0,0]);

6 WorldCTs=PD(1).Xos’; ImgCTs=PD(1).Xos’;
7 end
8 [R,T]=extrinsics(ImgCTs(:,:,end),WorldCTs,CamParams);
9 Tspec=T-[0,0,rho]*R; % Equation (6)
10 for d=1:n
11 Xds(1,:)=PD(d).Xos(1,:)+PD(d).P(1,:); % Equation (24)
12 Xds(2,:)=PD(d).Xos(2,:)+PD(d).P(7,:); % Equation (24)
13 PD(d).Xow=pointsToWorld(CamParams,R,Tspec, undistortPoints(PD(d).Xos’,CamParams))’;
14 Xdw=pointsToWorld(CamParams,R,Tspec, undistortPoints(Xds’,CamParams))’;
15 PD(d).Uw=Xdw-PD(d).Xow; % Equation (26)
16 PD(d).CamParams=CamParams;
17 end
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