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Abstract: In recent years, short droughts in the dry season have occurred more frequently and caused
serious damages to agriculture and human living in the Mekong River Delta of Vietnam (MRD).
The paper attempts to quantify the trends of drought changes in the dry seasons from 2001 to 2015
in the region, using daily MODIS MOD09GQ and MOD11A1 data products. Here, we exploit the
Temperature Vegetation Dryness Index (TVDI) to assess levels of droughts. For each image-acquisition
time, the TVDI image is computed, based on the Normalized Difference Vegetation Index (NDVI),
derived from red and near infrared reflectance data, and the Land Surface Temperature (LST), derived
from thermal infrared data. Subsequently, a spatiotemporal pattern of drought changes is estimated,
based on mean TVDI values of the dry seasons during the observed period, by a linear regression.
As a result, the state of drought in the dry seasons in the MRD has mostly been at light and moderate
levels, occupying approximately 62% and 34% of the total area. Several sub-areas in the center have
an increased trend of drought change, occupying approximately 12.5% of the total area, because
impervious surface areas increase, e.g., the obvious land use change, from forest land and land for
cultivation for perennial trees being strongly converted to built-up land for residence and public
transportation. Meanwhile, several sub-areas in the coastal regions have a negative trend of drought
change because water and absorbent surface areas increase, e.g., most of land for cultivation for
perennial trees has been converted to aquaculture land. These cases usually occur in and surrounding
forest and wet land, also occupying approximately 12.5% of the total area.
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1. Introduction

Drought is a natural phenomenon that seriously affects agricultural production and human living.
Recently droughts occur in many countries or regions with significant impacts and increase in frequency,
severity, and duration [1–3]. According to the National Oceanic and Atmospheric Administration
(NOAA), global drought area reached its highest level in 2015 to 2016 during the last decades [2]. In the
past, drought is driven by natural variation in seasonal or annual precipitation, so the risk of drought is
expected to grow due to reduced precipitation and higher temperature [4]. In recent years, the severity
of a drought event can be affected by human-induced climate change in combination with natural
variations [4,5]. Additionally, increased heating from global warming is considered to set droughts
occurring quicker and more intense [4–6]. Therefore, monitoring and assessing drought events is an
actual challenge worldwide.

Remote Sens. 2020, 12, 2974; doi:10.3390/rs12182974 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12182974
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/18/2974?type=check_update&version=2


Remote Sens. 2020, 12, 2974 2 of 22

The American Meteorological Society (1997) categorizes drought in four types: meteorological,
agricultural, hydrological, and socio-economic [7–10]. The first three types deal with ways to measure
drought as a physical phenomenon while the last deals with drought through the effects of water
shortage to socio-economic systems. During the late 20th century and the early 21st century, a number
of different drought indices were developed in fields of meteorology, hydrology, agriculture, remote
sensing, and water resources management [8–11]. These indices include the Standardized Precipitation
Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), the Reconnaissance
Drought Index (RDI), the Palmer Drought Severity Index (PDSI), etc., which can be computed by in
situ measurements from meteorological ground stations; and the Vegetation Condition Index (VCI),
the Temperature Condition Index (TCI), the Vegetation Health Index (VHI), etc., which can be derived
from optical and thermal satellite images. In addition, hydrologic drought indices were also defined,
e.g., the Surface Water Supply Index (SWSI), the Standardized Water Level Index (SWI), the Streamflow
Drought Index (SDI), etc., which can be derived from available historical records of reservoir storage,
streamflow, snow pack, and precipitation [9–13]. The in-situ measurement is the most accurate method
for drought monitoring, but it is at high cost and it is difficult to set up a ground station network
to cover a remote and large area. Meanwhile remote sensing-based drought indices, derived from
daily global satellite datasets of precipitation, surface temperature and vegetation, are more effective
for areal drought monitoring and assessment [14]. For example, a significant negative relationship
between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) was
found and a new index for drought monitoring was developed, called the Vegetation Supply Water
Index (VSWI) [15,16]. The NDVI-LST space has been used to study drought cases with full vegetation
cover and different evapotranspiration conditions [17,18]. Another comprehensive drought index,
called the Temperature Vegetation Dryness Index (TVDI), can be calculated relatively simple and fast
based on NDVI from red and near infrared band images and LST from thermal band images [19].
As a result, by exploiting available NOAA/AVHRR, Terra & Aqua/MODIS, Landsat, and Sentinel-3
satellite data as well as optical and thermal high-resolution airborne data, TVDI has been employed
in many researches in drought monitoring in agriculture [20–24], assessing drought impacts on
ecosystems [25–27], and estimating surface moisture [28–35]. Nevertheless, TVDI is usually used in
comparatively small regions. Therefore, for vast, complicated climate and terrain regions, TVDI is
improved or modified by the difference between LST in the day and night, the relationship between
vegetation index and evapotranspiration, or the representative of surface moisture content [36–39].
Moreover, TVDI is employed in the analysis of temporal-spatial pattern of drought effectively [40–42].

This paper focuses on a trend analysis of long-term drought changes in the dry season from
2001 to 2015 in the Mekong River Delta (MRD) of Vietnam, using TVDIs derived from daily MODIS
data products. The dry season in the MRD annually occurs from December to consecutive April,
but in this study the data collection is from 1 January to 30 April. This region is the lowest part of the
Mekong River Basin, as shown in Figure 1. The MRD has a fairly flat terrain and a complex channel
network. Annually, the region produces about 50% of the total amount of food in Vietnam and ensures
food security and livelihoods for approximately 70% of the region’s population [43]. Additionally,
agricultural products of the MRD are also exported to the international market. However, during
the last decades, drought events have occurred more frequently and seriously in the dry seasons
and caused varying degrees of damage to agriculture, fisheries, and the livelihoods of people in the
region, especially the severe drought in 2015–2016 [44–46]. Moreover, by using climate models on
meteorological historical data and future projections, a widespread increase in droughts in the Lower
Mekong River Basin, including the MRD, has been predicted [47–49]. This study aims to derive a
spatial pattern and temporal distribution of drought changes in the MRD in the dry seasons between
2001 and 2015. The result is expected to provide important information for drought warning and
irrigation scheduling in the region.
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Figure 1. (a) The Mekong Basin map (Source: MRC, 2001) and (b) the Mekong River Delta (MRD) of
Vietnam superimposed with the meteorological station (M. Stations) layer.

2. Materials and Methods

In this section, we firstly introduce the study area, the MRD. Secondly, we describe MODIS input
data, including MOD09GQ and MOD021KM products. Then, we conduct a data processing to compute
TVDI values. Finally, a trend analysis of TVDI changes in the dry seasons between 2001 and 2015 are
estimated for exploring drought changes in the MRD.

2.1. Study Area

The MRD is located in the southwestern part of Vietnam and is the ending part of the Mekong
River Basin, as shown in Figure 1. It borders to Cambodia in the north and northwest, Gulf of Thailand
in the west and southwest, and the South China Sea in the east and southeast. It occupies the total
area of 40,816 km2 [43]. Except for a mountainous area in the north, consisting of seven discontinuous
mountains with the highest 705 m peak above sea level and the slope of more than 25 degrees, belonging
to the two Tinh Bien and Tri Ton districts of the An Giang Province, the region has rather flat terrain
and is at low altitude above sea level.

The climate in the MRD is tropical, hot, and humid, and dominated by the Asian monsoons.
According to General Statistics Office of Vietnam [43], its mean daily temperature is variable through
the year from 24 ◦C to 29 ◦C, while in a year the highest temperature is about 36.3 ◦C and the lowest
is in the order of 18.0 ◦C. The sunshine hours range from about 2000 to 2500 h per year, occurring
much more frequently in the dry season than in the wet season. The MRD has an annual rainfall
of more than 2000 mm, but heavy showers regularly occur during the wet season. For example,
at the Ca Mau meteorological station from 2002 to 2015, the monthly averages of air temperature,
sunshine hour, and precipitation are about 27.3 ◦C, 210 h, and 40 mm in the dry season, respectively,
while those are about 27.8 ◦C, 155 h, and 300 mm in the wet season [43]. Additionally, a no or very
low precipitation between January and March normally occurs over the MRD, also see Section 4.1
for an analysis of precipitation at the Can Tho and Dong Thap meteorological stations. Therefore,
the significant character of the MRD is that drought and salinity intrusion normally appear in the
dry season while flooding mostly occurs in the wet season. Nevertheless, it has a naturally suitable
condition for agricultural cultivation and aquaculture, with approximately 26,000 km2 of the total area
as agricultural production land, corresponding to 65% of the total area of the region. The main water
sources of irrigation are from the channel network and rainfall. Annually, it has contributed up to 55%
of total production of paddy and 70% of total production of aquaculture. Therefore, the MRD plays an
important role in the agricultural sector and food security of Vietnam.
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2.2. Data Preparation

Main data used to compute TVDI are derived from the MOD09GQ and MOD021KM data products.
The USGS provide these data products free of charge. MOD09GQ provides MODIS band 1–2 daily
surface reflectance at 250 m resolution [50,51], where band1 covers a spectral range of 0.62–0.67 µm
and band2 of 0.84–0.87 µm. These reflective data are used to compute NDVI. MOD021KM provides
MODIS band 31–32 daily thermal emission at 1 km resolution [52,53]. These emissive data are used to
compute LST. The observed period is in the dry season, from January to April, between 2001 and 2015.
To cover the MRD, we need two scenes at the locations of ‘h28v07’ and ‘h28v08’. The couples of the
two scenes were captured nearly at the same time. The images are referenced to the sinusoidal datum
and stored in the hdf format. In this study, the collected data include 315 image couples in case of less
than 10% of cloud cover during the observed period. Accordingly, the two scenes of image are merged
to cover the whole region. Then, bands 1, 2, 31, and 32 are combined to store into one file. Moreover,
the image dataset is converted to the WGS84 geographic coordinate system from the Sinusoidal datum.
Eventually, the images are clipped keeping interior to the boundary of the MRD.

2.3. Data Processing

In this section, we describe the processing of the MODIS data to estimate the spatiotemporal trend
of TVDI changes in the dry season between 2001 and 2015. For each image acquisition time, NDVI
and LST are determined. Then, TVDI images are calculated based on NDVI and LST. Subsequently,
a mean TVDI image is obtained for each dry season. Finally, for each pixel a temporal trend of TVDI
changes in time series is estimated, using a linear regression. The resultant image is expected to be
representative for the spatial pattern and temporal distribution of drought changes in the MRD in the
dry season during the observed period.

2.3.1. NDVI

Based on Red and NIR reflective bands, NDVI is determined as in Equation (1). Here, ρRed
and ρNIR are representative for the MDO09QG band 1 and 2 surface reflectance values respectively.
Then, the NDVI image is reconstructed at the 1 km spatial resolution by the bi-linear interpolation.
Figure 2a shows NDVI derived from the data on 12 February, 2015.

NDVI =
ρNIR − ρRed

ρNIR + ρRed
. (1)

Figure 2. (a) NDVI and (b) LST (◦C) in the Vietnamese Mekong River Delta on 12 February, 2015.
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2.3.2. LST

LST (K) is computed following Equation (2), based on the algorithm developed by Price (1984),
and confirmed by Vazquez et al. (1997) [54,55]. Here, T31, T32 (K) are the brightness temperatures
obtained from band 31, band 32, respectively, and, ε31, ε32 are the surface emissivity coefficients
in band 31, band 32, respectively. In addition, the surface emissivity is calculated from NDVI,
as Equations (4) and (5), apply the algorithm developed by Cihlar et al. (1997) [56]. Then, LST (◦C) is
determined following Equation (6). Additionally, LST anomalies out of a range from 15 to 45 (◦C) are
removed, conforming to the tropical weather in the study area. Figure 2b shows LST (◦C) derived from
the data on 12 February, 2015.

LST = T31 + 1.8(T31 − T32) + 48(1− ε) − 75∆ε, (2)

ε =
(ε31 + ε32)

2
, (3)

∆ε = ε31 − ε32 = 0.01019 + 0.01344ln(NDVI), (4)

ε31 = 0.9897 + 0.029ln(NDVI), (5)

LST(oC) = LST(K) − 273.15. (6)

The brightness temperature Tb detected by a thermal sensor is determined by Planck’s Equation (7).

Tb =
hc/kλ

ln
(

2πhc2λ−5

Lλ
+ 1

) =
K2

ln
(K1

Lλ
+ 1

) , (7)

where, Lλ (Wm−2sr−1µm−1) is the spectral radiation, h = 6.62× 10−34 (Js) is Planck’s constant, c = 3× 108

(ms−1) is the speed of light, k = 1.38 × 10−23
(
JK−1

)
is Boltzmann’s constant, and λ (µm) is the

central wavelength. K1 and K2 (Wm−2sr−1µm−1) are calibration coefficients, for band31: K1 = 730.01,
K2 = 1305.84, and band32: K1 = 474.99, K2 = 1198.29 [57].

2.3.3. TVDI

Sandholt et al. (2002) proposed an index, called TVDI, to monitor drought levels based on LST
and NDVI [19]. The levels of drought were related to evapotranspiration, soil moisture (or LST),
and vegetation coverage. LST will be smallest at surfaces corresponding to maximum evaporation
due to saturated water, while it will increase to maximum at minimum evaporative surfaces due to
very dry surfaces (with or without vegetation). Subsequently, TVDI is determined by Equation (8).
Here, LST (◦C) is the land surface temperature at the observed pixel. LSTmax and LSTmin depend on
the NDVI value at the observed pixel, as Equations (9) and (10), corresponding to the temperatures
at the dry edge and the wet edge, respectively. The parameters (a, b) and (c, d) are constant for each
image acquisition time.

TVDI =
LST − LSTmin

LSTmax − LSTmin
, (8)

LSTmax = a + b ∗NDVI, (9)

LSTmin = c + d ∗NDVI. (10)

For estimation of the parameters (a, b), and (c, d), the linear regression was applied [58]. Firstly,
the NDVI image was divided into 20 classes from 0 to 1 values with an interval of 0.05. For each NDVI
class, a dataset of the LST values at the corresponding pixels was collected. Then, the maximum values
LSTmax were chosen and the corresponding NDVI values NDVImax were determined, for an example
see Table 1. Similarly, the minimum values LSTmin and NDVImin were chosen. Subsequently, the fitting
lines were estimated from the datasets of (LSTmax, NDVImax) and (LSTmin, NDVImin), using the linear
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regression, as presented in the red line and blue line, see Figure 3. They are representative for the dry
edge and the wet edge at the image acquisition time. Finally, the parameters (a, b) and (c, d) were
derived from these two lines, for example equaling to (-11.5399, 37.9475) and (−0.2788, 22.3359) on
12 February, 2015, respectively.

Table 1. The datasets of (LSTmax, NDVImax) and (LSTmin, NDVImin) determined from the LST and
NDVI images on 12 February, 2015.

NDVI Class LSTmax NDVImax LSTmin NDVImin

0–0.05 41.85 0.00 24.81 0.05
0.05–0.10 33.61 0.06 22.47 0.08
0.10–0.15 33.70 0.12 22.31 0.11
0.15– 0.20 31.99 0.17 22.55 0.20
0.20–0.25 35.41 0.24 22.09 0.23
0.25–0.30 35.28 0.28 22.68 0.27
0.30–0.35 34.54 0.34 21.85 0.32
0.35–0.40 34.33 0.38 22.38 0.36
0.40–0.45 34.81 0.44 21.81 0.42
0.45–0.50 33.79 0.47 21.64 0.46
0.50–0.55 34.23 0.53 22.40 0.51
0.55–0.60 32.65 0.58 18.84 0.59
0.60–0.65 32.99 0.62 19.82 0.61
0.65–0.70 30.87 0.65 19.80 0.66
0.70–0.75 29.45 0.71 22.13 0.71
0.75–0.80 31.22 0.76 22.55 0.78
0.80–0.85 27.02 0.81 23.85 0.81
0.85–0.90 26.15 0.85 23.68 0.88
0.90–0.95 24.23 0.90 24.23 0.90
0.95–1.00 - - - -

Figure 3. The fitting lines red and blue, representative for the dry edge and the wet edge in the MRD
on 12 February, 2015.

According to Equation (8), Figure 4 shows the TVDI image in the MRD on 12 February, 2015. Here,
TVDI values are classified to five levels, consisting of ranges from 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8,
and 0.8 to 1, which are representative of drought levels such as wet, normal, light, moderate, and high,
respectively [28,29].
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Figure 4. The TVDI image in the MRD, derived from the MODIS surface reflectance and emissive
bands on 12 February, 2015.

2.3.4. Mean TVDI

For each dry season, mean and standard deviation (StdDev) images of TVDI are computed.
For each pixel, the mean TVDI equals an average of at least six TVDI values, corresponding to at
least six image acquisition times per season. Subsequently, the standard deviation TVDI is computed.
For example, Table 2 shows statistics of TVDI variations at the pixel of (10◦06’N, 105◦59’E), located
at the Vinh Long Province. It consists of a number of TVDI images, mean and standard deviation of
TVDI values for each dry season. As a result, this location shows a variation at moderate and high
levels of drought in the dry season during the observed period.

Table 2. The mean and StdDev of TVDI at the sampled location at the Vinh Long Province in the dry
season from 2001 to 2015.

Year No. of Images Mean TVDI StdDev TVDI

2001 7 0.72 0.13
2002 27 0.58 0.19
2003 16 0.62 0.20
2004 23 0.67 0.21
2005 34 0.63 0.21
2006 15 0.62 0.15
2007 23 0.69 0.17
2008 17 0.71 0.21
2009 10 0.75 0.20
2010 11 0.63 0.14
2011 13 0.78 0.10
2012 10 0.75 0.23
2013 14 0.86 0.11
2014 14 0.83 0.13
2015 10 0.73 0.15

2.3.5. Temporal Trends of the Mean TVDI Values

For each pixel, a temporal trend of the mean TVDI values between 2001 and 2015 is determined,
using Equation (11), by the linear regression [58]. The trend is estimated if there are at least six mean
TVDI values or seasons available between 2001 and 2015. The rate v of the trend is obtained by solving
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Equation (12) and the root mean square error (RMSE), as standard deviation of residuals, is also
computed, as Equations (13) and (14).

y = Ax, (11)

x̂ =
(
ATA

)−1
AT y, (12)

RMSE =

√∑i=n
i=1 êi

2

n
, (13)

ê = y−Ax̂, (14)

where,

y =
[

TDVI1 . . . TDVIn
]T

: the vector of the mean TVDI values per season.

x =
[

x0 v
]
: the vector of parameters of the linear trend, offset x0 and rate v.

A =

[
1 . . . 1
t1 . . . tn

]T

: the design matrix, in which ti denotes the ith season.

RMSE: the root mean square error (RMSE), as standard deviation of residuals.
ê: the least-square residual vector.
Figure 5 shows the temporal distribution of the mean TVDI values at the sampled pixel during

the observed period. The result indicates that the location has an increase of drought change at a rate
of +0.013 per year with RMSE of 0.05. Accordingly, a spatiotemporal pattern of drought changes in the
dry season between 2001 and 2015 is estimated for the entire MRD.

Figure 5. The temporal trend of the TVDI changes at the sampled location during the observed period.

3. Results

3.1. The Mean TVDI Images

For each dry season, the mean TVDI image is computed and classified into the five levels of
drought, and the total area of each drought level is determined in the entire MRD. Figure 6 presents
the mean TVDI images in the dry season from 2001 to 2015. Most of areas present light and moderate
levels of drought, corresponding to yellow and orange colors. A few of red small areas show a high
level of drought appearing in urban and industrial areas. Inversely, light blue and blue areas appear in
forest or wetland areas.

In details, Table 3 and Figure 7 present percentages of areas of drought levels in the MRD in the
dry seasons during the observed period. The total area of the wet level occupies nearly zero percentage
while the total area of the high level of drought varies from 1% to 2%. Obviously, the total area of the
light and moderate levels mostly occurs in a range from 96% to 98%, occupying approximately 62%
and 35%, respectively. Here, the area is calculated by the sum of the total pixels of the 1 × 1 km size.
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Figure 6. The mean TVDI images in the MRD in the dry season from 2001 to 2015.
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Table 3. Percentages of areas of the TVDI levels in the MRD in the dry seasons from 2001 to 2015.

Year Wet Normal Light Moderate High

2001 0.01% 0.65% 62.90% 35.97% 0.48%
2002 0.00% 1.53% 74.50% 23.17% 0.80%
2003 0.00% 0.09% 60.51% 38.84% 0.56%
2004 0.01% 0.52% 51.01% 47.60% 0.87%
2005 0.00% 1.87% 82.10% 16.01% 0.02%
2006 0.01% 1.60% 79.29% 19.01% 0.09%
2007 0.00% 13.30% 67.66% 18.28% 0.77%
2008 0.00% 0.31% 53.76% 45.74% 0.18%
2009 0.01% 1.16% 43.84% 53.94% 1.05%
2010 0.00% 0.99% 69.04% 29.35% 0.61%
2011 0.01% 0.64% 57.07% 40.73% 1.55%
2012 0.01% 0.39% 49.75% 49.56% 0.30%
2013 0.02% 0.70% 66.93% 30.95% 1.40%
2014 0.00% 2.27% 60.83% 35.33% 1.56%
2015 0.19% 7.29% 76.25% 15.03% 1.25%

Average 0.02% 2.45% 62.08% 34.60% 0.85%

Figure 7. A chart of areas of the TVDI levels in the MRD in the dry season from 2001 to 2015.

3.2. The Spatiotemporal Pattern of Drought Changes

The spatiotemporal pattern of drought changes in the MRD in the dry season between 2001
and 2015 is shown in Figure 8a, in which each pixel presents a temporal trend of the mean TVDI
values. Each pixel is classified into one of seven colored groups, based on its rate v of drought change,
corresponding to the slope of the trend. Table 4 presents the total area of the seven v groups of drought
change in the entire MRD. Accordingly, the total area of the pixels in green occupies 75% of the study
area, meaning unchanged levels of drought. The pixels in blue-tone, occupying the total area of about
12.5%, present a negative trend of drought change. These areas can be wetter, occurring in forest,
agricultural cultivation, and aquaculture. Most of them are in the border of the MRD, adjacent to the
sea, including provinces Kien Giang, Tra Vinh, Soc Trang, and Bac Lieu. On the other hand, the red-tone
pixels, also occupying the total area of about 12.5%, show a positive trend of drought change. Most of
the areas with an increased trend appear in the center of the RMD, including provinces Dong Thap,
Vinh Long, Can Tho, and Hau Giang. This means that these areas are prone to increased drought.
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Figure 8. The spatiotemporal pattern of drought change in the MRD in the dry seasons between 2001
and 2015, in which (a) rates of TVDI change, v, and (b) the TVDI estimation in 2001, superimposed by
the contours of rates of drought change.

Figure 8b shows the TVDI estimation map in 2001, in which each pixel is derived from the variable
x in Equation (11). Subsequently, most of the region presents light and moderate drought. Nevertheless,
their sub-areas have different trends of drought change. For example, Long An shows both light and
moderate levels of drought, estimated in the 2001 dry season, and has mostly kept the levels of drought,
occupying about 84% of the total area, during the observed period.
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Table 4. The total area of the rates v of drought change in the MRD in the dry season between 2001
and 2015.

v <−0.02 −0.02–−0.01 −0.01–−0.005 −0.005–0.005 0.005–0.01 0.01–0.02 >0.02 Total Area
(km2)

An Giang 39 109 187 2857 321 29 0 3542
Bac Lieu 9 359 267 1708 9 0 0 2351
Ben Tre 0 10 43 2158 260 6 1 2478
Ca Mau 0 4 97 4981 179 9 0 5270
Can Tho 0 0 0 1014 338 85 0 1437

Hau Giang 0 0 7 2350 930 97 0 3383
Dong Thap 0 0 16 1006 532 64 0 1617

Long An 0 74 725 5299 193 23 0 6314
Kien Giang 1 532 722 3086 185 20 0 4546
Soc Trang 2 195 570 2294 244 3 0 3307

Tien Giang 3 11 64 1773 525 57 0 2433
Tra Vinh 3 215 430 1652 71 0 0 2371

Vinh Long 0 2 2 851 587 106 2 1549

Total area
(km2) 57 1713 3197 30712 4414 505 3 40600

Percentage 0.14% 4.22% 7.87% 75.64% 10.87% 1.24% 0.01% 100.00%

Table 4 indicates that sub-areas in Dong Thap, Vinh Long, Can Tho, and Hau Giang have an
increased trend of drought change more the rest, occupying an area percentage of 30%, 45%, 29%,
and 33%, respectively. Inversely, the sub-areas having a decreased trend are those in Bac Lieu,
Kien Giang, Soc Trang, and Tra Vinh, with an area percentage of 27%, 28%, 23%, and 27%, respectively.

4. Discussions

4.1. An Increase in Duration of the Dry Season

The climate of the MRD is tropical and dictated by two distinct seasons: the dry and wet seasons.
The cool, dry air masses from north-eastern directions make the MRD much drier from January to
March, which causes short droughts occurring sparsely over the entire region for two or three weeks.
Meanwhile, due to the southwest Monsoon, the MRD mostly has more frequent and heavy rains from
May to October, and then flooding usually occurs for a few weeks [59]. The average annual rainfall
ranges from approximately 1000 to 2400 mm, and regularly decreases from southeast to northwest,
e.g., approximately 2250 mm, 1600 mm, and 1490 mm at the meteorological stations in Ca Mau,
Can Tho, and Dong Thap, respectively [43]. Due to reduction in rainfall and increase in hot weather
duration during the dry seasons, the short droughts have become longer, denser, and more serious.
Annually, a zero or very low rainfall period is normally experienced between January and March,
but the average monthly rainfall of approximately 13 mm occurs sparsely over the MRD, as derived
from the rainfall data at the meteorological stations in Can Tho and Dong Thap (data source: Vietnam
Center of Hydro-Meteorological Data), see Figure 9. The increase in dry season duration is mostly
caused by a rainfall shortage occurring in last December or April or both. For example, recently severe
droughts in the MRD from 2002 to 2004 and 2015 to2016 were reported [44,59].
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Figure 9. The distributions of monthly rainfall from the meteorological stations at the locations of
(a) (10◦02’N, 105◦46’E) in Can Tho, and (b) (10◦28’N, 105◦38’E) in Dong Thap, from January 1985 to
December 2018.

Based on the two monthly rainfall datasets at the Can Tho and the Dong Thap, the three-month
SPI values through the end of March from 1985 to 2018 were determined, by applying the Standardized
Precipitation Index Tool [60]. As a result, the SPI-3 values vary in a range from approximately −1.5
to 2.0, as presented in Figure 10. Accordingly, after the 1987 serious short drought, the MRD mostly
experienced a normal state in the dry season with the SPI-3 range of (−1.0, +1.0), meaning no anomaly
of drought or normal rainfall during the 10-year period. Nevertheless, positive and negative anomalies
of drought have appeared extremely and alternatively since 2000, meaning that the precipitation
regime is very dry or very wet, corresponding to the SPI-3 values of less than −1.5 or more than
1.5, respectively. For instance, short droughts occurred in 2002 and 2015 over the widespread MRD,
corresponding to the SPI-3 of −1.5 at the Can Tho and −1.0 at the Dong Thap.

Table 5 shows a comparison between the TVDI and SPI-3 indicators at the meteorological stations
in Can Tho and Dong Thap during the observed period. The SPI-3 values present a large variation
of drought anomalies from negative to positive while the TVDI values mostly illustrate moderate
levels of drought, also see Figure 11. Typically, the SPI-3 indicator through the end of March only
depends on accumulated rainfall in the dry season, from January to March, and the long-term rainfall
from 1985 to 2018. Meanwhile, the TVDI indicator is affected by land cover characteristics and surface
temperature, or evapotranspiration, during the dry season. Subsequently, the TVDI and SPI-3 values
strongly indicate moderate and severe droughts when rainfall shortages appear, e.g., from 2002 to 2003,
and 2014 to 2015.
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Figure 10. The distributions of the SPI-3 values through the end of March derived from the monthly
rainfall data from the meteorological stations in (a) Can Tho and (b) Dong Thap.

Table 5. The comparison of the TVDI and SPI-3 indicators in the dry season from 2001 to 2015 at the
meteorological stations in Can Tho and Dong Thap, where R-3 (mm) is the accumulated rainfall from
January to March.

Year
Can Tho Dong Thap

R-3 (mm) SPI-3 TVDI R-3 (mm) SPI-3 TVDI

2001 113.1 1.35 0.59 58.9 0.70 0.64
2002 0 −1.57 0.70 0 −1.05 0.64
2003 0.5 −1.24 0.68 1.6 −0.79 0.70
2004 32.5 0.29 0.73 0 −1.05 0.69
2005 4.8 −0.66 0.64 0.2 −0.98 0.59
2006 119.4 1.41 0.68 63.6 0.76 0.68
2007 98.3 1.20 0.72 108 1.24 0.66
2008 25.8 0.14 0.77 108.7 0.35 0.67
2009 98.7 1.11 0.79 89 1.05 0.83
2010 15.3 −0.15 0.75 31 0.25 0.73
2011 105.7 1.28 0.82 90.8 1.07 0.74
2012 151.4 1.68 0.81 32.3 0.27 0.79
2013 18.8 −0.04 0.71 12.1 −0.23 0.76
2014 1.4 −1.03 0.82 1.4 −0.81 0.78
2015 0 −1.57 0.80 0 −0.85 0.73
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Figure 11. The scattering of the TVDI values (X-axis) and the SPI-3 values (Y-axis) in the dry season
from 2001 to 2015 at the meteorological stations in (a) Can Tho and (b) Dong Thap.

4.2. Spatiotemporal Pattern of LST Changes

Similarly, based on the dataset of the LST images, a spatiotemporal pattern of LST changes in the
MRD in the dry seasons is estimated, by the linear regression, as shown in Figure 12. It means that for
each pixel, a temporal trend of LST change is determined and its rate of LST change is described as the
slope of a fitting line estimated from LST values in time-series. Each pixel is classified into one of five
colored groups, based on its rate of the LST changes. As shown in Table 6, the total area of the pixels in
yellow occupies about 50% of the study area, meaning that LST are mostly unchanged. The pixels in
blue-tone, occupying the total area of about 5%, present a negative trend of the LST changes, while the
pixels in red-tone, also occupying the total area of about 45%, show a positive trend of the LST changes.
In general, LST in the MRD increases at an average rate of +0.1 ◦C per year in the dry season between
2000 and 2015. Subsequently, the pattern of LST changes in the MRD is positively correlated to the
spatiotemporal pattern of drought changes during the observed period.

Figure 12. The spatiotemporal pattern of LST changes in the MRD in the dry season between 2001
and 2015.
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Table 6. The areas of rates of LST changes in the MRD in the dry season between 2001 and 2015.

Rates of LST Change
Per Year ≤−0.2 −0.2–−0.1 −0.1–0.1 0.1–0.2 >+0.2 Total Area

(km2)

An Giang 74 51 2959 414 44 3542
Ben Tre 3 13 1668 646 23 2351
Bac Lieu 190 197 976 929 186 2478
Ca Mau 0 5 1486 2583 1196 5270
Can Tho 0 0 294 955 188 1437

Dong Thap 0 2 1465 1559 358 3383
Hau Giang 0 0 252 1129 236 1617
Kien Giang 45 413 3305 2120 431 6314

Long An 12 272 3870 361 33 4546
Soc Trang 60 216 1648 1256 128 3307

Tien Giang 0 14 1266 909 244 2433
Tra Vinh 150 219 1616 379 7 2371

Vinh Long 0 0 122 1205 221 1549
Total area (km2) 534 1401 20926 14445 3294 40600

Percentage (%) 1.32 3.45 51.54 35.58 8.11 100.00

4.3. Drought Level Change vs. Land Use Change

Based on land use maps in the Southern Vietnam, investigated and created by the provincial
governments every five years, Table 7 presents a summary of main land use areas belonging to the
MRD in 2000 and 2015 [61]. Subsequently, the provinces, including Dong Thap, Vinh Long, Can Tho,
and Hau Giang, have an obvious change in land use, as forest and land for cultivation of perennial
trees decreased by 16.9, 83.6, and 86.0 km2 while built-up land for residence and public transportation
increased by 52.6, 49.3, and 82.0 km2, respectively. Inversely, there were also obvious land use change in
the maritime provinces, e.g., Tra Vinh, Bac Lieu, Ca Mau, and Kien Giang, in the following three ways.
Firstly, paddy land and land for cultivation of annual crops were converted to land for cultivation of
perennial trees or aquaculture land. Secondly, forest land and/or land for cultivation of perennial trees
were converted to aquaculture land nearby the coastal areas. Thirdly, mangrove forests were planted
along most of the coastal areas. Changes in forest land are obviously recognized in the forest maps in
the MRD in 2005 and 2015, as shown in Figure 13 [62].

Table 7. A summary of main land use areas in the Vietnamese Mekong River Delta, computed from the
land use maps in 2000 and 2015 [61].

Land Use in 2000 (km2) Land Use in 2015 (km2)

Province
Paddy,

Annual
Crops

Perennial
Trees Forest Resident

Paddy,
Annual
Crops

Perennial
Trees Forest Resident

An Giang 5172.2 286.7 106.8 15.7 5479.5 364.2 81.6 56.3
Bac Lieu 2194.2 222.5 11.1 3.3 1487.3 20.3 8.8 3.2
Ben Tre 731.8 1214.2 35.2 7.4 545.5 1141.5 55.8 28.5
Ca Mau 2095.1 288.5 857.2 8.4 905.1 82.3 731.6 19.3
Can Tho 4050.0 565.6 20.9 20.5 1992.6 244.7 0.0 91.3

Hau Giang (*) - - - - 2037.3 427.7 0.0 11.1
Dong Thap 5148.0 322.7 118.3 7.8 5036.3 345.0 113.0 60.4

Long An 5111.8 939.0 319.3 15.0 5554.1 1030.8 234.3 168.9
Kien Giang 5621.1 1287.0 387.5 15.6 6667.5 431.1 362.1 58.5
Soc trang 3492.1 819.1 77.3 12.3 3209.4 848.9 92.9 9.3

Tien Giang 1997.9 1,038.7 61.7 17.7 1864.3 1025.4 27.2 77.7
Tra Vinh 2138.6 485.7 10.9 3.7 2020.9 431.6 31.5 5.6

Vinh Long 1832.6 374.1 0.0 11.4 1249.1 457.7 0.0 60.8
(*) Hau Giang Province was established in 2004, by separation from the Can Tho province.
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Figure 13. The distribution of forest types, including mangrove forest, melaleuca forest, and land forest
in the MRD (a) in 2005 and (b) in 2015 [61].

Additionally, Pham et al. (2016) confirmed that agricultural land decreased, including land
for cultivation of paddy and annual crops, perennial trees, and forest, while non-agricultural land
increased, including residential land, land for construction, and land for public purposes, between
2005 and 2014 [62]. As a result, the two land use maps in the MRD were derived from the Landsat-7
scene on 20 January, 2005 and the Landsat-8 scene on 21 January, 2014, as presented in Figure 14.
Then, the total areas of land use types were computed, as shown in Table 8. Accordingly, land for
cultivation of paddy and annual crop, colored in yellow, occupying 54% of the total area in 2014,
decreased by ~1000 km2. Land for cultivation for perennial trees, most of fruits, colored in light
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orange, occupying 18.8%, decreased by ~1400 km2. Forest land, colored in green, only occupying 3.1%,
decreased by ~625 km2, mostly occured in Long An, and Dong Thap. Inversely, the others, colored
in gray, occupying 12.6%, including urban and rural residential land, land for construction of offices,
industrial parks, and public transports, strongly increased by ~3000 km2, clearly appeared in Long An,
Tien Giang, Dong Thap, An Giang, Vinh Long, Can Tho, and Hau Giang.

Figure 14. The land-use maps derived from (a) the Landsat-7 scene on 20 January, 2005, and (b) the
Landsat -8 scene on 21 January, 2014 [62].

In summary, the sub-areas in the central region have a positive trend of drought change due to an
increase of imperious surface, i.e., land for cultivation of perennial trees and forest have been converted
to built-up land for residence and public transportation. Meanwhile, the sub-areas along the coastal
region have a negative trend of drought change due to an increase of water and vegetated surface,
e.g., mangrove and aquaculture land.
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Table 8. A summary of land use areas in 2005 and 2014 derived from Landsat-7 scene on 20 January,
2005 and Lansat-8 scene on 21 January, 2014 [62].

Area of Land-Use Types (km2) In 2005 In 2014

Paddy land, land for cultivation of annual crops 16,127.1 15,105.9
Land for cultivation of perennial trees 6686.8 5262.2

Aquaculture land 1885.0 2110.3
Forest land 1492.6 866.2

Water surface 1201.6 1084.1
Others 573.4 3537.7

Total 27,966.4 27,966.4

5. Conclusions

We have presented a state-of-the-art analysis of drought occurring in the MRD in the dry season
from 2001 to 2015. In this case, the TVDI indicator is exploited to assess drought levels, using the
daily MODIS data products. The spatiotemporal pattern of drought changes in the MRD during the
observed period is estimated based on the mean TVDI images, using the linear regression. The result
indicates that approximately 62% of the study area is at light level of drought while 34% are at moderate
level in the dry season. Subsequently, approximately 12.5% of the total area have an increased trend of
drought change, indicative of becoming drier, mostly occurring in the central sub-regions. Inversely,
also approximately 12.5% of the total area are shown by negative trends of drought change, becoming
wetter, appearing in several sub-areas in the maritime provinces. The results are expected to provide
important information for the sustainable water resource management and planning in the MRD.
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