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Abstract: Since time-delay, Doppler effect and phase estimation are fundamental tasks in a plethora
of engineering fields, tractable lower performance bounds for this problem are key tools of broad
interest for a large variety of remote sensing applications. In the large sample regime and/or the high
signal-to-noise ratio regime of the Gaussian conditional signal model, the Cramér–Rao bound (CRB)
provides an accurate lower bound in the mean square error sense. In this contribution, we introduce
firstly a new compact CRB expression for the joint time-delay and Doppler stretch estimation,
considering a generic delayed and dilated band-limited signal. This generalizes known results
for both wideband signals and the standard narrowband signal model where the Doppler effect
on the band-limited baseband signal is not considered and amounts to a frequency shift. General
compact closed-form CRB expressions for the amplitude and phase are also provided. These compact
CRBs are expressed in terms of the baseband signal samples, making them especially easy to use
whatever the baseband signal considered, therefore being valid for a variety of remote sensors.
The new CRB expressions are validated in a positioning case study, both using synthetic and real
data. These results show that the maximum likelihood estimator converges to the CRB at high
signal-to-noise ratios, which confirms the exactness of the CRB. The CRB is further validated by
comparing the ambiguity function and its 2nd order Taylor expansion where the perfect match also
proves its exactness.

Keywords: time-delay; Doppler effect and phase estimation; Cramér–Rao bound; maximum likelihood;
band-limited signals; GNSS remote sensing

1. Introduction

Time-delay, Doppler stretch and phase estimation appear in a plethora of engineering fields
such as navigation, radar, reflectometry, sonar or communications, to name a few [1–12], being
the estimation of such parameters a key first stage of the receiver [7,10–12]. For any of these
applications, when designing and assessing estimation techniques, it is of fundamental importance
to know the ultimate achievable performance in the mean square error (MSE) sense, information
which can be brought by lower bounds (LB) on the MSE. Even if several types of LBs exist [13],
the family of Cramér–Rao bounds (CRB) [14,15] is the most popular, mainly due to its simplicity
of calculation for various problems (see [6] (§8.4) and [13] (Part III)). In addition, the CRB gives
an accurate estimation of the MSE of the maximum likelihood estimator (MLE) in the asymptotic
region of operation under certain conditions, i.e., in the large sample regime and/or high signal-to-noise
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(SNR) regime of the Gaussian conditional signal model (CSM) [16,17]. Therefore, it is not surprising
that several CRB expressions for the delay-Doppler estimation problem have been derived for the past
decades, for finite [4,18–32] or infinite [33] bandwidth signals, where the starting point is often either
the Slepian–Bangs formulas [15] or general theoretical CRB expressions for Gaussian observation
models [6,34–36].

Most of these CRB expressions [4,20,21,23–27,31,32] only address the standard narrowband signal
model where the impact of the Doppler effect on the baseband signal is not taken into account
and amounts to a frequency shift. However, in some applications [3,7,29], like wide/ultra-wide
band (high range resolution, synthetic aperture or low interception probability) sonar or radar,
or wide/ultra-wide band communications, the compression or stretch due to the range rate
on the envelope of the received signal cannot be ignored. In radar, the standard narrowband
signal model was first proposed by Woodward [1] for deterministic transmit waveforms and led
to the conventional narrowband range-Doppler MLE and its associated narrowband radar ambiguity
function. Following Woodward’s approach, various formulations for the wideband range-Doppler
MLE and its associated ambiguity function were later investigated [2,3,7,37–39], and the significance
of the difference between the two ambiguity functions has been shown to depend on the product of
the signal duration, the signal bandwidth, and the target velocity [3]. In addition to the historical
remote sensing systems as sonar and radar, in more recent Global Navigation Satellite Systems (GNSS),
due to the very high velocity of the transmitter located on a satellite, it is also essential to incorporate
the baseband signal dilatation due to the Doppler effect into the MLE formulation to reach the minimum
achievable MSE, for instance in carrier phase-based precise positioning techniques [40]. In addition,
this is also the case of GNSS-based reflectometry (GNSS-R) applications such as altimetry [12,41,42].

Surprisingly, although wideband ambiguity functions have been quite extensively studied
for a while, CRB for the delay-Doppler estimation of wideband signals has received less
attention [18,19,22,28–30] leading to lack of a general compact closed-form CRB expression. Indeed, [18,19]
derive CRB expressions in active [18] and passive system [19] for a wideband signal with known
amplitude and phase. Since, in many applications, it is unrealistic to assume a known complex amplitude,
several CRB expressions for the joint estimation of delay-Doppler and complex amplitude [28,29] or
phase-amplitude [22,30] have been proposed. However, all of these expressions have been derived
under unnecessary restrictive assumptions on the signal, in particular if the signal is assumed to be
band-limited, leading to unnecessary restrictive CRB expressions. Moreover, none of the existing
CRBs [18,19,22,28–30] provide closed-form expressions for the amplitude and phase, which may be of
great interest in applications like GNSS or GNSS-R where the phase estimation performance drives
the performance of subsequent estimation techniques, such as GNSS carrier phase-based precise
positioning [40] or phase-based GNSS-R [41,42]. Thus, the contributions of this article are:

• The first contribution is a general compact closed-form CRB expression for the delay-Doppler
estimation of a generic band-limited signal which is only supposed to have a finite number on
non-zero samples, thus encompassing all existing CRB expressions.

• A second contribution is the introduction of a general compact closed-form CRB expression for
the amplitude and phase.

• The compact CRBs obtained are expressed in terms of the baseband signal samples, making
it especially easy to use whatever the baseband signal considered. This allows to exploit such
expressions in a plethora of remote sensing applications.

• The validity of the new CRB expressions is assessed in the context of GNSS, both using synthetic
and real data.

Notice that these results encompass the preliminary results for the delay-Doppler estimation
assuming a narrowband signal recently derived in [32]. In comparison with the literature,
including [32], a certain number of new terms appear in the proposed CRB due to the Doppler
effect on the baseband signal which can not be guessed from existing results. For instance, for a real
signal, the estimation of both parameters is not decoupled any longer.
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Notation

Italic indicates a scalar quantity, as in a; lower case boldface indicates a column vector quantity,
as in a; upper case boldface indicates a matrix quantity, as in A. The matrix/vector transpose is
indicated by a superscript (·)> as in A>, and the transpose conjugate (·)H as in AH .

2. Signal Model

We consider the transmission of a band-limited (bandwidth B) signal s(t) over a carrier frequency
fc (λc = c/ fc) from a transmitter T, at position pT(t) = pT + vTt, to a receiver R, at position
pR(t) = pR + vRt (uniform linear motions). The band-limited signal can be expressed in
time/frequency (to be exploited for the bound derivation) as

s (t) =
N2

∑
n=N1

s
(

n
Fs

)
sinc

(
πFs

(
t− n

Fs

))
, (1)

s ( f ) =

(
1
Fs

N2

∑
n=N1

s
(

n
Fs

)
e−j2πn f

Fs

)
1[− B

2 , B
2 ]
( f ) , (2)

where Fs ≥ B, and N1, N2 ∈ Z, N1 ≤ N2. The complex analytic signal at the output of the receiver’s
antenna can be written as

xA(t) = αAsA(t) + nA(t), (3)

with nA(t) a zero-mean white complex Gaussian noise, and where the gain αA depends
on the transmitted signal power, the transmitter/receiver antenna gains and polarization vectors,
and the radial distance between T and R. If this distance, pTR (t), can be approximated by a first order
distance-velocity model [2,3,7,39],

‖pTR (t)‖ , ‖pR (t)− pT (t− τ (t))‖ = cτ (t) ' d + vt,

τ (t) ' τ + bt, τ =
d
c

, b =
v
c

, c ' 3 · 108 m/s, (4)

so-called relative uniform radial movement, and characterized by a time-delay (τ) due to
the propagation path and dilation (1− b) induced by the Doppler effect. In this case [7,43],

sA (t) = s ((1− b) (t− τ)) ej2π fc(1−b)te−j2π fcτ . (5)

Notice that the static signal model case in [44] is obtained with b = 0 (τ (t) ' τ), and the standard
narrow-band signal model [2,3,7,20,29,31,32] is obtained by approximating s ((1− b) (t− τ)) '
s (t− τ). We can express the baseband output of the receiver’s Hilbert filter as

x (t) = αs (t; η) e−jωcb(t−τ) + n (t) , (6)

where ωc = 2π fc, s (t; η) = s ((1− b) (t− τ)), η = [τ, b]> and the complex gain α = αAe−j2π fc(1+b)τ .
If Fs is the Hilbert filter bandwidth, then n(t) is a complex white Gaussian noise within the bandwidth
Fs with unknown variance σ2

n. In addition, we have the following Nyquist–Shannon sampling
condition: f ∈

[
− Fs

2 , Fs
2

]
with Fs

2 ≥ max
b

{
B
2 (1− b)

}
. Both propagation time-delay and Doppler

effect dilation are made apparent in

s (t; η) = s ((1− b) (t− τ)) = s ((1− b) u)|t−τ (7)

��

s ( f ; η) =
1

1− b
s
(

f
1− b

)
e−j2π f τ (8)
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The discrete vector signal model is build from N′ = N′2 − N′1 + 1 (N′1 � N1, N′2 � N2) samples
at Ts = 1/Fs, meaning that the signal amplitude is assumed to be negligible outside the essential
duration

[
N′1Ts, N′2Ts

]
,

x = αa (η) + n, (9)

x = (x
(

N′1Ts
)

, . . . , x
(

N′2Ts
)
)>,

n = (n
(

N′1Ts
)

, . . . , n
(

N′2Ts
)
)>,

s (η) = (s
(

N′1Ts; η
)

, . . . , s
(

N′2Ts; η
)
)>,

a (η) = ((s (η))1e−jωcb(N′1Ts−τ), . . . , (s (η))N′ e
−jωcb(N′2Ts−τ))>,

where n ∼ CN
(
0, σ2

nIN′
)
. Since the transmitter/receiver antenna gains and polarization vectors are

in general unknown to a certain extent, α is assumed to be an unknown complex parameter [4,8,9,35,43].
Then, the unknown deterministic parameters [36] can be gathered in vector ε> = [σ2

n, α, α∗, η>],
where α∗ is the complex conjugate of α. Note that the same signal model (9) can be obtained if instead
of line-of-sight transmission, one considers transmission via diffraction (scatterer), reflexion (reflector)
or combination of the three (multipaths) [8,43].

3. Maximum Likelihood and Ambiguity Function

Considering the signal model (9), the delay-Doppler MLE is defined as (Let S = span (A),
with A a matrix, be the linear span of the set of its column vectors, S⊥ the orthogonal complement of
the subspace S, ΠA = A

(
AHA

)
AH the orthogonal projection over S, and Π⊥A = I−ΠA) [35]

η̂ = arg min
η

{
xHΠ⊥a(η)x

}
= arg max

η

{ ∣∣∣a(η)Hx
∣∣∣2

a(η)Ha(η)

}
= arg max

(b,τ)



∣∣∣∣∣∣∣
+∞∫
−∞

s(t;η)∗ejωcb(t−τ)x(t)dt

∣∣∣∣∣∣∣
2

1
(1−b)

+∞∫
−∞

|s(t)|2dt


, (10)

which is instrumental to validate a CRB expression because such estimator is known to be
asymptotically efficient (e.g., in the high SNR regime) for the conditional signal model of interest [16,17].
Another interesting expression is the maximum SNR at the output of the MLE matched filter

SNRout =

∣∣∣∣∣∣
+∞∫
−∞

s (t; η)∗ αs (t; η) dt

∣∣∣∣∣∣
2

E


∣∣∣∣∣∣
+∞∫
−∞

s (t; η)∗ n (t) dt

∣∣∣∣∣∣
2


=
|α|2(

σ2
n

Fs

)
(1− b)

+∞∫
−∞

|s (t)|2 dt =
|α|2 E(

σ2
n

Fs

)
(1− b)

, (11)

with E =
∫ +∞
−∞ |s (t)|

2 dt the energy of the signal. The corresponding ambiguity function is given
by [2,3,7,43]

Ξ
(
η′; η

)
=

1
N′

(a (η) α)H Πa(η′) (a (η) α) =
|α|2

N′
‖a (η)‖2

∣∣∣∣∣ a (η)H a (η′)
‖a (η)‖ ‖a (η′)‖

∣∣∣∣∣
2

, (12)

and if we define the following function

Φ (η) =
∂a (η)
∂ηT

H
Π⊥a(η)

∂a (η)
∂ηT , (13)
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it can be approximated by its 2nd order Taylor expansion as [7] (Chapter 3.9.4)

Ξ (η+ dη; η) ' |α|
2

N′
‖a (η)‖2

(
1− 1

2
dηT

(
2< {Φ (η)}
‖a (η)‖2

)
dη

)
, (14)

where the second term which depends on Φ (η) is directly related to the CRB (see (15)–(24)).
Since the true and approximated ambiguity function must coincide around the maximum, this is also
helpful to validate the CRB expression.

4. New Compact CRB for Delay, Doppler Stretch and Phase Estimation with a Band-
limited Signal

The main goal of this contribution is to obtain a new compact analytic form of the CRB for
the signal model (9), where both time-delay τ and time-delay drift b, also known as the Doppler effect
leading to time compression or expansion, are to be estimated (i.e., τ(t) ≈ τ + bt).

4.1. Background on CRB for the Single Source CSM

The CRB of η for a Gaussian conditional observation model (9) has been known for ages [34] and
is given by [6,34–36]

CRBη =
σ2

n

2 |α|2
< {Φ (η)}−1 , Φ (η) , (13). (15)

Thus, there is no point in recomputing the global Fisher Information Matrix (FIM) [36]

Fε = E

[
∂ ln p (x; ε)

∂ε

(
∂ ln p (x; ε)

∂ε

)H
]
= −E

[
∂2 ln p (x; ε)

∂ε∂εH

]
, (16)

to extract CRBη (15) as proposed previously in [22,28–30] (even in the multiple sources case as in [29],
since a multiple sources version of (15) exists as well [6,34–36]) which may lead to errors in its
derivation. Interestingly enough, if we reparameterize the complex amplitude α as α = ρejϕ where ρ

denotes the amplitude (modulus) and ϕ the phase, then (9) becomes

x = ρejϕa (η) + n, (17)

and the unknown deterministic parameter vector ε becomes ε> = [σ2
n, ρ, ϕ, η>]. Under this equivalent

parameterization of the conditional observation model, the compact CRBη (15) can be complemented
in order to include amplitude and phase parameters [32], which leads to

CRBρ =
σ2

n

2 ‖a (η)‖2 + ρ2
Re
{

aH (η)
∂a(η)
∂η>

}
CRBη Re

{
aH (η)

∂a(η)
∂η>

}>
‖a (η)‖4 , (18)

CRBθ =

[
CRBϕ CRB>η,ϕ

CRBη,ϕ CRBη

]
, θ> =

(
ϕ, η>

)
, (19)

where CRBη is given by (15) and

CRBϕ =
σ2

n
2ρ2

1

‖a (η)‖2 +
Im
{

aH (η)
∂a(η)
∂η>

}
CRBη Im

{
aH (η)

∂a(η)
∂η>

}>
‖a (η)‖4 , (20)

CRBη,ϕ = −CRBη

Im
{

aH (η)
∂a(η)
∂η>

}>
‖a (η)‖2 . (21)
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Last, since SNRout = ρ2/
(
σ2

n (1− b)
)
EFs (11), it may be worth remembering that [6,35]

CRBσ2
n
=

1
N′
(

σ2
n

)2
, (22)

which allows to compute CRBSNRout , of interest in some applications.
For the sake of completeness, under the reparametrized conditional observation model (17),

the amplitude ρ and phase ϕ MLEs are given by [35]

ρ̂ = |α̂| , ϕ̂ = arg {α̂} , α̂ =
a (η)H x

a (η)H a (η)
=

+∞∫
−∞

s (t; η)∗ ejωcb(t−τ)x (t) dt

1
(1−b)

+∞∫
−∞

|s (t)|2 dt

, (23)

where α̂ is the MLE of the complex amplitude α.

4.2. A Preliminary Compact CRB for the Single Band-Limited Source CSM

Let β = 1− b and s(1) (t) = ds(t)
dt . Thus, we look for the compact closed-form analytic expression,

< {Φ (η)} =

[
(·)1,1 (·)1,2
(·)1,2 (·)2,2

]

= <
{

∂a(η)
∂η>

H ∂a(η)
∂η>

}
−<

{
1

‖a(η)‖2

(
a (η)H ∂a(η)

∂η>

)H (
a (η)H ∂a(η)

∂η>

)}
,

(24)

which after tedious calculus (details in Appendix A) is given by

(·)1,1 = Fsβ2
(

W3,3 − |w3|2
w1

)
,

(·)1,2 = Fsβ
(

ωc=
{

w4 − w3w2
w1

}
− 1

w1
<
{

w3w∗4
}
+ W4,3

)
,

(·)2,2 = Fs

(
ω2

c

(
W2,2 −

w2
2

w1

)
+ 2ωc=

{
W4,2 − w2w4

w1

}
+ W4,4 − |w4|2

w1

)
,

(25)

where

aH (η)
∂a (η)
∂ηT = Fs

(
jωc (1− β)w1 − βw3

−jωcw2 − w4

)>
, (26)

and the terms w1, w2, w3, w4, W2,2, W3,3, W4,2, W4,3, W4,4 are computed as
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w1 =
1
β

+∞∫
−∞

|s (t)|2 dt, w2 =
1
β2

+∞∫
−∞

t |s (t)|2 dt,

w3 =
1
β

+∞∫
−∞

s(1) (t) s (t)∗ dt, w4 =
1
β2

+∞∫
−∞

ts(1) (t) s (t)∗ dt,

W2,2 =
1
β3

+∞∫
−∞

t2 |s (t)|2 dt, W3,3 =
1
β

+∞∫
−∞

∣∣∣s(1) (t)∣∣∣2 dt,

W4,2 =
1
β3

+∞∫
−∞

t2s(1) (t) s (t)∗ dt, W4,3 =
1
β2

+∞∫
−∞

t
∣∣∣s(1) (t)∣∣∣2 dt,

W4,4 =
1
β3

+∞∫
−∞

t2
∣∣∣s(1) (t)∣∣∣2 dt. (27)

4.3. Comparison with Existing Literature

In the existing literature [18,19,22,28–30], whenever the signal amplitude ρ and phase ϕ are
known, the observation model does not explicitly take into account a complex envelope modulated
by a carrier frequency fc as in (6), (9), (17), but is simply [18] ((1.1), (1.8)), [19] ((2), (11)), [22] (1), [28]
(4), [29] ((2), (5)), [30] (1),

x (t) = αs (t; η) + n (t) , (28)

where s (t; η) is a band-limited signal (since the noise n (t) is always assumed to be band-limited,
with a bandwidth being larger than (or equal to) the signal bandwidth). Thus (28) amounts to set
fc = 0 in both observation models (6), (9), (17) and CRB terms (25), (26), leading to

CRBη =
σ2

n
2ρ2 Λ−1,

Λ1,1 = Fsβ2
(

W3,3 − |w3|2
w1

)
,

Λ1,2 = Fsβ

(
W4,3 −

<{w3w∗4}
w1

)
,

Λ2,1 = Λ1,2,

Λ2,2 = Fs

(
W4,4 − |w4|2

w1

)
.

(29)

If we consider the existing literature where the signal amplitude ρ and phase ϕ are unknown [22,28,30],
it takes into account that < {w3} = 0 (true for any s (t), see next Section) but also that < {w4} = 0
which is an unnecessary restriction not satisfied for most of real-valued signals (see next Section),
leading to [22] (14), [28] (10), [30] (Section IV) (with a few typos [22] ((12e–12g)), [30] (13)),

CRBη =
σ2

n
2ρ2 Λ−1,

Λ1,1 = Fsβ2
(

W3,3 −
Im{w∗3}

2

w1

)
,

Λ1,2 = Fsβ

(
W4,3 −

Im{w∗3} Im{w∗4}
w1

)
,

Λ2,1 = Λ1,2,

Λ2,2 = Fs

(
W4,4 −

Im{w∗4}
2

w1

)
,

(30)
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which is (29) under < {w3} = < {w4} = 0. Last, if we consider the existing literature where the signal
amplitude ρ is unknown but the phase ϕ is known [29], the single point target case detailed for
a real-valued α reads,

CRBη =
σ2

n
2ρ2 Λ−1,

Λ1,1 = Fsβ2W3,3,
Λ1,2 = FsβW4,3,
Λ2,1 = Λ1,2,

Λ2,2 = Fs

(
W4,4 − <{w4}2

w1

)
,

(31)

where assumption ([18], (1.12)) is taken into account leading to ([18], (1.15)) < {w4} = −w1/ (2β) and
< {w4}2 /w1 = w1/

(
4β2
)

. Note that assumption ([18], (1.12)) is not satisfied by a great number of
band-limited signals (for instance if s (t) = s (0)sinc(πFst)). Additionally note that neither CRBρ (18)
nor CRBθ (19) have been introduced in the existing literature dealing with Doppler stretch. Thus,
the proposed approach where the only assumption is to consider a band-limited signal having a finite
number on non-zero samples (to ensure finiteness of all the integrals considered (27) as detailed
in the next Section), and an explicit carrier frequency modulation, offer far more general (or new) CRB
expressions than the existing ones (from which w2, W2,2, W4,2 can not be guessed).

4.4. A Versatile Compact CRB for Delay, Doppler Stretch and Phase Estimation with a Band-Limited Signal

Even if deriving the most general form of the CRBs (15), (18), (19), (25), (26) and (27) for a given
observation model and a given class of signals is of theoretical importance, making it easy to apply for
a large subset of the class, and ideally to the whole class, is also a challenging goal of great interest both
from a practical and a theoretical point of view. Actually, such easy to use and versatile expressions can
be introduced by exploiting the properties of a band-limited signal (1). Indeed, in that case, the terms
w1, w2, . . . , W4,3, W4,4 (27) can also be expressed as (details in Appendix B)

w1 =
sHs
βFs

, w2 =
sHDs
β2F2

s
, w3 =

sHΛs
β

, w4 =
sHDΛs

β2Fs
, W2,2 =

sHD2s
β3F3

s
, W3,3 =

FssHVs
β

,

W4,2 =
1

β3F2
s

(
sHDΛDs− sHDs

)
, W4,3 =

1
β2

(
sHΛs + sHVDs

)
,

W4,4 =
1

β3Fs

(
sHs + sHDVDs− 2<

{
sHΛDs

})
, (32)

with D, Λ and V defined as

D = diag ([N1, N1 + 1, . . . , N2 − 1, N2]) , (33)

(V)n,n′ =

∣∣∣∣∣∣ n′ 6= n : (−1)|n−n′ | 2
(n−n′)2

n′ = n : π2

3

, (34)

(Λ)n,n′ =

∣∣∣∣∣∣ n′ 6= n : (−1)|n−n′ |
(n−n′)

n′ = n : 0
, (35)

for N1 ≤ n, n′ ≤ N2. Moreover, since W3,3 > 0 if s 6= 0, then V is a symmetric positive definite
real-valued matrix

(
VT = V, V > 0

)
; and Λ is an anti-symmetric real-valued matrix

(
ΛT = −Λ

)
,

which leads to<
{

sHΛs
}
= 0 and<

{
sHDΛDs

}
= 0. Finally, the terms in (25), (26) can be expressed as
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(·)1,1 = FsβsHs
(

sHVs
sHs −

∣∣∣ sHΛs
sHs

∣∣∣2)
(·)1,2 = sHs

β

(
ωc
Fs
=
{

sHDΛs
sHs −

sHΛs
sHs

sHDs
sHs

}
−<

{
sHΛs
sHs

sHΛDs
sHs

}
+ sHΛs

sHs + sHVDs
sHs

)
(·)2,2 = sHs

Fs β3

 ω2
c

F2
s

(
sHD2s

sHs −
(

sHDs
sHs

)2
)
+ 2 + sHDVDs

sHs −
∣∣∣1 + sHΛDs

sHs

∣∣∣2
+2 ωc

Fs
=
{

sHDΛDs
sHs − sHDs

sHs

}
− 2 ωc

Fs
=
{

sHDs
sHs

sHDΛs
sHs

}


, (36)

a (η)H ∂a (η)
∂ηT = FssHs

(
j ωc

βFs
(1− β)− sHΛs

sHs − j ωc
β2F2

s

sHDs
sHs −

1
β2Fs

sHDΛs
sHs

)>
. (37)

From this result, it is straightforward to obtain compact closed-form CRB expressions for (15),
(18), (19) (i.e., (24) is a 2× 2 matrix) which depend only on the baseband signal samples and known
matrices D, V and Λ (33)–(35). These appealing closed-form CRBs which depend only on the samples’
vector, can thus be used for any sensing application compliant with the CSM (6) in order to investigate
its asymptotic theoretical performance, and possibly, to assess the threshold region by comparing
simulated (or measured) MSE of MLEs with the CRBs values obtained.

In addition, if s (t) is a real-valued signal, then <
{

s>Λs
}

= <
{

s>DΛDs
}

= 0 and (36–37)
simplify to

(·)1,1 = Fsβs>s s>Vs
s>s ,

(·)1,2 = s>s
β

s>VDs
s>s ,

(·)2,2 = s>s
Fs β3

(
ω2

c
F2

s

(
s>D

2
s

s>s −
(

s>Ds
s>s

)2
)
+ 2 + s>DVDs

s>s −
(

1 + s>DΛs
s>s

)2
)

,

(38)

a (η)H ∂a (η)
∂ηT = Fss>s

(
j ωc

βFs
(1− β)− j ωc

β2F2
s

s>Ds
s>s −

1
β2Fs

s>DΛs
s>s

)>
. (39)

4.5. Standard Narrowband Signal Model

A simplified narrowband signal model is analyzed in [20,32], where the Doppler effect
on the baseband signal s (t) is not considered. In this case, a (t; η) is written as

s ((1− b) (t− τ)) e−jωcbt ' s (t− τ) e−jωcbt. (40)

Under this hypothesis, (36) and (37) become [20,32]

(.)1,1 = FssHs
(

sHVs
sHs −

∣∣∣ sHΛs
sHs

∣∣∣2)
(.)1,2 = sHc

Fs

(
ωc=

{
sHDΛs

sHs −
sHΛs
sHs

sHDs
sHs

})
(.)2,2 = sHs

Fs

ω2
c

F2
s

(
sHD2s

sHs −
(

sHDs
sHs

)2
) , (41)

and [32]

a (η)H ∂a (η)
∂ηT = FssHs

 j ωc
βFs

(1− β)− sHΛs
sHs

−j ωc
β2F2

s

sHDs
sHs

> . (42)
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Then, if s (t) is a real signal, (41), (42), reduce to

(.)1,1 = Fss>s s>Vs
s>s

(.)1,2 = 0

(.)2,2 = s>s
Fs

ω2
c

F2
s

(
s>D

2
s

s>s −
(

s>Ds
s>s

)2
) , (43)

and

a (η)H ∂a (η)
∂ηT = jFss>s

ωc

βFs

(
1− β

− 1
βFs

s>Ds
s>s

)>
, (44)

Notice that < {Φ (η)}2,2 has become invariant by time translation because it comes only from the
term e−jωcb(t−τ).

4.6. Further Insights and Outlooks

The versatility of the proposed CRB expressions is a key feature that can be easily emphasized by
the following (non exhaustive) list of examples of use. For instance, one important outcome offered by
the new CRB expressions based on (36) and (37) is to allow a quantifiable assessment of the impact of
a bandwidth increase on the CRB values, and also on the coupling between the delay and Doppler effect.
Firstly, we can see that for real narrowband signals, the estimation of both parameters is decoupled
because the cross terms are null (43), which is no longer the case when the bandwidth increases (38).
Secondly, one can notice that an increase of bandwidth has mainly an impact on the Doppler estimation
and a marginal impact on the delay estimation by coupling, since

(·)WB
1,1 = FsβsHs

(
sHVs
sHs

−
∣∣∣∣ sHΛs

sHs

∣∣∣∣2
)

= (·)NB
1,1

(·)WB
2,2 ' (·)NB

2,2 +
sHs
Fs

 2 + sHDVDs
sHs −

∣∣∣1 + sHΛDs
sHs

∣∣∣2
2 ωc

Fs
=
{

sHDΛDs
sHs − sHDs

sHs

}
− 2 ωc

Fs
=
{

sHDs
sHs

sHDΛs
sHs

}


where WB and NB designate the wideband and narrowband terms of < {Φ (η)}.
On another note, from these expressions we recover the preliminary results in [44],

which considered the time-delay estimation for a static system (no Doppler effect). Note that
the CRBs (15), (18), (19) can be expressed as a function of the maximum SNR at the output of the MLE
matched filter (11). In the static case, the CRB for the time-delay then reads

Fτ|ε (ε) = SNRout × 2F2
s

(
sHVs
sHs

−
∣∣∣∣ sHΛs

sHs

∣∣∣∣2
)

, (45)

Fτ|ε (ε) = SNRout × 2F2
s

(
sTVs
sTs

)
, (46)

for a complex s(t) (45) and real s(t) (46). Thus, this result can be exploited for optimal signal design,
that is, to obtain a fixed-length band-limited signal sb with a given fixed energy E (or equivalently
SNRout) which minimizes the CRB. We have shown in [44] that the optimal signal is related to the first
eigenvector of V, and the optimal CRB is given by

Fτ|ε (ε) ≤ 2SNRoutF2
s D1,1, (47)

with π ≤ D1,1 ≤ π2 the largest eigenvalue of V.
Last, from a broader perspective, the proposed CRB expressions also pave the way for

the definition of new cost-functions dedicated to waveform optimization exploring the trade-off
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between optimal accuracy and/or coupling when measuring time-delay and Doppler effect, and other
operational constraints. For instance, they can easily be integrated to existing cost-functions used
to build waveform sequences not only with good autocorrelation properties (low sidelobes level for
a given energy) [45,46] or minimal peak-to-average power ratio [47], but also with optimal delay
estimation accuracy, since they are fitted to any optimization method exploiting vector based cost
functions [48,49].

5. Validation and Discussion

To assess the validity of the new compact closed-form CRB, a GNSS positioning example
is considered [50]. In the case of GNSS, the signals broadcasted by different satellites use
pseudo-orthogonal codes s(t), which allow at the receiver to process different satellite signals using
independent channels. Each channel estimates the time-delay and Doppler effect between the receiver
and a given satellite, in order to construct a set of so-called pseudoranges and pseudorange rates,
which in turn are used to solve a multilateration problem to find the receiver’s position, velocity
and timing. If we omit the navigation data message (i.e., assuming data wipe-off or a pilot channel)
a generic signal received from a GNSS satellite, at the output of the Hilbert filter, can be expressed as
in (9) and (17).

5.1. Synthetic Signal

We first consider a simulated GNSS band-limited signal corresponding to a GPS L1 C/A
PRN code of length 1023. As a result that GNSS codes are real, we compute the CRB using (38).
The CRB and the corresponding MLE in (10), obtained from 1000 Monte Carlo (MC) runs with
α = ((1 + j)/

√
2)
√

SNRin, are shown in Figure 1 (top). Since (9) belongs to the class of conditional
signal models [16], the MLE converges to the CRB at high SNR [17], which confirms the exactness of
the CRB. This CRB is further validated by comparing the ambiguity function and its 2nd order Taylor
expansion (14) in Figure 1 (bottom), where the perfect match also proves its exactness.
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Figure 1. (Top) Time-delay Cramér–Rao bound (CRB) and maximum likelihood estimator (MLE)
for the GPS L1 C/A PRN code (synthetic signal experiment); (Bottom) ambiguity function and
the corresponding 2nd order Taylor expansion for the time-delay estimation of a GPS L1 C/A PRN
code (synthetic signal experiment), with Fs = 1/Ts = 1.023 MHz (chip frequency).
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5.2. Real-Life GPS Data Experiment

The proposed CRB expression was also validated in a real-life GPS scenario. The signal acquisition
was performed using a static L1 frequency patch antenna in open sky conditions, and recorded using
an USRP X310 at Fs = 20 MHz. To test standard front-end configurations, such a signal was converted
to the equivalent Fs = 5 MHz and Fs = 2.5 MHz signals by averaging and decimating 4 and 8 samples,
respectively. In a real-life data test it is not possible to perform MC runs, therefore the MSE was obtained
via 100 different correlations, each one using a coherent integration time of 10 ms (i.e., s (η) being
10 GPS L1 C/A PRN codes of length 1 ms), and separated by 20 ms. This leads to an overall observation
interval of 1s during which the hypothesis of relative uniform radial movements (4) is regarded as
valid [51]. For completeness, the scenario details on the satellites in view (PRN Id), their corresponding
SNRout (dB), Doppler shift (Hz), elevation (◦) and azimuth (◦), are given in Table 1. The time-delay
and Doppler frequency shift of the GPS satellite signals were obtained with the MLE in (10), where a
time-delay resolution of 0.0002 chips (0.06 m) and a Doppler frequency shift resolution of 0.1 Hz were
considered. Firstly, to enforce the hypothesis of relative uniform radial movements (4), the dynamics
of the signal was removed by fitting a 2nd order polynomial. Secondly, notice that the SNRout

taken into account is estimated, and thus it is a random variable whose variance decreases with
the actual SNRout [35]. These results are shown in Figure 2 for the time-delay (top) and Doppler
(bottom), which again validate the CRB expression at sufficiently high SNRout. As highlighted by MC
simulations in Figure 1, the SNR threshold for the delay estimation increases with Fs.
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Figure 2. Time-delay (Top) and Doppler frequency shift (Bottom) CRB and MLE for a real-life GPS L1
C/A signal and different sampling rates: 2.5 MHz, 5 MHz and 20 MHz.
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Table 1. Real-life GPS scenario: satellites in view (PRN Id), SNRout (dB), Doppler shift (Hz), elevation (◦)
and azimuth (◦). Data were collected on 22 April 2015, GPS week number 1841, 16:07-16:10 (UTC).

PRN Id SNRout Doppler Elev Azim

31 17.7 3170 19.3 −50.6

14 18.9 −490 44.8 −95.3

2 21.7 930 28.6 86.7

24 22.8 −2950 34.1 133

25 23.7 480 70.7 −41.7

29 25.6 2480 51.3 −162.7

12 27.1 −1780 53.9 56

6. Conclusions

In this contribution, a new compact closed-form CRB expression for the delay-Doppler estimation
of a generic band-limited signal has been derived, which may be exploited in a variety of remote sensing
applications, i.e., navigation, radar, sonar, GNSS-R. Such a compact CRB only depends on the baseband
signal samples, therefore it is especially easy to use. This generalizes known results on both wideband
signals and narrowband signals where the impact of the Doppler effect into the baseband signal is
not taken into account. In addition, general compact closed-form CRB expressions for the amplitude
and phase have been introduced. The validity of the CRB has been assessed in a navigation example
with both synthetic and measured signals. The comparison of the MLE obtained through Monte Carlo
and the closed-form CRB allowed to proof the exactness of the proposed CRB. Indeed, as expected,
the MLE converges to the CRB at high SNR (i.e., a known result for the Gaussian CSM). In addition,
for the synthetic signal analysis, the perfect match of the ambiguity function and its 2nd order Taylor
expansion also proves its exactness.

As outlooks, in addition to the performance limit characterization, these appealing closed-form
CRBs, which depend only on the baseband samples’ vector, pave the way for the definition of new
cost-functions dedicated to waveform optimization exploring the trade-off between optimal accuracy
and/or coupling when measuring time-delay and Doppler effect, and other operational constraints.
For instance, they can easily be integrated to existing cost-functions used to build waveform sequences
not only with good autocorrelation properties (low sidelobes level for given energy) [45,46] or minimal
peak-to-average power ratio [47], but also with optimal delay estimation accuracy, since they are fitted
to any optimization method exploiting vector based cost functions [48,49].
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Appendix A. Analytic (Compact) Expression of < {Φ (η)}

Considering the model in (9), the CRB for the parameter vector η = (τ, b)T is given by (15) [34,35].
Then, the main goal is to obtain an analytic (compact) expression of <{Φ (η)}, which is not available
in the literature for a generic delayed and dilated band-limited signal model. Notice that the standard
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solution in the literature considers the narrowband signal model. Recall that <{Φ (η)} can be expressed
in the convenient form (24)

< {Φ (η)} = <
{

∂a (η)
∂ηT

H ∂a (η)
∂ηT − 1

‖a (η)‖2

(
a (η)H ∂a (η)

∂ηT

)H (
a (η)H ∂a (η)

∂ηT

)}
.

Appendix A.1. Computing the Terms in Φ (η)

Considering the observation model in (6) and (9),

a (t; η) = s ((1− b) (t− τ)) e−jωcb(t−τ) = s (t; η) e−jωcb(t−τ), (A1)

then we can compute the derivative w.r.t. η,
(

∂a(t;η)
∂τ , ∂a(t;η)

∂b

)T
as

(
∂a(t;η)

∂τ
∂a(t;η)

∂b

)
= −

(
−jωcbs (t; η) + (1− b) s(1) (t; η)

jωc (t− τ) s (t; η) + (t− τ) s(1) (t; η)

)
e−jωcb(t−τ),

where s(1) (t) = ds(t)
dt . This can be written in a convenient matrix form as

∂a (t; η)

∂η
= −Qϑ (t; η) e−jωcb(t−τ), (A2)

where

Q =

[
−jωcb 0 (1− b) 0

0 jωc 0 1

]
, ϑ (t; η) =


s (t; η)

(t− τ) s (t; η)

s(1) (t; η)

(t− τ) s(1) (t; η)

 .

Then, the derivative of aT (η) (t = nTs, with samples N′1 ≤ n ≤ N′2) w.r.t. η is

∂aT (η)

∂η
=
[

. . . ∂a(nTs ;η)
∂η . . .

]
N′1≤n≤N′2

=
[

. . . −Qϑ (nTs; η) e−jωcb(nTs−τ) . . .
]

N′1≤n≤N′2

= −Q
[

. . . ϑ (nTs; η) e−jωcb(nTs−τ) . . .
]

N′1≤n≤N′2
,

and because the complex conjugate of vector a (η) is given by

a∗ (η) =


...

a (nTs; η)
...


∗

N′1≤n≤N′2

=


...

s (nTs; η)∗ ejωcb(nTs−τ)

...


N′1≤n≤N′2

we have that
∂aT (η)

∂η
a∗ (η) = −Q

 N′2

∑
n=N′1

ϑ (nTs; η) s (nTs; η)∗

 .

Given the following equalities,

∂a (η)
∂ηT

H
=

(
∂a (η)T

∂η

)∗
,

∂a (η)
∂ηT =

(
∂a (η)T

∂η

)T

,
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we can write that
∂a (η)
∂ηT

H ∂a (η)
∂ηT = Q∗

 N′2

∑
n=N′1

ϑ (nTs; η)∗ ϑT (nTs; η)

QT .

Finally, we have all the terms in (24),

aH (η)
∂a (η)
∂ηT = −

 N′2

∑
n=N′1

ϑ (nTs; η) s (nTs; η)∗

T

QT , (A3)

∂a (η)
∂ηT

H ∂a (η)
∂ηT =

Q

 N′2

∑
n=N′1

ϑ (nTs; η) ϑH (nTs; η)

QH

∗ , (A4)

‖a (η)‖2 =
N′2

∑
n=N′1

|s (nTs; η)|2 , (A5)

but these expressions are not yet in a compact form.

Appendix A.2. Integral Form of the Inner Terms in (A3) and (A4)

Note that if x (t) is a band-limited signal with B ≤ Fs, then x(1) (t), tx (t) and tx(1) (t) are also
band-limited with B ≤ Fs. In this case, we can write

x (t)
 x ( f ) = Ts
+∞
∑
−∞

x (nTs) e−j2π f nTs , (A6)

x(1) (t)
 (j2π f ) x ( f ) , (A7)

⇓∣∣∣∣∣∣∣∣∣∣∣∣

+∞∫
−∞

tx (t) e−j2π f tdt = j
2π

dx( f )
d f = Ts

+∞
∑
−∞

(nTs) x (nTs) e−j2π f nTs

+∞∫
−∞

tx(1) (t) e−j2π f tdt = j
2π

d(j2π f x( f ))
d f = −x ( f )− f dx( f )

d f = Ts
+∞
∑
−∞

(nTs) x(1) (nTs) e−j2π f nTs

(A8)

If s (t) is a band-limited signal, ϑ (t; η) is also band-limited (see above) and we can write the inner
term in (A3) as,

lim
(N′1,N′2)→(−∞,+∞)

Ts

N′2

∑
n=N′1

ϑ (nTs; η) s (nTs; η)∗ =

+∞∫
−∞

ϑ (t; η) s (t; η)∗ dt

= w =



w1 =

+∞∫
−∞

|s (t; η)|2 dt

w2 =

+∞∫
−∞

(t− τ) |s (t; η)|2 dt

w3 =

+∞∫
−∞

s(1) (t; η) s (t; η)∗ dt

w4 =

+∞∫
−∞

(t− τ) s(1) (t; η) s (t; η)∗ dt



, (A9)
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and we can do the same for the inner term in (A4),

lim
(N′1,N′2)→(−∞,+∞)

Ts

N′2

∑
n=N′1

ϑ (nTs; η) ϑH (nTs; η) =

+∞∫
−∞

ϑ (t; η) ϑ (t; η)H dt

= W =


w1 w∗2 w∗3 w∗4
w2 W2,2 w∗4 W∗4,2
w3 w4 W3,3 W∗4,3
w4 W4,2 W4,3 W4,4

 (A10)

where the missing terms are defined as

W2,2 =

+∞∫
−∞

(t− τ)2 |s (t; η)|2 dt,

W3,3 =

+∞∫
−∞

∣∣∣s(1) (t; η)
∣∣∣2 dt,

W4,2 =

+∞∫
−∞

(t− τ)2 s(1) (t; η) s (t; η)∗ dt,

W4,3 =

+∞∫
−∞

(t− τ)
∣∣∣s(1) (t; η)

∣∣∣2 dt,

W4,4 =

+∞∫
−∞

(t− τ)2
∣∣∣s(1) (t; η)

∣∣∣2 dt.

We can further work the terms in W as follows (with β = (1− b)):

w1 =

+∞∫
−∞

|s (t; η)|2 dt =
+∞∫
−∞

|s (β (t− τ))|2 dt =
1
β

+∞∫
−∞

|s (βu)|2 βdu =
1
β

+∞∫
−∞

|s (t)|2 dt,

w2 =

+∞∫
−∞

(t− τ) |s (t; η)|2 dt =
+∞∫
−∞

(t− τ) |s (β (t− τ))|2 dt

=
1
β2

+∞∫
−∞

βu |s (βu)|2 βdu =
1
β2

+∞∫
−∞

t |s (t)|2 dt,

w3 =

+∞∫
−∞

s(1) (t; η) s (t; η)∗ dt =
+∞∫
−∞

s(1) (β (t− τ)) s (β (t− τ))∗ dt

=
1
β

+∞∫
−∞

s(1) (βu) s (βu)∗ βdu =
1
β

+∞∫
−∞

s(1) (t) s (t)∗ dt,

w4 =

+∞∫
−∞

(t− τ) s(1) (t; η) s (t; η)∗ dt =
+∞∫
−∞

(t− τ) s(1) (β (t− τ)) s (β (t− τ))∗ dt

=
1
β2

+∞∫
−∞

βus(1) (βu) s (βu)∗ βdu =
1
β2

+∞∫
−∞

ts(1) (t) s (t)∗ dt,
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W2,2 =

+∞∫
−∞

(t− τ)2 |s (t; η)|2 dt =
+∞∫
−∞

(t− τ)2 |s (β (t− τ))|2 dt

=
1
β3

+∞∫
−∞

(βu)2 |s (βu)|2 βdu =
1
β3

+∞∫
−∞

t2 |s (t)|2 dt,

W3,3 =

+∞∫
−∞

∣∣∣s(1) (t; η)
∣∣∣2 dt =

+∞∫
−∞

∣∣∣s(1) (β (t− τ))
∣∣∣2 dt

=
1
β

+∞∫
−∞

∣∣∣s(1) (βu)
∣∣∣2 βdu =

1
β

+∞∫
−∞

∣∣∣s(1) (t)∣∣∣2 dt,

W4,2 =

+∞∫
−∞

(t− τ)2 s(1) (t; η) s (t; η)∗ dt =
+∞∫
−∞

(t− τ)2 s(1) (β (t− τ)) s (β (t− τ))∗ dt

=
1
β3

+∞∫
−∞

(βu)2 s(1) (βu) s (βu)∗ βdu =
1
β3

+∞∫
−∞

t2s(1) (t) s (t)∗ dt,

W4,3 =

+∞∫
−∞

(t− τ)
∣∣∣s(1) (t; η)

∣∣∣2 dt =
+∞∫
−∞

(t− τ)
∣∣∣s(1) (β (t− τ))

∣∣∣2 dt

=
1
β2

+∞∫
−∞

(βu)
∣∣∣s(1) (βu)

∣∣∣2 βdu =
1
β2

+∞∫
−∞

t
∣∣∣s(1) (t)∣∣∣2 dt,

W4,4 =

+∞∫
−∞

(t− τ)2
∣∣∣s(1) (t; η)

∣∣∣2 dt =
+∞∫
−∞

(t− τ)2
∣∣∣s(1) (β (t− τ))

∣∣∣2 dt

=
1
β3

+∞∫
−∞

(βu)2
∣∣∣s(1) (βu)

∣∣∣2 βdu =
1
β3

+∞∫
−∞

t2
∣∣∣s(1) (t)∣∣∣2 dt,

where
w1, w2, W2,2, W3,3, W4,3, W4,4 ∈ R. (A11)

Appendix A.3. Rewriting (24) in Terms of W

Going back to the original problem in (24), we have to make appear the term Ts to exploit
the previous expressions,

< {Φ (η)} = Fs<
{

Ts
∂a (η)
∂ηT

H ∂a (η)
∂ηT − 1

Ts ‖a (η)‖2

(
Tsa (η)H ∂a (η)

∂ηT

)H (
Tsa (η)H ∂a (η)

∂ηT

)}
,



Remote Sens. 2020, 12, 2913 18 of 23

and then we can write (using (A3)–(A5) and (A9) and (A10)) that

lim
(N′1,N′2)→(−∞,+∞)

< {Φ (η)} = Fs<



(
lim

(N′1,N′2)→(−∞,+∞)
Ts

∂a(η)
∂ηT

H ∂a(η)
∂ηT

)
−

 lim
(N′1,N′2)→(−∞,+∞)

Tsa(η)H ∂a(η)
∂ηT

H

lim
(N′1,N′2)→(−∞,+∞)

Ts‖a(η)‖2

×
(

lim
(N′1,N′2)→(−∞,+∞)

Tsa (η)H ∂a(η)
∂ηT

)


= Fs<


(

QWQH
)∗
−

(
− (w)T QT

)H (
− (w)T QT

)
w1

 , (A12)

that is

lim
min(N′1,N′2)→∞

Re {Φ (η)} = Fs Re

{
QWQH − (Qw) (Qw)H

w1

}
. (A13)

Appendix A.4. Computing QWQH , Qw and (Qw)(Qw)H

w1

The term is QWQH given by

QWQH =

[
−jωcb 0 (1− b) 0

0 jωc 0 1

] 
w1 w∗2 w∗3 w∗4
w2 W2,2 w∗4 W∗4,2
w3 w4 W3,3 W∗4,3
w4 W4,2 W4,3 W4,4




jωcb 0
0 −jωc

(1− b) 0
0 1

 ,

(
QWQH

)
1,1

= (1− b)2 W3,3 + (ωcb)2 w1 + 2 (1− b) (ωcb)Re {jw3} ,(
QWQH

)
1,2

=

(
(−jωcb) (−jωc)w∗2 + (1− b) (−jωc)w4

+ (−jωcb)w∗4 + (1− b)W∗4,3

)
=
(

QWQH
)∗

2,1
,(

QWQH
)

2,2
= ω2

cW2,2 − 2ωc Re {jW4,2}+ W4,4,

and the term Qw is given by

Qw =

[
−jωcb 0 (1− b) 0

0 jωc 0 1

]
w =

(
−jωcbw1 + (1− b)w3

jωcw2 + w4

)
,

which leads to the following(
(Qw) (Qw)H

w1

)
1,1

= (ωcb)2 w1 +
(1− b)2 |w3|2

w1
+ 2 (1− b)ωcb Re {jw3} ,

(
(Qw) (Qw)H

w1

)
1,2

=

(
jωc (jωcb)w2 + (jωcb)w4

+ (jωc) (1− b) w2w∗3
w1

+ (1− b) w4w∗3
w1

)∗
,(

(Qw) (Qw)H

w1

)
2,2

= ω2
c

w2
2

w1
+
|w4|2

w1
+ 2ωc

w2 Im {w4}
w1

.
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Appendix A.5. Analytic Expression of < {Φ (η)}

Finally, taking into account (A11), then (A13) can be expressed as(
lim

min(N′1,N′2)→∞
< {Φ (η)}

)
1,1

= Fs (1− b)2

(
W3,3 −

|w3|2

w1

)
,

(
lim

min(N′1,N′2)→∞
< {Φ (η)}

)
1,2

= Fs (1− b)

(
ωc Im

{
w4 − w3w2

w1

}
− 1

w1
Re
{

w3w∗4
}
+ W4,3

)
,

(
lim

min(N′1,N′2)→∞
< {Φ (η)}

)
2,2

= Fs

 ω2
c

(
W2,2 −

w2
2

w1

)
+ W4,4 − |w4|2

w1

+2ωc Im
{

W4,2 − w2w4
w1

}
 .

where the integral form of the different terms is detailed after (A10).

Appendix A.6. Analytic Expression of < {Φ (η)} when s (t) is a Real Signal

Let us first recall that if s (t) 
 s ( f ), then s(1) (t) 
 j2π f s ( f ), ts (t) 
 j
2π

ds( f )
d f and ts(1) (t) 


−s ( f ) − f ds( f )
d f . If s (t) is a real signal, in addition we have that s (− f ) = s∗ ( f ) and ds(− f )

d f =

−
(

ds( f )
d f

)∗
, which directly leads to w3 = 0 and W4,2, w4 ∈ R. We detail this statement in the sequel,

w3 =

+∞∫
−∞

s(1) (t) s (t) dt =
+∞∫
−∞

(j2π f ) s ( f ) s ( f )∗ d f = j2π

Fs
2∫
− Fs

2

f |s ( f )|2 d f = 0,

W4,2 =
1

(1− b)3

+∞∫
−∞

(
ts(1) (t)

)
(ts (t))∗ dt =

1

(1− b)3

Fs
2∫
− Fs

2

(
−s ( f )− f

ds ( f )
d f

)(
j

2π

ds ( f )
d f

)∗
d f

=
j

2π

1

(1− b)3

Fs
2∫
− Fs

2

s ( f )
ds ( f )

d f

∗
d f =

1

π (1− b)3=


Fs
2∫
0

(
ds ( f )

d f

)
s∗ ( f ) d f

 ,

w4 =
1

(1− b)2

+∞∫
−∞

s(1) (t) (ts (t)) dt =
1

(1− b)2

Fs
2∫
− Fs

2

(j2π f s ( f ))
(

j
2π

ds ( f )
d f

)∗
d f

=
1

(1− b)2

Fs
2∫
− Fs

2

f s ( f )
ds ( f )

d f

∗
d f =

2

(1− b)2<


Fs
2∫
0

f
(

ds ( f )
d f

)
s ( f )∗ d f

 .

Taking into account this into (24) leads to the simplified expression,

lim
min(N′1,N′2)→∞

Re {Φ (η)} = Fs

 (1− b)2 W3,3 (1− b)W4,3

(1− b)W4,3 ω2
c

(
W2,2 −

w2
2

w1

)
+ W4,4 −

w2
4

w1

 . (A14)
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Appendix B. Computation of the Different Terms in the CRB Expression (25)–(26)

Recall again that if s (t) 
 s ( f ), then s(1) (t) 
 j2π f s ( f ), ts (t) 
 j
2π

ds( f )
d f and ts(1) (t) 


−s ( f ) − f ds( f )
d f . Moreover, s ( f ) = 1

Fs
∑N2

N1
s (nTs) e−j2π

f
Fs n and the derivative is given by ds( f )

d f =

−j2π

F2
s

∑N2
N1

ns (nTs) e−j2π
f

Fs n, which allow to operate with the signal samples. The 9 terms in the CRB
(i.e., w1, w2, w3, w4, W2,2, W3,3, W4,2, W4,3 and W4,4) are computed as follows (with β = (1− b)):

βw1 =
∫ +∞

−∞
s (t) s (t)∗ dt =

∫ Fs
2

− Fs
2

s ( f ) s ( f )∗ d f =
1
Fs

sH

(∫ 1
2

− 1
2

υ ( f ) υH ( f ) d f

)
s =

1
Fs

sHs,

β2w2 =
∫ +∞

−∞
s (t) (ts (t))∗ dt =

∫ Fs
2

− Fs
2

s ( f )
(

j
2π

ds ( f )
d f

)∗
d f

=
1
F2

s

∫ 1
2

− 1
2

(
(Ds)H υ ( f )

) (
υH ( f ) s

)
d f =

1
F2

s
sH

(
DH

∫ 1
2

− 1
2

υ ( f ) υH ( f ) d f

)
s =

1
F2

s
sHDs,

βw3 =
∫ +∞

−∞
s(1) (t) s (t)∗ dt =

∫ Fs
2

− Fs
2

(j2π f ) |s ( f )|2 d f =
∫ 1

2

− 1
2

(j2π f )
∣∣∣υH ( f ) s

∣∣∣2 d f = sHΛs,

β2w4 =
∫ +∞

−∞
s(1) (t) (ts (t))∗ dt =

∫ Fs
2

− Fs
2

(j2π f ) s ( f )
(

j
2π

ds ( f )
d f

)∗
d f

=
1
Fs

∫ 1
2

− 1
2

(j2π f )
(

υH ( f ) s
) (

(Ds)H υ ( f )
)

d f =
1
Fs

sHDH

(
j2π

∫ 1
2

− 1
2

f υ ( f ) υH ( f ) d f

)
s

=
1
Fs

sHDΛs,

β3W2,2 =
∫ +∞

−∞
|ts (t)|2 dt =

∫ Fs
2

− Fs
2

∣∣∣∣ j
2π

ds ( f )
d f

∣∣∣∣2 d f =
1
F3

s

∫ 1
2

− 1
2

∣∣∣υH ( f ) (Ds)
∣∣∣2 d f

=
1
F3

s
sHDH

(∫ 1
2

− 1
2

υ ( f ) υH ( f ) d f

)
Ds =

1
F3

s
sHD2s,

βW3,3 =
∫ +∞

−∞

∣∣∣s(1) (t)∣∣∣2 dt =
∫ Fs

2

− Fs
2

|(j2π f ) s ( f )|2 d f = Fs

∫ 1
2

− 1
2

(2π f )2
∣∣∣υH ( f ) s

∣∣∣2 d f = FssHVs,

β3W4,2 =
∫ +∞

−∞

(
ts(1) (t)

)
(ts (t))∗ dt =

∫ Fs
2

− Fs
2

(
−s ( f )− f

ds ( f )
d f

)(
j

2π

ds ( f )
d f

)∗
d f

=
−1
F2

s

∫ 1
2

− 1
2

(
sTυ∗ ( f )

) (
(Ds)H υ ( f )

)
d f +

j2π

F2
s

∫ 1
2

− 1
2

f
∣∣∣(Ds)H υ ( f )

∣∣∣2 d f

=
−1
F2

s
sHDH

(∫ 1
2

− 1
2

υ ( f ) υH ( f ) d f

)
s +

1
F2

s
sHDH

(
j2π

∫ 1
2

− 1
2

f υ ( f ) υ ( f )H d f

)
Ds

=
1
F2

s

(
sHDΛDs− sHDs

)
,
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β2W4,3 =
∫ +∞

−∞

(
ts(1) (t)

)
s(1) (t)∗ dt = j2π

∫ Fs
2

− Fs
2

f |s ( f )|2 d f + j2π
∫ Fs

2

− Fs
2

f 2 ds ( f )
d f

(
s ( f )∗

)
d f

=
∫ 1

2

− 1
2

j2π f
∣∣∣sHυ ( f )

∣∣∣2 d f + 4π2
∫ 1

2

− 1
2

f 2
(

υH ( f ) (Ds)
) (

sHυ ( f )
)

d f = sHΛs + sHVDs,

β3W4,4 =
∫ +∞

−∞

∣∣∣ts(1) (t)∣∣∣2 dt =
∫ Fs

2

− Fs
2

|s ( f )|2 d f +
∫ Fs

2

− Fs
2

f 2
∣∣∣∣ds ( f )

d f

∣∣∣∣2 d f + 2<
{∫ Fs

2

− Fs
2

f
ds ( f )

d f
s ( f )∗

}
d f

=
1
Fs

sHs +
1
Fs

sHD

(
4π2

∫ 1
2

− 1
2

f 2υ ( f ) υ ( f )H d f

)
Ds− 2

Fs
<
{

sH

(
j2π

∫ 1
2

− 1
2

f υ ( f ) υ ( f )H d f

)
Ds

}

=
1
Fs

(
sHs + sHDVDs− 2<

{
sHΛDs

})
,

where υ, Λ and V are defined as

υ ( f ) =
(

ej2π f (N1), . . . , ej2π f (0), . . . , ej2π f (N2)
)T

,

IN =
∫ 1

2

− 1
2

υ ( f ) υH ( f ) d f ,

D = diag ([N1, N1 + 1, . . . , N2 − 1, N2]) ,

Λ = j2π
∫ 1

2

− 1
2

f υ ( f ) υ ( f )H d f ,

V = 4π2
∫ 1

2

− 1
2

f 2υ ( f ) υ ( f )H d f .
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