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Abstract: As marine transportation has increased in coastal regions, maritime accidents associated
with vessels have steadily increased. Remotely sensed satellite or airborne images can aid rapid vessel
monitoring over wide areas at high resolutions. In this study, airborne hyperspectral experiments
were performed to detect marine vessels mainly including fishing boat and yacht by applying
pixel-based mixture techniques and to estimate the size of the vessels through an objective ellipse
fitting method. Various spectral libraries of marine objects and seawaters were constructed through
in-situ experiments for spectral analysis of the internal structures of vessels. The hyperspectral images
were dimensionally reduced through principal component analysis. Several hyperspectral mixture
algorithms, such as N-FINDR, pixel purity index (PPI), independent component analysis (ICA),
and vertex component analysis (VCA), were used for the detection of vessels. The N-FINDR and
VCA techniques presented a total of 14 vessels, the ICA technique detected seven vessels, and the PPI
technique detected two vessels. The pixel-based probability of detection (POD) and false alarm ratio
(FAR) for all 14 vessels were 96.40% and 4.30%, respectively. The sizes of the vessels were estimated
by extracting the boundaries of the vessels through a two-dimensional gradient and applying the
ellipse fitting method. Compared with the digital mapping camera (DMC) images with resolutions of
0.10 m, the root-mean-square errors of the length and width of the vessels were approximately 1.19 m
and 0.81 m, respectively. The application of spectral mixing methods provided a high probability of
detecting the objects, as well as the overall structures of the decks of the vessels.

Keywords: hyperspectral remote sensing; vessel detection; spectral mixture analysis; airborne

1. Introduction

Coastal regions are characterized by complex coastal sea waters, with waves, tides, tidal flats,
and diverse geographical features such as sand shores, bays, and deltas. These regions provide
important ecological, chemical, and geologically unique environments, making them suitable for
human habitation and production activities. Consequently, 23% of the world’s population lives in
coastal areas, and two-thirds of large cities with populations of more than 10 million are located
offshore [1–3]. Coastal regions play a very important role in several sea-traffic routes. The Korean
Peninsula is surrounded by ocean on three sides, and the ports and industrial areas are concentrated
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along complex coastlines. Recently, shipping maritime traffic has been increasing, and more vessels
operating around the ports have led to an increasing number of maritime traffic accidents such as
vessel collisions, stranding, and explosions. According to the Ministry of Ocean and Fisheries of Korea,
the number of vessel accidents has been increased with a rate of approximately 70% over the last
six years (https://www.kmst.go.kr). Thus, it is necessary to monitor vessels in real time to prepare
for marine accidents and to effectively manage coastal regions. In the event of a marine accident,
a rapid search of vessels is needed. Searching for vessels can be conducted by boarding vessels, using
helicopters, or using radars around the point of the accident. Most accidents occur under poor weather
conditions when winds are strong or waves are high. Such conditions have prevented the rapid
detection of vessels. In light of this, high resolution remote sensing methods using satellites or aircraft
can contribute to efficient monitoring over a wide area [4].

Conventional vessel detection studies using satellites have been conducted mainly using optical
and synthetic aperture radar (SAR) sensors. An optical remote sensing vessel detection study began in
1978 using the threshold method on Landsat-2 Multispectral Scanner (MSS) imaging [5]. Since 2000,
the launch of IKONOS and Satellite Pour l’Observation de la Terre (SPOT)-5 high-resolution optical
satellites with resolutions of approximately 5 m has made it possible to distinguish not only vessels,
but their shapes and textures. With the development of image processing techniques, various methods
such as the canny edge, Fourier transform, Bayesian method, and random forest methods have been
applied [6–8]. Recently, artificial intelligence has been applied to optical satellite images, and a
machine learning vessel detection study using support vector machine (SVM) has been conducted.
Deep learning research has progressed rapidly, enabling the detection and classification of vessels in
images by modeling patterns in data into complex multi-layer networks. During extreme atmospheric
conditions, high-resolution SAR images have been used to detect vessels [9–14]. In SAR images,
the vessel pixels are normally bright, with a larger normalized radar cross section (NRCS) value, which
clearly discriminates from the dark pixels. To classify the vessel from the surrounding background
field, several algorithms have been developed and utilized for SAR images. The constant false alarm
rate (CFAR) algorithm is one of the most well-known and widely used methods to distinguish the
vessel pixels from the SAR data by selecting the most appropriate probability density function for the
background field surrounding the vessel [15–22]. However, SAR images have some disadvantages in
terms of limited observation frequency.

Multispectral sensors acquire limited spectral information at limited channels of ten or fewer
spectral bands. In contrast, a hyperspectral sensor has the advantage of extracting more detailed
spectral characteristics of objects by hundreds of narrow and continuous channels. Hyperspectral
observations have been used not only in ocean regions but also in other atmospheric and land
applications such as terrestrial classification, atmospheric correction, mineral mapping, and ocean
water quality analysis [23–35]. Because the hyperspectral sensor can acquire a large amount of spectral
information of ground objects, it can be sufficiently utilized in the field of remote vessel detection.
However, few studies have attempted to detect vessels partly because of the relatively low spatial
resolution of hyperspectral satellite images with frequent spectral noise [4,36]. In contrast to satellite
data, airborne measurements can provide high spatial resolution image data. A previous study
focused on the detection of floating objects such as non-vessels and surfboards with diverse colors
using the vertex component analysis (VCA) method as a representative classification technique [37].
A hyperspectral method for ship detection has been validated by conducting a cruise campaign as
well as airborne measurements using an airborne visible/infrared imaging spectrometer (AVIRIS)
hyperspectral sensor [38]. Further study should enhance the capability of the detection methods by
implementing the construction of an in-situ spectral library of additional floating objects and vessels.

Considering such aspects, in this study, we conducted an airborne experiment with a hyperspectral
camera and conducted a ground experiment to obtain the spectra of the objects. The four objectives of
this study were to: (1) perform a hyperspectral airborne experiment to obtain high-resolution images in
the coastal region containing a large number of vessels, (2) construct a maritime library by measuring
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the spectrum of various vessel structures and seawater, (3) detect vessels and various objects on the
decks and classify them by using various spectral mixture techniques, and (4) to apply the ellipse
fitting method to the pixels corresponding to the vessel to estimate the size of the vessel.

2. Data and Methods

2.1. Airborne Hyperspectral Measurements

To observe high-resolution hyperspectral images, including a large number of vessels, the Jeongok
Port that included a yacht club on the west coast of the Korean Peninsula was selected as the observation
location for this study (Figure 1a). The observation date was May 10, 2019, and the weather conditions
were clear with very few clouds and temperatures ranging from 8 ◦C to 27 ◦C. Figure 1b shows a
hyperspectral RGB (red: 627.06 nm, green: 533.99 nm, blue: 488.32 nm) composite image corresponding
to the red box in Figure 1a. The aircraft is a medium-sized single-engine aircraft (Cessna 208 Caravan
model) which has two holes to shoot the hyperspectral sensor and the digital mapping camera (DMC)
simultaneously (Figure 2). The flight speed was approximately 260 km h−1, allowing stable flight
at low altitudes. The airborne observation was performed at an altitude of approximately 1 km.
The hyperspectral sensor is an AisaEAGLE sensor manufactured by Specim and has a wavelength
range of 400–900 nm with 127 spectral channels. The spatial resolution of the hyperspectral image
at an altitude of 1 km was approximately 0.58 m and that of DMC was approximately 0.10 m.
A high-resolution DMC image was used to verify the accuracy of the hyperspectral vessel detection
algorithm and vessel size. Detailed specifications for the aircraft and sensors are shown in Table 1.
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Figure 2. (a) Cessna Grand Caravan 208B, (b) AisaEAGLE hyperspectral sensor, and (c) digital mapping
camera (DMC).

Table 1. Airborne and hyperspectral sensor specifications.

Instruments Characteristics Specifications

Cessna Grand Caravan 208B

Width (m) 15.9

Length (m) 12.7

Height (m) 4.7

Max takeoff weight (kg) 3969

Takeoff run (m) 354

Landing run (m) 227

Endurance 5 hr 30 min

AisaEAGLE Hyperspectral sensor

Spectral range (nm) 400−900

Spectral resolution (m) Min 3.3

Spatial resolution (m) 0.58

Spatial pixels 1024

Spectral channel 127

SNR 1250:1

2.2. In-Situ Spectral Measurements

To conduct the in-situ ground experiments for obtaining hyperspectral images, we pre-positioned
various vessel objects such as fishing boats, yachts, and life boats, under the path of the aircraft.
Figure 3a shows a pre-deployed fishing boat for the test site, with a variety of colored deck objects in
gray, white, and red. The yacht had a white deck and an orange lifeboat along the vessel boundary
(Figure 3b,c). To construct the spectral library of the marine objects to be detected, the radiances of the
targets were measured using a spectroradiometer. This device can measure a range of wavelengths
from 300 nm to 2500 nm, with sampling intervals of 1.4 nm below 1000 nm and 1.1 nm above
1000 nm. All wavelengths were divided into 2151 channels and provided spectral information in
each channel. The radiance of the white deck had a maximum value of 0.41 at approximately 480 nm,
and decreased at wavelengths above 480 nm (Figure 3e). The red deck had a maximum value of
0.28 at 700 nm. The radiance increased sharply at 570 nm. Gray decks tended to decrease gradually,
with their maximum radiance at 480 nm. In contrast, seawater showed a relatively small radiance of
approximately 0.02 at approximately 570 nm and even lower values below 0.002 at wavelengths above
750 nm (Figure 3d,e).
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2.3. Procedure for Vessel Detection Using Hyperspectral Image

The entire procedure from hyperspectral airborne observation to the vessel detection and size
estimation from an ellipse fitting method is presented in Figure 4. First, hyperspectral airborne
observations surrounding the study area are performed. The principal component analysis (PCA) is
applied as a pre-processing step for dimensional reduction of vessel hyperspectral images. Spectral
mixture techniques including N-FINDR, pixel purity index (PPI), independent component analysis
(ICA), and VCA are applied to extract the spectrum of end members of vessels and seawater for the
hyperspectral images. The type of endmember can be inferred by comparing the similarity between
the endmember and the marine spectrum library accumulated from in-situ measurements. Image
classification based on a unit pixel can be classified through the maximum abundance fraction. Finally,
the length and width of the vessels are obtained by applying ellipse fitting to the pixels classified
as vessels.
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2.4. Dimension Reduction Process

The hyperspectral image has large-capacity data containing hundreds of spectral channels, so the
dimensional compression procedure should be primarily performed for efficiency of computation to
extract specific information for vessel detection [39]. Typical hyperspectral compression techniques
include PCA using orthogonal functions and minimum noise fraction (MNF) [40]. The PCA is
a multidimensional linear transformation technique using an orthonormal basis determined by
covariance, which converts high-dimensional data into low-dimensional data with no linear correlation
while preserving the variance of the raw data [41]. The distance, shape, distribution, and displacement
of the data are maintained when the data is orthogonally projected as a vector with a large variance.
Figure 5 demonstrates the conversion of 127 bands to three representative bands by applying PCA to
airborne hyperspectral images. The first mode represents 81.86% of the variance of the entire image,
second mode is 4.65%, and third mode is 2.23%. The top three modes accounted for approximately
89% of the total variance.
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2.5. Application of Spectral Mixture Algorithm

A unit pixel of the hyperspectral image does not contain spectral information of a single
independent substance, but contains a mixture of spectral energies from one or more substances.
Spectral mixture analysis is a method of classifying the mixed spectrum of different materials
quantitatively in a pixel. It is hypothesized that a hyperspectral image should contain one pure
substance called the endmember. Every pixel in the hyperspectral image is made up of a sum of the
proportions of the endmember spectrum, and each pixel is composed of an abundance fraction of
the various substances. Depending on whether the multiple endmember spectrums within a single
pixel independently influence each other, they can be classified into linear and nonlinear spectral
mixing. Linear spectral mixing maintains a linear relation vessel between the occupancy ratios of
several endmembers in a unit pixel. Conversely, nonlinear spectral mixing is a nonlinear combination,
wherein the materials of several endmembers are randomly located in a unit pixel with multiple
scattering effects.

Linear spectral mixture methods include N-FINDR, PPI, ICA, and VCA. N-FINDR is one of
the methods used to extract pure materials of p with the largest volume, through a random set of p
pixels. Under the assumption that a simplex composed of pure material has the largest volume, p-pixel
combination training was performed. This technique selects p endmembers in advance, compresses
the hyperspectral image into p − 1 dimension by PCA, and constructs the pixel combinations for the
compressed image. The initial p endmember set (e1, e2, · · · , ep) is used to calculate the maximum
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volume (V) of the endmember entities through Equation (1). Subsequently, the volume of each simplex
is calculated by substituting all pixels into Equation (2) and extracting r pixels larger than the maximum
volume as endmembers [42–44].

Vmax =

∣∣∣∣∣∣det
(

1
e1

1
e2

. . .

. . .
1
ep

)∣∣∣∣∣∣
(p− 1)!

(1)

V1 =
(
r, e2, e3, · · · , ep

)
V2 =

(
e1, r, e3, · · · , ep

)
Vp = (e1, e2, e3, · · · , r)

(2)

The advantage of this method is that it does not require any input variables other than the number
of pure substances. The selection of p pure substances was determined by testing a random set of
endmembers. In this study, four endmembers were selected. According to the pretests using more
than five endmembers, minor parts of the endmembers overlapped and were confirmed to have
similar spectra.

The PPI method repeatedly projects all pixels onto an arbitrary unit vector and then scores
the pixels with extreme values [45]. The pixel with the highest score is considered an endmember,
connoting that, after generating a random spectrum with the same number of bands, the spectrum
distance with all pixels is calculated. Scores are assigned to the pixels with the largest and smallest
values, respectively. Finally, the pixel with the highest scored is assumed to be a relatively pure material.
The PPI method is not an iterative process and randomly generates k random parameters. Since this
technique does not provide a criterion for selecting k parameters, the result may vary depending
on the number of parameters and the number of endmembers. The endmember estimated by the
PPI technique has a limitation in that it cannot represent an actual 100% hyperspectral image. It is a
technique that requires a priori knowledge and experience [46].

ICA is a technique that classifies multivariate signals into subcomponents of independent signals
when there is a non-Gaussian distribution of input data [47,48]. When the input signal s consisting of p
is derived as a linearly mixed signal x, this technique can be expressed by Equation (3) as a process of
finding p independent input signals inversely from the mixed signal. Noise (N̂) is not distinguished
from the input signal and therefore it can be omitted. The input signals are mixed matrices, and the
basis vector A of the ICA method is shown in Equation (4). The ICA finds the inverse of the mixed
matrix (A−1) from the known x. The inverse mixed matrix W is required to make both the input signal
and the output signal coincide (Equation (5)).

x = As + N̂ =

p∑
i=1

s(i)α(i) + N̂ (3)

A = (α(1), α(2), . . . ., α(p)) (4)

Wx = WAs, WA = I, W = A−1 (5)

The VCA method is based on two aspects: the endmember is the vertex of the simplex and an
affine transformation of a simplex is also a simplex. Similar to other algorithms, the VCA assumes the
existence of a pure material in the image of which the data are projected repeatedly in the orthogonal
direction in the previously determined subspace by the endmember. The signature of the new
endmember matches the extremum of the projection [49–51].

When the endmember spectrum of the hyperspectral image is extracted through spectral
mixture analysis, it is possible to analyze the abundance fraction of the endmember for each pixel.
The abundance fraction should satisfy the two constraints [52]. The first constraint, abundance
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sum-to-one constraint, is that the sum of the abundance fractions of all pixels should be one. The second
constraint, the abundance non-negative constraint, is that the abundance fraction should always have
a positive value. Equation (6) is used to measure the abundance fraction α̂ of the endmember, where
the pixel reconstruction error (E) should be minimized, r is the spectral signature of a pixel vector,
and M is the spectral signature of the endmember. Equations (7) and (8) show least squares (LS) and
fully constrained least squares (FCLS) solutions, respectively. The parameter I includes an array of p
rows and one column with a component of one [44,52]. In this study, we assumed that the abundance
fraction of the endmember satisfied both the fully constrained least squares conditions.

E =‖ r−Mα̂ ‖2 (6)

α̂LS =
(
MTM

)−1
MTr (7)

α̂FCLS = α̂LS −
(
MTM

)−1
I
(
I
(
MTM

)−1
IT

)(
ITα̂LS − 1

)
(8)

2.6. Ellipse Fitting for Vessel Size Estimation

To estimate the length and width of the vessel detected by the hyperspectral detection algorithm,
we applied the ellipse fitting method [53]. This technique was designed so that the shape of the vessel
boundary was most similar to an ellipse. The boundary pixels corresponding to the edge of the vessel
were extracted from the magnitude of 2-D spatial gradient differences between the pixels detected by
the vessel, and the surrounding background pixels of seawater. By applying the least-squared fitting of
an ellipse equation to the geolocations of the boundary pixels, the characteristics of the ellipse, such as
major- and minor-axis lengths, and a tilting angle, were then extracted. Here, the length and width of
the vessel indicate the major- and minor axes of the ellipse.

3. Results

3.1. RGB Composite of Hyperspectral Data and DMC Image

As a result of performing the composite procedure of the airborne hyperspectral data, the RGB
image presents 14 vessels (Figure 6a). They are mostly concentrated in the upper portion near the port.
To validate the results of the hyperspectral image analysis, a DMC image with a high resolution of 0.10 m
was used. The DMC image presents the exact position of the vessels and a total of 10 fiber-reinforced
plastic (FRP) vessels with blue decks (S1, S3−S9, S11, and S12) (Figure 6b). It reveals the shapes and
detailed structures of every vessel. For example, the S2 vessel is a fishing boat with a white steering
wheel on a gray deck. S10 is also a fishing boat with mostly gray decks and some white steering with
red and green structures on the roof. S13 is a yacht with a single white deck, and S14 is a lifeboat with
a white deck and an orange border. S10, S13, and S14 are pre-arranged for validation, as shown in
Figure 3a–c, respectively.
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digital mapping camera (DMC).

3.2. Application of the Four Spectral Mixture Algorithms

The N-FINDR, PPI, ICA, and VCA methods were applied to extract the spectra of four endmembers
corresponding to single pure substances including vessels and seawater. Figure 7a shows the extracted
spectra of each endmember from the hyperspectral data using the N-FINDR method. The radiance of
endmember-3 showed higher values at all wavelengths than the other endmembers. The spectrum
of endmember-1 (Figure 7a), showed the lowest value of 0.02 or less. Endmember-3 produced the
maximum radiance at 680 nm and endmember-4 showed double peaks at 480 nm and 810 nm. These
distinctive spectral distributions demonstrated the appropriate performance of the N-FINDR method.
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In contrast, the spectral distributions of endmembers from the first to the third, extracted by
applying the PPI technique, were similar in terms of magnitude and variation, with the exception of
the fourth endmember that had a relatively lower radiance. These distributions suggest that the PPI
method could not succeed in classifying the three endmembers. In addition, this method appeared
to have failed to extract an endmember with a low value of 0.02 or less, corresponding to seawater,
based on the results of the N-FINDR method.

The spectrum extracted through the ICA technique was subdivided into three spectra with some
overlapping of the endmembers of 1 and 3 at all wavelengths (Figure 7c). Endmembers-2 and 4 show
distinctive trends in spectral distribution. Similar to the PPI method, this technique also failed to
extract endmembers with radiance values below 0.02, which was regarded as seawater. The VCA
technique extracted four spectra with different radiance and tendency, similar to N-FINDR. The spectral
distributions of endmember-1, with a maximum value of 0.18, and endmember-3, with a value less
than 0.04, were extracted. Endmember-4 showed double peaks over all wavelengths. Endmember-2
showed a spectral pattern similar to that of the 2nd endmember of the N-FIDNR results. However,
it showed a maximum value (~0.08) at a wavelength of approximately 700 nm Figure 7d.

3.3. Comparison of the Endmember Spectrum Using Spectral Correlation

The spectra of the four endmembers extracted from the VCA analysis in Figure 7d were compared
with the spectrum library constructed through an in-situ experiment. The spectral correlation similarity
(SCS) method was applied to estimate the correlation coefficients between in-situ measurements, and
the endmember spectrum. The estimated correlation coefficients between the endmembers and the
maritime library spectra are summarized in Table 2. Endmember-1, with a relatively large value
with a maximum radiance of 0.18, had a high correlation coefficient of 0.53 with a white deck and
0.50 with a gray deck. Endmember-2 showed a tendency to increase in radiance in the section from
400 nm to 700 nm, with a decrease at high wavelengths greater than 700 nm (Figure 7d). This was
correlated with the orange rubber corresponding to the lifeboat boundary, with a maximum correlation
of 0.60, followed by 0.53 with the red deck. Endmember-3 showed a maximum correlation of 0.59 with
seawater. Among the endmembers extracted from the sea, the spectrum with the lowest radiance
was seawater. Endmember-4, which showed double peaks around 480 nm and 810 nm, had a high
correlation of 0.60 with the blue deck of the FRP vessel.

Table 2. Correlation coefficient between endmember and marine library spectrum.

Correlation Endmember-1 Endmember-2 Endmember-3 Endmember-4

Gray deck 0.50 −0.02 0.51 −0.06

White deck 0.53 0.01 0.49 −0.03

Red deck 0.01 0.54 −0.56 −0.25

Green deck 0.25 −0.19 0.41 0.28

Blue deck −0.15 −0.43 0.28 0.60

Seawater 0.40 −0.19 0.59 −0.01

Orange rubber 0.15 0.60 −0.50 −0.30

3.4. Vessel Detection Using the Abundance Fraction of Endmembers (Structure)

By comparing the abundance fractions of the four endmembers extracted by spectral mixture
analysis, we analyzed the influence between the endmember spectra occupied in the unit pixel.
Figure 8a–d shows the abundance fraction maps of endmember-1 to endmember-4 of the hyperspectral
image including the vessel S6. Every pixel had a value between 0 and 100%. The abundance fraction of
endmember-1 was greater than approximately 55% at the rear of the vessel (Figure 8a). These pixels
were the positions corresponding to the vessel’s steering wheel, as marked in white in the DMC image.
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This is also consistent with the results of the spectral match method showing a correlation of 0.53 with
the white deck. Figure 8b shows the occupancy rate of endmember-2, which accounted for more than
70% of the front and rear boundaries of the vessel. It also has percentages between 40% and 50% at the
borders of both sides of the vessel. This showed a maximum correlation of 0.60 with the red objects,
in comparison with the in-situ spectrum, which was similar to the positions with the same color as
confirmed in the RGB composite image of Figure 8e.

Endmember-3, with a fraction of 100% in most pixels except for the vessel in the center,
corresponded to seawater (Figure 8c). This occupied more than 70% of the pixels along the vessel
boundary. Pixels greater than 60% were concentrated on the front portion of the vessel, which were
considered to be the pixels of the blue deck (Figure 8d). It had a high correlation of approximately
0.60 with the measured FRP blue spectrum. This result implies that the vessel and seawater can be
classified based on the occupancy rate of seawater, herein endmember-3. The criterion was adopted
through receiver operating characteristics (ROC) curve analysis according to the abundance fraction
change, which results in a high detection probability when the true positive rate is high, and the false
positive rate is low (Figure 9a) [54]. The abundance fraction that maximizes the difference between the
true positive rate and the false positive rate is approximately 92% as shown in Figure 9b. The threshold
was given as 90% by considering the uncertainty of the detection probability. Thus, it is concluded that
the pixels occupying more than 90% of the abundance fraction of seawater were treated as seawater
pixels and the rest were judged to be vessels (Figure 8f).
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3.5. Accuracy Assessment of the Four Algorithms

Figure 10a demonstrates the result of detecting a vessel by the N-FINDR technique based on the
endmember-1 abundance fraction corresponding to seawater. Pixels with a ratio of endmember-1 more
than 90% were detected as seawater, and pixels with a lower ratio were classified as vessels.

N-FINDR detected all vessels of various types and colors. This method comparatively detected the
existence of vessels, however, it could not always delineate the complete shape of the vessel boundary.
For example, the central portion of the N11 vessel was detected as seawater. When compared with the
same vessel in the DMC image, it was inferred to be induced by the black net located at the center by
being recognized as a spectrum similar to that of seawater. Therefore, it is necessary to consider that the
detection accuracy depends on the structures on the surface of the vessel. In the case of the N10 vessel,
some pixels of the vessel were missed at the portions of the center and the lower left. This is associated
with the existence of the main rock pillar that holds the vessel. The number of pixels containing the
vessel can be used to estimate the size of the vessel.

Similar to N-FINDR, the VCA technique detected 14 vessels (Figure 10b). This technique differed
in radiance only in endmember-2 of the spectrum in N-FINDR, and the remainder had similar scales.
As a result of classifying vessels and seawater based on 10% of the abundance fraction of endemember-3
corresponding to seawater, the pixels of the vessel boundary were detected to be more extended
than those by the N-FINDR method. Similarly, some of the inside regions of the V11 vessel were
classified as seawater. The results of vessel detection using the PPI and ICA techniques are presented
in Figure 11. In the PPI technique, only two vessels, P1 and P2, were classified, and the number of
pixels was estimated to be low, at 12 and 1, respectively. This method detected only a few parts of the
vessels, which represent a low capability for vessel detection compared to other techniques. The ICA
technique detected seven vessels (I1, I2, I6, I7, I10, I13, and I14) and failed to detect the other seven objects.
The reason for the low accuracy of the detection by these two methods is that the four spectra extracted
as endmembers were classified as not pure substances independent of each other, but impurities by
both two and three endmembers.
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To present the accuracy of pixel-based detection, we analyzed the histogram of the research
area for the blue pixels of the RGB image to estimate the threshold value for classifying vessels and
seawater. The DN values estimated to be seawater mostly ranged from 50 to 80, and the pixels
estimated to be vessels clearly indicated a DN value of 255. The pixels corresponding to the boundary
between the seawater and the vessel had values between 80 and 255. We assumed that pixels larger
than 80 corresponded to vessels, so that a total of 1834 pixels could be found in the same vessel
area. The number of vessel pixels detected by the hyperspectral mixing technique was 1768, so the
probability of detection (POD) in this study was evaluated to be 96.40%, but some of the pixels tended
to be overestimated compared to the actual number of vessels. Accordingly, the false alarm ratio (FAR)
of the method was 4.30%. The accuracy of each vessel detection is presented in Table 3.
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Table 3. Accuracy of vessel detection rate (%) of each ship from S1 to S14 to hyperspectral mixture
analysis methods such as N-FINDR, VCA, PPI, and ICA, where ‘Total’ represents the errors for
integrating all results of the four methods.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

N-FINDR 85.96 88.23 72.52 77.27 82.75 100 80.56 75.34 86.76 82.16 78.71 89.52 92.96 100

VCA 93.61 100 78.02 78.40 85.06 100 90.74 75.34 95.59 100 90.32 94.29 100 100

PPI 0.06 47.56 0 0 0 0 0 0 0 0 0 0 0 0

ICA 35.32 0 0 0 0 26.82 20.37 0 0 31.92 0 0 60.56 63.46

Total 93.61 100 78.02 78.04 85.06 100 91.67 75.34 95.59 100 91.61 94.29 100 100

3.6. Estimation of Vessel Size Using the Ellipse Fitting Method

In addition to the detection of vessels using remotely sensed images, information regarding
the vessel size is also a major factor in characterizing the carrying capacity of the vessel. Therefore,
this study attempted to estimate vessel size by using the ellipse-fitting method. Prior to validating
vessel size estimated from the ellipse method, the actual vessel size was firstly acquired for comparison
using DMC images with a spatial resolution of 0.10 m. All vessels in the high-resolution image were
facing in different directions, so the major axis of each vessel was rotated parallel to the horizontal
direction. The difference between the maximum and minimum values of the x-axis and y-axis was
regarded as the length and width of the vessel. The vessel lengths varied from 7.08 m (S14) to 19.92 m
(S10), and the width of the vessels were between 2.77 m (S9) and 5.76 m (S6).

To estimate the size of the vessel pixels detected by the abundance of endmembers, pixels
corresponding to the vessel boundary were selected by applying a 2-D gradient difference between
the classified vessel and the seawater pixels. The red circles in Figure 12 indicate ellipses encircling
the vessels, and the blue lines inside the ellipse show the lengths of the major- and minor axis of
the ellipse corresponding to the vessel length and width. Figure 13 illustrates the comparison of the
estimated vessel sizes from the high-resolution DMC image and ellipse fitting. The RMSE and bias of
the estimated lengths were 1.19 m and 0.81 m, respectively. The estimated lengths of the vessels showed
a tendency to be slightly underestimated compared with the actual length of the vessel. This tendency
was found for relatively long vessels of more than 15 m. The RMSE and bias of the vessel’s width were
0.81 m and −0.63 m, respectively. The accuracy of this type of elliptic approach tends to be improved
as the size of the vessel increases.
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4. Discussion

This study showed a high capability of detecting the existence of vessels with high POD values,
and retrieving the sizes of the vessels with comparatively good accuracy. The estimated sizes contained
bias errors related to various factors and therefore, it is necessary to discuss the potential causes of the
errors affecting the size estimations.

Firstly, biases can be associated with the high eccentricity of the simulated ellipse following the
boundary of the vessel. A previous study has suggested that the sizes of vessels with eccentricities
greater than 0.97 could likely be overestimated compared with the actual lengths [55]. Most of the
eccentricity values of the vessels detected in this study were less than 0.95. Secondly, the vessels used in
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this study were small, being less than 20 m. The larger the vessel, the smaller the error of the calculated
size. This may also be related to the size of a pixel in a remotely sensed image. In low-resolution
images, small vessels are likely to contain relatively large errors as compared to large vessels. Thirdly,
error can be related to the kurtosis of the vessel. In general, the front of the vessel has a sharper edge
than the back position, so it offsets the overestimation when simulating an ellipse. If the front part of
the vessel has a flat shape, the error will increase when simulated with an ellipse [55].

Fourthly, differences in spatial resolution between hyperspectral images and DMC images can be
produced with respect to the viewing angle. The aircraft observed the sea at an altitude of approximately
1 km and an incident angle of approximately 37◦. The pixel resolution decreased as the incidence
angle increased from the direct point of the aircraft path to both ends of the swath. Considering the
swath and angle of incidence of the aircraft, the resolution at the direct point of the aircraft was 0.58 m,
whereas the resolution of the vessel pixels at both ends increased by 0.11 m. This can account for a
difference of approximately 18.97% depending on the position of the vessel. Two devices with different
resolutions observed the same vessel, and therefore, the vessel size contained the resolution error of
each sensor itself. The size of the same vessel, observed by a hyperspectral sensor with a resolution of
0.58 m and a DMC with a resolution of 0.10 m, included respective fundamental differences in the
internal resolution.

Finally, there are various types of vessels that are not suitable for ellipses. The ellipse fitting
estimated the length and width of the vessel under the assumption that the boundary of the vessel was
most similar to the ellipse. In the case of a closer rectangular than an ellipse, such as S12, the width of a
vessel having a relatively large ratio to its length may be overestimated, particularly in terms of length.
Furthermore, small vessels such as S3 have fewer pixels to be detected, so ellipse fitting is a limited in
the estimation of the small size of the vessel.

5. Conclusions

In this study, airborne observations with hyperspectral sensors and DMC observations were
performed to obtain hyperspectral images around the port located on the west coast of the Korean
Peninsula. As a vessel detection method, spectral mixture techniques based on unit pixels such
as N-FINDR, ICA, PPI, and VCA were adopted. Through this technique, four endmember spectra
representing unique pixels on the images were extracted, and the correlation of each endmember
was quantitatively analyzed by matching it with a maritime spectral library constructed through an
in-situ experiment during the campaign. By applying the methods, the vessels were detected well,
with an accuracy of approximately 96.40% for the seawater endmember pixels, and accounting for more
than 90% of the abundance fraction. The spatial distribution of all endmember abundance fractions
additionally suggested that the inside area of the vessel, including decks and steering wheels, could
be classified with good reliability. Considering that the shape of the vessel is similar to an ellipse,
the length and width of the vessels were estimated by applying elliptical fitting.

The eastern, western, and southern sides of the Korean Peninsula are surrounded by sea, thereby
having a complex maritime traffic environment including various marine and port facilities, overseas
trade, and high fishing intensity. Marine accidents in this region are steadily increasing over time.
Considering this, it is expected that the hyperspectral remote sensing of this study will contribute
to the detection of missing vessels in the event of vessel accidents as well as the management of
marine vessels. This study has emphasized the importance of the high capability of hyperspectral
remote sensing and airborne measurements, as well as multi-spectral remotely sensed images, in vessel
monitoring and size information regarding the vessels in the coastal region. In the future, it will be
necessary to analyze various spectral characteristics of ships by conducting aerial experiments using
microwave SAR sensors as well as hyperspectral sensors.
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