Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling
Abstract
:1. Introduction
1.1. On the Key Role of Lakes and Reservoirs on the Water and Energy Cycles
1.2. On the Promising Use of Satellite Imagery for Lakes and Reservoir Monitoring at the Global Scale
1.3. Study Objectives
- What will be the spatial and temporal sampling of SWOT on the Seine reservoirs and alluvial gravel pits and the expected errors on water level and volume measurements?
- How these errors translate in model uncertainties on surface temperature and fluxes using a state of the art and widely used lake model?
2. Study Region and SWOT Coverage
2.1. Seine Reservoirs and La Bassée Gravel Pits
2.2. SWOT Mission and Orbits
3. Lake Model and SWOT Simulator
3.1. FLake Lake Model
3.2. SWOT Simulator
4. Simulation of SWOT-Like WSE Errors
4.1. Method
4.2. Results
4.2.1. WSE Errors on the Seine Reservoirs
Pixel-Scale WSE Error
Lake-Scale WSE Error
4.2.2. WSE Errors on La Bassée Gravel Pits
4.2.3. Contribution of SWOT in WSE Daily Monitoring
- Methodology
- Results
5. Impacts on Water Energy Budget Modeling
5.1. FLake Simulation Experiment Design
- The first scenario (called REF) considers that the actual depth of the reservoir/gravel pit is known precisely and provided by daily local measurements; FLake simulations forced by such true data will serve as reference.
- In the second scenario (called MAX), the water level is not measured but the maximal capacity of the reservoir/gravel pit is known (as given by the literature) and will be used to prescribe a constant value to the depth parameter.
- In the third scenario (called SWOT), the water depth is regularly measured from space (and prone to errors) and updated at the SWOT sampling rate considering all the orbits covering the lake. It is assumed here that the water depths will have be derived from the water surface elevation measured by SWOT provided a reference measurement.
5.2. Modeling Results
5.2.1. Model Errors on Seine Reservoirs
5.2.2. Model Errors on T6G2 Gravel Pit
6. Discussion
6.1. SWOT Reduction of Errors
6.2. SWOT Perspectives for Reservoir Monitoring
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y.; Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 2018, 22, 789. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high‐resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Vorosmarty, C.J. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 1997, 26, 210–219. [Google Scholar]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Stacke, T. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Wang, K.; Liu, X.; Liu, C. Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated evapotranspiration trends over China. J. Geophys. Res. Atmos. 2016, 121, 10097–10112. [Google Scholar] [CrossRef]
- Yin, Z.; Ottlé, C.; Ciais, P.; Zhou, F.; Wang, X.; Jan, P.; Dumas, P.; Peng, S.; Piao, S.; Li, L.; et al. Irrigation, damming and streamflow fluctuations of the Yellow River. Hydr. Earth Syst. Sci. Discuss. 2020, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Calmant, S.; Seyler, F. Continental surface waters from satellite altimetry. Comptes Rendus Geosci. 2006, 338, 1113–1122. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Seyler, F.; Martinez, J.M.; León, J.G.; Cazenave, A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens. Environ. 2005, 99, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.-F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake volume monitoring from space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Maisongrande, P. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT mission and its capabilities for land hydrology. In Remote Sensing and Water Resources; Springer: Cham, Switzerland, 2016; pp. 117–147. [Google Scholar]
- Desai, S. Surface Water and Ocean Topography Mission (SWOT) Project, Science Requirements Document. NASA/JPL technical document D–61923; 2018. Available online: https://swot.jpl.nasa.gov/docs/D-61923_SRD_Rev_B_20181113.pdf (accessed on 31 March 2020).
- Peral, E.; Rodríguez, E.; Moller, D.; McAdams, M.; Johnson, M.; Andreadis, K.; Arumugan, D.; Williams, B. SWOT Simulator Quick User Guide; NASA: Washington, DC, USA, 2016; p. D-79123. [Google Scholar]
- Solander, K.; John, C.; Reager, T.; Famiglietti, J.S. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs? Water Resour. Res. 2016, 52, 2123–2140. [Google Scholar] [CrossRef] [Green Version]
- Bonnema, M.; Hossain, F. Assessing the Potential of the Surface Water and Ocean Topography Mission for Reservoir Monitoring in the Mekong River Basin. Water Resour. Res. 2019, 55, 444–461. [Google Scholar] [CrossRef]
- Grippa, M.; Rouzies, C.; Biancamaria, S.; Blumstein, D.; Cretaux, J.; Gal, L.; Robert, E.; Gosset, M.; Kergoat, L. Potential of SWOT for Monitoring Water Volumes in Sahelian Ponds and Lakes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2541–2549. [Google Scholar] [CrossRef]
- Desroches, D.; Pottier, C.; Blumstein, D.; Biancamaria, S.; Poughon, V.; Fjortoft, R. Large Scale Pixel Cloud Simulator and Hydrology Toolbox. In Proceedings of the SWOT Science Team Meeting, Montreal, QC, Canada, 23 June 2018. [Google Scholar]
- Villion, G. Rôle des lacs-réservoirs amont: Les grands lacs de Seine (The role of upstream dams: The large reservoirs of the Seine basin). La Houille Blanche 1997, 8, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, J.L.; Gache, F.; Durand, P.Y.; Jost, C. Flood management in Ile de France, toward a shared and global strategy. La Houille Blanche-Revue Internationale de l’Eau 2011, 2, 5–13. [Google Scholar] [CrossRef]
- Mironov, D.V. Parameterization of Lakes in Numerical Weather Prediction: Description of a Lake Model; COSMO Technical Report No. 11; DWD: Offenbach, Germany, 2008. [Google Scholar]
- Mironov, D.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 2010, 15, 218–230. [Google Scholar]
- Balsamo, G.; Salgado, R.; Dutra, E.; Boussetta, S.; Stockdale, T.; Potes, M. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 15829. [Google Scholar] [CrossRef] [Green Version]
- Le Moigne, P.; Colin, J.; Decharme, B. Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 31274. [Google Scholar] [CrossRef] [Green Version]
- Bernus, A.; Ottlé, C.; Raoult, N. Variance based sensitivity analysis of FLake lake model for global land surface modeling. J. Geophys. Res. Atmos. 2020. in revision. [Google Scholar]
- Biancamaria, S.; Andreadis, K.M.; Durand, M.; Clark, E.A.; Rodriguez, E.; Mognard, N.M.; Oudin, Y. Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Esteban Fernandez, D. SWOT Project, Mission Performance and Error Budget. NASA/JPL technical document, D-79084. Available online: https://swot.jpl.nasa.gov/docs/SWOT_D79084_v10Y_FINAL_REVA__06082017.pdf (accessed on 1 April 2020).
- Terrier, M. Flow Naturalization Methods and Uncertainty Estimates. Ph.D. Thesis, INRAE, Antony/AgroParisTech, Paris, France, 2020. [Google Scholar]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resourc. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D.P. SWOT data assimilation for operational reservoir management on the upper Niger River Basin. Water Resour. Res. 2015, 51. [Google Scholar] [CrossRef]
Seine Lakes | Der-Chantecoq | Orient | Temple | Amance | Pannecière | La Bassée |
---|---|---|---|---|---|---|
Area (km2) | 48 | 23.2 | 18 | 5 | 5.2 | 28 |
Holding capacity (Mm3) | 349 | 208 | 148 | 22 | 80 | - |
Maximal depth (m) | 20 | 25 | 22 | 22 | 49 | 12 |
River controlled | Marne | Seine | Aube | Aube | Yonne | Seine |
Number of observations over the 21-day cycle | 0 | 3 | 3 | 2 | 2 | 4 |
SWOT observation days | - | 9, 13, 20 | 9, 13, 20 | 9, 13 | 13, 20 | 3, 10, 14, 20 |
Orbit numbers | - | 264, 363, 570 | 264, 363, 570 | 264, 363 | 363, 570 | 85, 292, 391, 570 |
Seine Lakes | Orient | Temple | Pannecière | Amance | T6G2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | 23 | 18 | 5.2 | 5 | 0.22 | ||||||||||
Np | Max (m) | Std (m) | Np | Max (m) | Std (m) | Np | Max (m) | Std (m) | Np | Max (m) | Std (m) | Np | Max (m) | Std (m) | |
Orbit 264 | 72,643 | 0.3 | 0.11 | 30,755 | 0.27 | 0.09 | - | - | 10,366 | 0.28 | 0.09 | - | - | ||
Orbit 570 | 68,403 | 0.28 | 0.10 | 40,660 | 0.22 | 0.09 | 7405 | 0.32 | 0.09 | - | - | 528 | 0.28 | 0.14 | |
Orbit 363 | 34,611 | 0.28 | 0.10 | 13,707 | 0.3 | 0.10 | 6083 | 0.26 | 0.10 | 3450 | 0.22 | 0.08 | - | - | |
Orbit 85 | - | - | - | - | - | - | - | - | 321 | 0.32 | 0.12 | ||||
Orbit 292 | - | - | - | - | - | - | - | - | 680 | 0.26 | 0.11 |
Seine Lakes | Orient | Temple | Pannecière | Amance | T6G2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Sampling scenario | Max(m) (Mm3) | Std(m) (Mm3) | Max(m) (Mm3) | Std(m) (Mm3) | Max(m) (Mm3) | Std(m) (Mm3) | Max(m) (Mm3) | Std(m) (Mm3) | Max(m) | Std(m) |
Orbit 264 | 2.02 | 0.21 | 1.46 | 0.22 | - | - | 1.58 | 0.23 | - | - |
4.4 | 0.46 | 1.08 | 0.16 | - | - | 0.47 | 0.07 | |||
Orbit 363 | 1.6 | 0.21 | 1.49 | 0.25 | 1.99 | 0.37 | 1.65 | 0.23 | - | - |
3.5 | 0.46 | 1.1 | 0.18 | 2.3 | 0.44 | 0.49 | 0.07 | |||
Orbit 570 | 2.08 | 0.22 | 1.43 | 0.25 | 2.04 | 0.38 | - | - | 0.35 | 0.11 |
4.6 | 0.48 | 1.06 | 0.18 | 2.45 | 0.45 | |||||
Orbit 85 | - | - | - | - | - | - | - | - | 0.27 | 0.09 |
Orbit 292 | - | - | - | - | - | - | - | - | 0.3 | 0.1 |
All | 0.68 | 0.1 | 0.7 | 0.11 | 1.49 | 0.22 | 1.38 | 0.17 | 0.32 | 0.1 |
1.5 | 0.22 | 0.52 | 0.08 | 1.79 | 0.26 | 0.41 | 0.05 |
Seine lakes | Orient | Temple | Amance | Pannecière | T6G2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Max Depth (m) | 25 | 22 | 22 | 49 | 6 | |||||
Scenario 2 (MAX) | ||||||||||
Max | Std | Max | Std | Max | Std | Max | Std | Max | Std | |
TS error (K) | 5 | 1.2 | 6.4 | 1.1 | 6.9 | 1.2 | 6.7 | 1.2 | 5 | 0.9 |
HS error (W/m2) | 56.3 | 9.2 | 60.2 | 7.8 | 66.2 | 8.8 | 64.6 | 8.8 | 49.3 | 5.7 |
HL error (W/m2) | 88.4 | 14.4 | 96.3 | 12.1 | 104.4 | 14.7 | 103.3 | 15.6 | 81.9 | 10.8 |
Scenario 3 (SWOT) | ||||||||||
Max | Std | Max | Std | Max | Std | Max | Std | Max | Std | |
TS error (K) | 3.3 | 0.2 | 5.2 | 0.4 | 1.92 | 0.11 | 3.4 | 0.5 | 6.6 | 0.4 |
HS error (W/m2) | 37.7 | 1.4 | 59.3 | 3.1 | 16.6 | 0.81 | 28.1 | 3.6 | 77.4 | 3.9 |
HL error (W/m2) | 61 | 2.7 | 91.4 | 4.6 | 19.3 | 0.97 | 56.2 | 6.6 | 152.6 | 5.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottlé, C.; Bernus, A.; Verbeke, T.; Pétrus, K.; Yin, Z.; Biancamaria, S.; Jost, A.; Desroches, D.; Pottier, C.; Perrin, C.; et al. Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling. Remote Sens. 2020, 12, 2911. https://doi.org/10.3390/rs12182911
Ottlé C, Bernus A, Verbeke T, Pétrus K, Yin Z, Biancamaria S, Jost A, Desroches D, Pottier C, Perrin C, et al. Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling. Remote Sensing. 2020; 12(18):2911. https://doi.org/10.3390/rs12182911
Chicago/Turabian StyleOttlé, Catherine, Anthony Bernus, Thomas Verbeke, Karine Pétrus, Zun Yin, Sylvain Biancamaria, Anne Jost, Damien Desroches, Claire Pottier, Charles Perrin, and et al. 2020. "Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling" Remote Sensing 12, no. 18: 2911. https://doi.org/10.3390/rs12182911
APA StyleOttlé, C., Bernus, A., Verbeke, T., Pétrus, K., Yin, Z., Biancamaria, S., Jost, A., Desroches, D., Pottier, C., Perrin, C., de Lavenne, A., Flipo, N., & Rivière, A. (2020). Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling. Remote Sensing, 12(18), 2911. https://doi.org/10.3390/rs12182911